
Jump Tables
There are a number of ways to rewrite a ʻswitchʼ statement in C to assembler. The
obvious way is to use ʻif then elseʼ conditionals. If you have n elements, then this
leads to an O(n) solution. If the switch is sparse with the cases sequential or near
sequential, then an O(1) solution is possible by using jump tables.

Consider the following example shown in class:

typedef enum {ADD, MULT, MINUS, DIV, MOD, BAD} op_type;

char unparse_symbol(op_type op)
{
 switch (op) {
 case ADD :
 return '+';
 case MULT:
 return '*';
 case MINUS:
 return '-';
 case DIV:
 return '/';
 case MOD:
 return '%';
 case BAD:
 return '?';
 }
}

This is assembled into the following code with comments shown in class:

unparse_symbol:
 pushl %ebp # Stack Setup
 movl %esp,%ebp # Stack Setup

 movl 8(%ebp),%eax # eax = op
 cmpl $5,%eax # Compare op : 5
 ja .L49 # If > goto done
 jmp *.L57(,%eax,4) # goto Table[op]

.L51:
 movl $43,%eax # ʼ+ʼ
 jmp .L49
.L52:
 movl $42,%eax # ʼ*ʼ

 jmp .L49
.L53:
 movl $45,%eax # ʼ-ʼ
 jmp .L49
.L54:
 movl $47,%eax # ʼ/ʼ
 jmp .L49
.L55:
 movl $37,%eax # ʼ%ʼ
 jmp .L49
.L56:
 movl $63,%eax # ʼ?ʼ
 # Fall Through to .L49

.L49: # Done:
 movl %ebp,%esp # Stack clean-up
 popl %ebp # Stack clean-up
 ret # Finish - return value in %eax

The compiler also created a data segment (.rodata) where it created a ʻjump tableʼ that
looks like this:

.L57:
 .long .L51 #Op = 0
 .long .L52 #Op = 1 / Memory address is .L57 +4
 .long .L53 #Op = 2 / Memory address is .L57 +8
 .long .L54 #Op = 3 / Memory address is .L57 +12
 .long .L55 #Op = 4 / Memory address is .L57 +16
 .long .L56 #Op = 5 / Memory address is .L57 +20

Remembering that our enumerated values are:

ADD 0
MULT 1
MINUS 2
DIV 3
MOD 4
BAD 5

Note that the memory address of an OP is .L57 + Opvalue * 4. Why 4? Thatʼs the size
of a word on our process, and the size of a memory address. Each entry in the table
above is a memory address denoted by a symbol. We use this fact to optimize our
switch statement.

The first line moves the OP argument into %eax off of the stack. The OP is next
compared to 5 to see if it is within the bounds (0-5) of a legal OP. If OP is greater than 5,
then we jump to the end - .L49 and return from the function. Otherwise, we use the jump
table. The instruction jmp *.L57(,%eax,4) is an absolute (non-PC relative) jump. It can
be rewritten in Intel format as JMP [.L57+EAX*4]. We are multiplying the OP value by 4,
adding it to the location of label .L57 and then taking the value at that memory location
and jumping to it. So letʼs walk through an example- Let OP = 2. We get to the JMP
instruction and we have JMP [.L57+8]. There we find the value located at .L57+8 which
is .L53, and we do an absolute jump to .L53. The instruction at .L53 moves $45 into
%eax, and execution jumps to .L49 and returns with the value $45 in %eax to the calling
function.

