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A classical problem in combinatorial geometry is that of determining the 

minimum number f(n) of different distances determined by n points in the 
Euclidean plane. In 1952, L. Moser proved thatf(n) > n”‘/(2 fi) - 1 and this has 

remained for 30 years as the best lower bound known for f(n). It is shown that 

f(n) > cn “’ for some fixed constant c. 

I. INTRODUCTION 

Suppose we have n distinct points in the Euclidean plane. There are (‘; > 
distances determined by pairs of these n points. In 1946, Erdos [2] raised the 
question of finding the least numberS(n) of different distances determined by 
rz points and proved that 

JL=T - 1 < f(n) < cn/& 

where c is a fixed constant. 
In 1952, Moser [4] improved the lower bound to 

f(n) > n”3/(2 $5) - 1 

and this has stood for 30 years as the best lower bound known for f(n). 
In this paper we will prove that 

f(n) > cd” 

for a fixed constant c. 
The upper bound en/G for f(n) was obtained by considering the 

points of a square lattice. Erdijs conjectured thatf(n) > n’-’ for any positive 
F and n sufficiently large. This conjecture remains open. 
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II. PRELIMINARIES 

In this section we will quote some known facts and prove several auxiliary 
lemmas. First we define some useful notation. 

Supose S, 5” are sets of distinct points in the plane and x is a point. Let 
g(x, S) denote the number of different distances from x to points in S. Let 
g(S, S’) denote the number of different distances d(u, v), for u in S and 21 in 
S’. Also let D(S) denote the maximum distance between two points in S. 

LEMMA 1 [2,4]. Suppose x and y are two distinct points not in S. Then 

g(x, s> dY> s> 2 I A- l/2. 

LEMMA 2. 

g(x, s> + dY3 9 2 I.4 Sl. 

Proof. It follows from Lemma 1. 

LEMMA 3 [4]. Let 0 be any fixed point and let x,, x2? x3 be points 
satisfying the following (see Fig. 1): 

(i) LxiOxj< lofor l<i,j<3. 

(ii) x2 and x3 are on the same side of the through 0 and x1. 

(iii) r < d(xi, 0) < r + 4, i = 1, 2, 3, for some positive value r. 

(iv) 4x,, x2) = 4x,, x3). 

Then d(x2, x3) < 1. 

LEMMA 4. Let r and w be positive values and 0 b;! a flxedpoint. Let Xi, 
i = 1, 2, 3,4, be points satisfying the following: 

(i) LxiOxj < l”, for 1 < i, j < 4. 

(ii) Fori=1,2,r+w<d(0,xi)<r+w+i. 

Forj=3,4, r<d(O,xj)<r+$. 

(iii) d(x,, XJ > I. 

(iv) d(x, , xj) = d(x,, xj), j = 3,4. 

Then d(x3, XJ < 1. (See Fig. 2.) 

FIGURE 1 
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FIGURE 2 

Proof. Let x5 denote the midpoint of the segment G. Then x3 and x, 
are on a line passing through x5 and orthogonal to x1x2. Furthermore the 
acute angle between the line x5x3 and the line x,0 is at most 40” since the 
angle determined by G and Ox, is at least arccos $ > 55”. Therefore 
d(Xj) XJ < l/(2 cos 407 < 1. 

LEMMA 5. Suppose r is an integer. Let X and Y denote two sets of points 
satisfying: 

(i) r < d(xi, 0) < r + 4 Vx, E X. 

(ii) w+r,<d(y,,O)<w+r+itry,EY. 

(iii) LziOzj < lofor zi, zj E XV Y. 

(iv) d(zi,zj)> 1 Vz,,z,EXUY. 

(VI I YI 2 PI. 

Then there are at least 1X1/4 diff erent distances between points in X and 
points in Y, i.e., g(X, Y) 2 1X//4. 

Prooj Let z denote the maximum number of different distances from a 
point in X to points in Y, i.e., z = Max{ g(xi, Y): xi E X}. 

Suppose z < /X1/4. For a fixed point xi in X, we partition Y into sets 
yiI 3 yi2 Y*.-> Yiz,,z’ <z, such that d(xi, y)=d(xi, y’) for y, y’ in Yij. 
Therefore the number of equidistant pairs in Y from xi is at least 

where (;) denotes the binomial coefficient function defined for all real x. 
From Lemma 4 and (iv) we know that for any pair of vertices yi and yj in 

Y there is at most one point in X equidistant from yi and yj. Thus the total 
number of equidistant pairs in Y from some vertex in X is at least 

/x/z ( lYj’z). 
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Since the total number of pairs in Y is ( I:’ ), we have (using the fact that 

z < /Xl/4 G I YIP) 

1x1 I Y12 < /xIIyI(Iyl--z) < 
42 ’ 22 

This implies z > 1X1/4 which contradicts our assumption that z < 1X//4. This 
completes the proof of Lemma 5. 

LEMMA 6. Let 0 and 0’ be two fied points. Let x1 and xl be two points 
satisfying the following (see Fig, 3): 

(i) ~~~00’ < lo and LX,O’O > lOofir i = 1,2. 

0 
8,> IO0 

a 0’ 

(0) 

0 0’ 

(b) 

FIGURE 3 
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(ii) x1 and x2 are on the same side of the line through 0 and 0’. 

(iii) ld(x, , 0) - d(x2, O)i < l/10. 

(iv) ld(x,, 0’) - d(x2, O’)l < l/IO. 

Then d(x, , x2) < 1. 

ProoJ Let u denote the point on the same side of 00’ as x, and x2 
satisfying d(x, , 0) = d(u, 0) and d(x2, 0’) = d(u, 0’). It is not hard to 
check that (see Figs. 3(a)-(d)) 

d(x,,u) <d(x,,z,)<d(x,,z,) set ~O’x,z, 

< d(x], zJ sec(89” - 0,) 

0’ 

(cl) 

FIGURE 3 (continued) 
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where 0, denotes the angle ix, 0’0 and iO’x,z, > 90” - f?i - lo. Since 
iz,z,z, > (180” -@J/2 and 

d(Z*,ZJ=d(Z~,Z*)COt LZ,Z,Z, 

< d(X,) z*) cos(89” - e,> cot 
i’““FY 

we have 

cos(89” - 0,) - cos(89” - 0,) cot 
r”l- “9 i 

> d(x, u) cos 79y 1 - cot 85”) 

> q-5 u)/2. 

This implies d(x,, U) < l/5. 
Similarly it can be shown that 

d(x2, u) < l/5. 

Thus 
d(x,,x,) < 1. 

LEMMA 7. For positive ai, with ai < b, we have 

Proof. This follows from the fact that fi = ai/& > ai/fi. 

III. ON THE LOWER BOUND OFT 

We will prove the following: 

THEOREM. 

f(n) > cn 5'7 

for aJxed constant c. 

ProoJ Let X denote a set of n distinct points. Let c and Ci denote some 
constants to be specified later. Suppose there are fewer than cn5/’ different 

582a/36/3-7 
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FIGURE 4 

distances determined by points in X. Choose two points p and q in X such 
that d(p, q) is the minimum distance determined by pairs of points in X. We 
may assume, without loss of generality that d(p, q) = 1. Let 0 denote the 
midpoint of the segment pq. There exist at least n/360 points of X in some 
sector of 1” (see Fig. 4), i.e., there exists a set X’ of cry1 points from X, where 
c, > l/400 for n > 20, such that for xi and xj in X the angle LXiOXj is less 
than 1’. Omit points not in X’. Now with center at 0 we construct circles of 
radii i/10, i = 1, 2 ,..., cutting the sector into arc-shaped stripes. Now we 
partition the stripes into 11 classes, putting a stripe in class i if its inner 
radius is j/l0 where j = i (mod ll), 0 < i < 11. At least one of the classes 
will contain at least c2n, c2 = c,/ll, points. We will only deal with these 
points, called the set X”, and ignore the rest. Let Ai denote the set of points 
in the stripe with inner radius i/IO, i.e., Ai = {x E X”: i/10 < d(O,x) < 
(i t l)/lO}, and set ai = /Ail. For i #j, the distances from a point u in Ai to 
p and q are different from the distances from a point v in Aj top and q since 
forxE {p,q},yEAi, we have 

i+l 
+ - + < d(x, y) < d(x, 0) + d(0, y) < + t 10 

i+ll 1 
<T-I. 

Let X”’ denote the set of all points in X” in stripes that contain more than 
n4” points. Suppose there are more than c,n/2 points in X” -X”‘. Then we 
consider the numbers of different distances from p and q to points in 
X” - X”‘. Thus, 

d(p, X” - X”‘) + g(q, X” - X”‘) > F- 
‘4 .cx’;;‘-xrJ, (g(P2Ai) + g(q*Ai)) 

>&z (By Lemma 2). 
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Since CAicX,,--X8(t ai :, c,n/2 and ai < n4”, we have from Lemma 7 that 

g(p, W” - X”‘) + g(q, X’ - X”‘) > c2 n5J’/2. 

This implies that g( { p, q}, X” - X”‘) > c2 n5”/4 > cn5”. 
We only have to consider the case that X”’ contains at least c3n, cj = c,/2, 

points. If a stripe Ai contains n”’ points, then by Lemma 3 there are n”’ 
different distances determined by the points in Ai. We may assume 
IAil<n . 5’7 Furthermore we will delete all points not in X”‘. Now we 
partition the set of all stripes into “boxes” B,, B2,..., B, as follows: 

(i) For each i find the Aji with the least inner radius r(Aji) in 
X”’ - u,<i B,. 

(ii) Find the A,, with the least inner radius such that I 

1 u {A,: r(Aji) ,< $4,) < r(Aj;)l 1 > d”. 

(iii) Set 

Bi = U {A,: r(Aji> < r(A,J G r(Aj;)J. 

The width of Bi, denote by w(B,), is r(Aji) - r(Aj,) and the inner radius r(Bi) 
of Bi is r(Aji). 

It is easy to see that, for each i, n6” < lBil < 2n”‘. Since each Aj has at 
most n”’ points and at least n4” points, we have that the number s of boxes 
satisfies cj n r/‘/2 < s < 2n *” We also need the following useful facts which . 
will be proved later. 

Claim 1. Suppose U is the union of Bf,,..., B,!, where Bi. is a subset of Bij 
with jBijl > n6”/10. Then there exists a subset R = R(B,‘,, Bt,..., B$ s U 
satisfying the following: 

(i) R is a sector, i.e., there exists a point 0’ such that for any point u 
in R the acute angle determined by v0’ and 00’ is no more than loo. 

(ii) For each Bjj, 1 < j < t, we have 

lBijn R I > lB;jl/2. 

Claim 2. For every Bi we can find a part Si of a stripe Ai in Bi 
satisfying the following: 

(i) lSil > n4”/10. 

(ii) Let Bi denote the set of n6”/5 points with the largest distances 
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from 0 in Et. Then for any point v in Si and any point u in R(B,) the acute 
angle between the line uu and v0 is at most 1 lo. 

(iii) Let B=i denote the set of n6”/5 points w&h the smallest radii in Bi. 
Then for any point v in Si and any point u in R(B,) the acute angle between 
the line uu and the line v0 is at most 11“. 

(iv) D(Si) is less than half of the width of B,. 

Let B, denote the Bi with minimum width. From Lemma 5 we have 

g(S,, Si) ~ n4”/40 for each i. 

We need the following fact which will also be proved later. 

Claim 3. Suppose d= d(u, v), where u E Si and v E S,. Then there are 
at most 40 Sj’s such that d is a distance between a point in S, and a point in 
Sj. From Claim 3 we have 

g(so,x) 2 & $ gCso2 si> 

l-l 

n4/7 c3 n 117 

>+.-.- 
40 2 

> c4n5” 

> cr15/’ 

which again contradicts the assumption that g(X) < cn”’ (by choosing c 
approximately 10-9). 

It remains to prove the claims. First we will prove Claim 1: 

Proof of Claim 1. Let c and d denote the two points in U determining 
the smallest distance in U. Let 0’ denote the mid point of the segment cd 
(see Fig. 5). Let R denote the set of all points x in U with ixO’0 < 10”. Let 
K denote the Bf -R. Suppose lKI > n6”/20. We may assume half of the 
points in K are above the line 00’. Now we construct semi-circles of radius 

FIGURE 5 
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(i/10) d(c, d), i = 1, 2 ,..., centered at 0’, which cut Bi into stripes which we 
call *-stripes. Now we partition the *-stripes into 11 classes, putting a *- 
stripe in class i if its inner radius is (j/IO) d(c, d), where j = i (mod 1 l), 
0 < i < 11. At least one of the classes will contain at least n6/‘/440 points. 
We will only deal with these n6/‘/440 points. Since we have 1 Ai1 > n4/’ and 
lB,j < 2n6”, each *-stripe can contain at most jBij/n4’7 < 2n217 points in K, 
based on Lemma 6 and the fact that d(c, d) > 1. 

Let AT denote a *-stripe with inner radius (i/10) d(c, d). From Lemma 2 
we have 

g(c,AT) + g(d,A$) > m. 

Furthermore, for i #j, the distances from a point in A: to c and d are 
different from the distances from a point in A,? to c and d since 

wi d(c,d)<d(x,.!J)< (q&q) d(c,d) 
for x E {c, d}, y E AT. Thus we have 

n 617 
> 

440 ’ @r’ 

n5” 
>---- 700 

> cn s’7 

since there are n6/7/440 points in K and each AT contains at most 2n217 
points. Thus we have g(X, X) > cn5” which contradicts our assumption. 
Therefore we conclude IR n B;jj > j Bijl/2 f or each j. This completes the proof 
of Claim 1. 

Proof of Claim 2. Let K’ denote the set of all points u in B, -pi - gi 
with the property that for any point u in R(Bi) the (acute) angle between the 
line UZ, and_ u0 is more than 11”. Suppose IK’/ > n6/‘/10. We consider 
R(K’UR(ei)). From Claim 1 we have R(K’UR(l?i))nK’ #a and 
R(K’ n R(B,)) n R(Bi) # 0 since R(&J > igil/ > n6/‘/10. Now we choose 
u’ in R(K’UR(B,))f? K’ and u’ in R (K’ n R (Bi)) n R (pi). The angle 
between the line U’U’ and ~‘0 is less than 11” since u’ and ZI’ are both in 
R(K’ n R(zi)) and the angle U’OX is less than 1” for any point x in K’. This 
contradicts the assumption of U’ being in K’. Thus we may assume IK’I < 
n6’7/10. 

Let K” denote the sg of all points u in Bi - Bi - Ei with the property that 
for any point u in R(B,) the angle between the line uv in ~0 is more than 
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11’. Similarly we can prove /K” < rz6”/10. Thus Bi --_Bi -ji -K’ -K” 
contains at least $n6” points. From Claim 1, R(B, - Bi - Bi - K’ -K”) 
contains at least 3n6” points. Since Bi contains g most 2n*” stripes, there is 
a subset Si of a stripe contained in R(B, - gi - Bi - K’ - K”) having &n4/’ 
points. Furthermore, D(SJ < 2 tan 10°w(Bi) < w(Bi)/2. 

Proof of Claim 3. Claim 3 will be proved by repeatedly using Claims 1 
and 2. Suppose there exist uj and vj, 1 < j < 40, uj E Sij and vj E S, and 

d(Ui, Vi) = d(Uj, Vi) = 2. 

Obviously ui, 1 < i < 40, satisfies 

d-+<d(Uj,v,)<d+F where w = w(BJ. 

There are at least 20 Sij’s on the same side of v1 0. Among these there ar 
10 Sij’s with radii all larger than that of S, or all smaller than that of S,. 
Name these Sil,..., Silo. We consider two cases. 

Case 1. There are 5 j’s, say 1 < j < 5, such that the acute angle deter- 
mined by v,uj and ujO is less than 45” (see Fig. 6(a)). We may assume 
r(u,) < r(u*) < *‘* < T(u~). Let Y denote the union of all stripes with radii 
between r(ur) and r(z+). From Claim 1 we know that R(Y) n R(B,,) # 0 and 

R(Y) n R(B=,J) # 0. The (acute) angle between ur 0 and U, U, is at least 45” 
since the angle v,u,O is at most 45” and r(u5) - r(uJ > 3w. By Claim 2, the 
angle between u,O and ulv2 for v2 in R(Y) fI R(B,,) is at most 1 lo. The 
angle between v,O and v2v3 for v3 in R(Y)nR(B,,) is no more than 20” 
since v2 and vJ are in R(Y). The angle between v1 0 and vjug is at most 11”. 
Thus the acute angle between u1 0 and u1 ug is at most 45’ since LUiOUj is at 
most 1”. This yields a contradiction. 

Case 2. The are 5 j’s with LV,U~O > 45’ (see Fig. 7). We may assume 
r(uJ < r(q) ... < r(Q. Let 2 denote the union of all stripes with radii 
between r(vJ and r(u5). Now we consider R(Z). From Claim 1 we have 

R(Z) fJ R(g,,) # 521 and R(Z) n R(Bi5) # 0. The angle between ug 0 and u, vi 
for us in R(Z)n&(B,,) is at most 11”. The angle between vi0 and v;v; for 
v; in R(Z)nR(&) is at most 1 lo. The angle between vj0 and vsv, is at 
most 20’. Thus the angle between ug 0 and usvl is at most 44” since LUiOUj 
is at most 1”. This contradicts our assumption that LU, u, 0 is greater than 
or equal to 45O. Thus Claim 3 is proved. The proof of our main theorem is 
now complete. 
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(a) 

(b) 

FIGURE 6 

FIGURE 7 
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IV. SOME RELATED OPEN PROBLEMS 

Recently progress was made on another problem proposed by Erdos /2], 
of finding the maximum number g(n) of pairs of it points determining the 
same distance. The value of g(n) is related to the minimum numberf(n) of 
different distances on n points as follows: 

Using the upper bound forf(n), Erdiis proved g(n) > cn fi. However, 
the above relation does not given very good estimates. In [2] Erdos proved 

g(n) > n 1 +c/1og log n 

On the upper bound, Szemeredi [6] proved g(n) = o(n3”) and recently, Beck 
and Spencer [ 1 ] showed that 

g(n) < n13’9. 

There are also many variations of enumerating the different distances 
determined by n points that satisfy certain conditions such as (1) all lie on a 
convex polygon, (2) no k of the points lie on a line; (3) every subset of I 
points determines at least m different distances. For a complete survey the 
reader is referred to [ 5 1. 

Note added in proof Recently, .I. Beck proved f(n) > n5*‘*’ which can be improved by 
the author toy(n) > n “” Szemeridi could further tighten the bound toy(n) > n4’5. . 
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