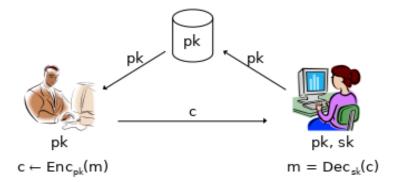
Cryptography

Lecture 25

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 の�?

Public-key encryption



イロン イボン イヨン イヨン

Public-key encryption

- A public-key encryption scheme is composed of three PPT algorithms:
 - ▶ Gen: key-generation algorithm that on input 1ⁿ outputs pk, sk
 - Enc: encryption algorithm that on input pk and a message m outputs a ciphertext c
 - ► Dec: decryption algorithm that on input sk and a ciphertext c outputs a message m or an error ⊥

 $\forall m, pk, sk$ output by Gen, $Dec_{sk}(Encpk(m)) = m$

CPA-security

- Fix a public-key encryption scheme Π and an adversary A
- Define experiment $PubK CPA_{A,\Pi}(n)$:
 - Run Gen(1ⁿ) to get keys pk, sk
 - Give pk to A, who outputs (m_0, m_1) of same length
 - Choose uniform b ∈ {0,1} and compute the ciphertext c ← Enc_{pk}(m_b); give c to A
 - A outputs a guess b' and the experiment evaluates to 1 if b' = b

CPA-security

Public-key encryption scheme Π is CPA-secure if for all PPT adversaries A:

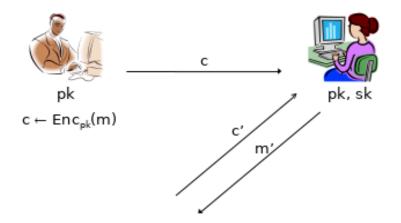
$$Pr[PubK - CPA_{A,\Pi}(n) = 1 \le \frac{1}{2} + negl(n)$$

Notes on the definition

- No encryption oracle?!
 - Encryption oracle redundant in public-key setting
- No perfectly secret public-key encryption
- No *deterministic* public-key encryption scheme can be CPA-secure
- CPA-security implies security for encrypting multiple messages as in the private-key case

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Chosen-ciphertext attacks



Chosen-ciphertext attacks

 Chosen-ciphertext attacks are arguable even a greater concern in the public-key setting

- Attacker might be a legitimate sender
- Easier for attacker to obtain full decryptions of ciphertexts of its choice
- Related concern: malleability
 - ▶ i.e. given a ciphertext c that is the encryption of an unknown message m, might be possible to produce ciphertext c' that decrypts to a related message m'

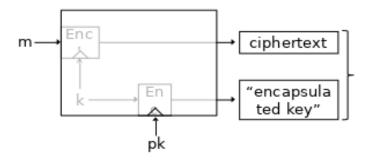
This is also undesirable in the public-key setting

Chosen-ciphertext attacks

 Can define CCA-security for public-key encryption by analogy to the definition for private-key encryption

See book for details

Hybrid encryption



- (Decryption done in the obvious way)
- The functionality of public-key encryption at the (asymptotic) efficiency of private-key encryption

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Security of hybrid encryption

- ► Let Π be the public-key component, and Π' the private-key component; let Π_{hy} denote their combination
- If Π is a CPA-secure public-key scheme, and Π' is a CPA-seucre private-key scheme, then Π_{hy} is a CPA-secure public-key scheme

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Similarly for CCA-security

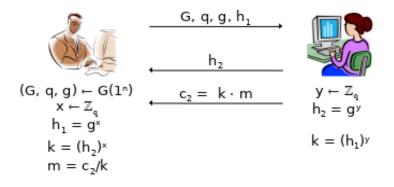
KEM/DEM paradigm

- For hybrid encryption, something *weaker* than public key encryption would suffice
- Sufficient to have an "encapsulation algorithm" that takes a public key and outputs a ciphertext/key pair (c, k)
 - Correctness: k is recoverable from c given sk
 - Security: k is indistinguishable from uniform given pk and c

This can lead to more-efficient constructions

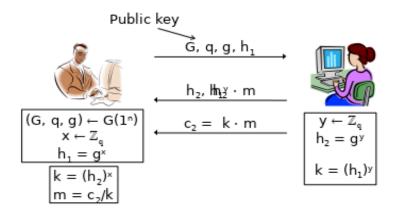
Dlog-based PKE

Diffie-Hellman key exchange



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

El Gamal encryption



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

El Gamal encryption

▶ Gen(1ⁿ)

- ▶ Run G(1ⁿ) to obtain G, q, g. Choose uniform x ∈ Z_q. The public key is (G, q, g, g^x) and the private key is x
- $Enc_{pk}(m)$, where pk = (G, q, g, h) and $m \in G$
 - ▶ Choose uniform $y \in \mathbb{Z}_q$. The ciphertext is $(g^y, h^y \cdot m)$

- $Dec_{sk}(c_1, c_2)$
 - Output c_2/c_1^x

Security?

- ► If the DDH assumption is hard for *G*, then the El Gamal encryption scheme is CPA-secure
 - Follows from security of Diffie-Hellman key exchange, or can be proved directly

*ロ * * ● * * ● * * ● * ● * ● * ●

Discrete-logarithm assumption alone is not enough here

In practice...

- ▶ Parameters *g*, *q*, *g* are standardized and shared
- Inconvenient to treat message as group element
 - Use key derivation to derive a key k instead, and use k to encrypt the message

- i.e. ciphertext is $(g^y, Enc'_k(m))$ where $k = H(h^y)$
- Can be analyzed using KEM/DEM paradigm

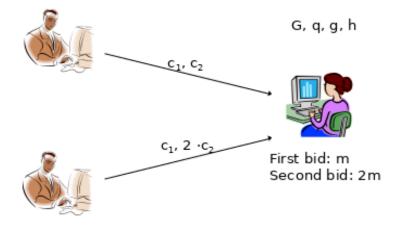
Chosen-ciphertext attacks?

 El Gamal encryption is not secure against chosen-ciphertext attacks

▶ Follows from the fact that it is *malleable*

- Given ciphertext c_1, c_2 , transform it to obtain the ciphertext $c_1, c_2' = c_1, \alpha \cdot c_2$ for arbitrary α
 - Since $c_1, c_2 = g^y, h^y \cdot m$, we have $c_1, c_2' = g^y, h^y \cdot (\alpha m)$

• i.e. encryption of m becomes an encryption of αm



Chosen-ciphertext security

- Use key derivation coupled with CCA-secure private-key encryption scheme
 - ▶ i.e. ciphertext is (g^y, Enc'_k(m)) where k = H(h^y) and Enc' is a CCA-seucre scheme

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Can be proved CCA-seucre under appropriate assumptions, if *H* is modeled as a random oracle
- DHIES / ECIES