
Searching an ordered list
with a quantum computer

Andrew Childs
Waterloo

based on joint work with Andrew Landahl and Pablo Parrilo
(quant-ph/0608161, PRA 07) and with Troy Lee (arXiv:0708.3396)

http://arxiv.org/abs/quant-ph/0608161
http://arxiv.org/abs/quant-ph/0608161
http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396

Query complexity

Problem: Compute a function f : S → Σ
S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Deterministic classical query complexity: n
Randomized classical query complexity: £(n)
Quantum query complexity:Θ(

√
n)

Ordered search
Given a sorted list of n items, find the position of a desired item.

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit of information per query.)

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit of information per query.)

Query complexity formulation: f : S → Σ

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit of information per query.)

Query complexity formulation: f : S → Σ

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit of information per query.)

Query complexity formulation: f : S → Σ

, and (i.e., this is an oracle identification problem)Σ = S f(x) = x

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit of information per query.)

Query complexity formulation: f : S → Σ

, and (i.e., this is an oracle identification problem)Σ = S f(x) = x

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

In the above example, we have x =

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Quantum query complexity of ordered search

Quantum query complexity of ordered search

Lower bounds

Quantum query complexity of ordered search

Lower bounds

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Lower bounds

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
C., Landahl, Parrilo 06

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
C., Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error)

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
C., Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error) 1
π lnn ≈ 0.221 log2 n

Høyer, Neerbek, Shi 01

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
C., Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error) 1
π lnn ≈ 0.221 log2 n

Høyer, Neerbek, Shi 01

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Theorem [C., Lee 07] This is
asymptotically optimal among all

adversary lower bounds.

Farhi, Goldstone, Gutmann, Sipser 98

Buhrman, de Wolf 98

Ω(
√

log n
log log n)

Ω(log n
log log n)

I. Upper bounds by
semidefinite programming

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

f : S → Σ π ∈ SnDefinition: An automorphism of is a permutation
satisfying

π(S) = S and .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

f : S → Σ π ∈ SnDefinition: An automorphism of is a permutation
satisfying

π(S) = S and .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S

The automorphisms of f form a group, Aut(f). This group structure
can be exploited both when designing algorithms for computing f and
when proving lower bounds showing that f is hard to compute.

Symmetrizing ordered search
Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}
The automorphism group is trivial! No permutation but id fixes S.

Symmetrizing ordered search
Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}
The automorphism group is trivial! No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Symmetrizing ordered search
Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}
The automorphism group is trivial! No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Now we just try to identify the input modulo n.
Now the automorphism group is the direct product of

• Cyclic group with 2n elements (cyclic shift of the input)
• Cyclic group with 2 elements (negation of the input)

Symmetrizing ordered search
Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}
The automorphism group is trivial! No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Now we just try to identify the input modulo n.
Now the automorphism group is the direct product of

• Cyclic group with 2n elements (cyclic shift of the input)
• Cyclic group with 2 elements (negation of the input)

Note that an algorithm for this problem gives an algorithm for the
original ordered search problem.

FGGS polynomials
Consider exact algorithms for ordered search that are translation-
invariant (no loss of generality), with no workspace and with no “null
query” (possible loss of generality).

FGGS polynomials
Consider exact algorithms for ordered search that are translation-
invariant (no loss of generality), with no workspace and with no “null
query” (possible loss of generality).

A k-query algorithm corresponds to a solution of the following:

Q0(z) =
∑n−1

i=−(n−1)(1−
|i|
n)zi

Qt(z) = Qt−1(z) at zn = (−1)t, t = 1, 2, . . . , k

Qk(z) = 1

1
2π

∫ 2π

0
Qt(eiθ) dθ = 1 t = 0, 1, . . . , k

Find Laurent polynomials of degree n ¡ 1, ,
that are symmetric () and non-negative (), satisfyingqi = q−i Qt(eiθ) ≥ 0

Q(z) =
∑n−1

i=−n−1 qi zi

θ

Q
t(

eiθ
)

0 π
3

2π
3

π 4π
3

5π
3

2π
0

1

2

3

4

5

6

Semidefinite programming

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Semidefinite programming

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

Semidefinite programming

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

• There are fast (classical) algorithms to solve semidefinite
programs numerically (using so-called interior point methods).

Semidefinite programming

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

• There are fast (classical) algorithms to solve semidefinite
programs numerically (using so-called interior point methods).

• From a primal SDP (say, a minimization problem), we can
construct a dual SDP (a maximization problem).
The minimum value of the primal SDP equals the mazimum
value of the dual SDP.
A particular solution of the primal gives an upper bound; a
particular solution of the dual gives a lower bound.

SDP reformulation of FGGS algorithms
The existence of an exact k-query quantum algorithm for ordered
search (with no workspace and no null query) is equivalent to an SDP:

SDP reformulation of FGGS algorithms

where E is the matrix with every entry equal to 1, and

Find n £ n symmetric positive semidefinite matrices Q1, ..., Q k ¡ 1
satisfying

Q0 = E/n

Tt Qt = Tt Qt−1 t = 1, 2, . . . , k

Qk = I/n

tr Qt = 1 t = 0, 1, . . . , k

Tt Q :=
n−t∑

i=1

Qi,i+t + (−1)t
t∑

i=1

Qi,i+n−t .

The existence of an exact k-query quantum algorithm for ordered
search (with no workspace and no null query) is equivalent to an SDP:

SDP reformulation of FGGS algorithms

where E is the matrix with every entry equal to 1, and

Find n £ n symmetric positive semidefinite matrices Q1, ..., Q k ¡ 1
satisfying

Q0 = E/n

Tt Qt = Tt Qt−1 t = 1, 2, . . . , k

Qk = I/n

tr Qt = 1 t = 0, 1, . . . , k

Tt Q :=
n−t∑

i=1

Qi,i+t + (−1)t
t∑

i=1

Qi,i+n−t .

The existence of an exact k-query quantum algorithm for ordered
search (with no workspace and no null query) is equivalent to an SDP:

Proof: Uses Fejér-Riesz theorem to relate non-negative polynomials to
positive semidefinite matrices.

Results

k n k/log2 n

2 6 0.7737

3 56 0.5166

4 605 0.4329

5 > 5000 ?

Results

k n k/log2 n

2 6 0.7737

3 56 0.5166

4 605 0.4329

5 > 5000 ?

For each k, the SDP is infeasible if we replace n by n + 1 (but this does
not imply that this n is best possible, even among the FGGS class of
algorithms).

Results

k n k/log2 n

2 6 0.7737

3 56 0.5166

4 605 0.4329

5 > 5000 ?

For each k, the SDP is infeasible if we replace n by n + 1 (but this does
not imply that this n is best possible, even among the FGGS class of
algorithms).

However, for k = 2, 3 we know these are best possible (by solving a
different SDP that characterizes general quantum query algorithms
[Barnum, Saks, Szegedy 03]).

II. Optimality of adversary
lower bounds

The quantum adversary method

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

The quantum adversary method

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Theorem [Ambainis 00]: (Q. query complexity of f) .≥ 1
2ADV(f)

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

The quantum adversary method

Proof idea: Define a progress measure for algorithms. It starts at 0 and
must reach k¡k for the algorithm to succeed; the maximum change
per query is 2 maxi k¡ik.

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Theorem [Ambainis 00]: (Q. query complexity of f) .≥ 1
2ADV(f)

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

ADV(f) is a semidefinite program

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

(Maximize c subject to constraints and , with linear
constraints on form of ¡ and relationship of ¡i to ¡.)

‖Γi‖ ≤ 1c ≤ ‖Γ‖

ADV(f) is a semidefinite program

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Automorphism principle [Høyer, Lee, Špalek 07]: If is an
automorphism of f, then we can choose an optimal adversary matrix ¡
satisfying for all pairs of inputs x, y.
Furthermore, if the automorphism group is transitive, then the uniform
vector is a principal eigenvector of ¡, and all are equal.

π

Γ[x, y] = Γ[π(x),π(y)]

‖Γi‖

Solving this SDP can be simplified using symmetry.

(Maximize c subject to constraints and , with linear
constraints on form of ¡ and relationship of ¡i to ¡.)

‖Γi‖ ≤ 1c ≤ ‖Γ‖

Symmetric ordered search ≈ Ordered search
Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query
Asymptotically, this is negligible.

Now consider the problem of identifying the input in the
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.

Adversary SDP for ordered search

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =





0 γ1 γ2 γ3 γ4 γ5 γ6 γ7

γ1 0 γ8 γ9 γ10 γ11 γ12 γ13

γ2 γ8 0 γ14 γ15 γ16 γ17 γ18

γ3 γ9 γ14 0 γ19 γ20 γ21 γ22

γ4 γ10 γ15 γ19 0 γ23 γ24 γ25

γ5 γ11 γ16 γ20 γ23 0 γ26 γ27

γ6 γ12 γ17 γ21 γ24 γ26 0 γ28

γ7 γ13 γ18 γ22 γ25 γ27 γ28 0





11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Adversary SDP for ordered search

By the automorphism principle, we can assume

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =





0 γ1 γ2 γ3 γ4 γ3 γ2 γ1

γ1 0 γ1 γ2 γ3 γ4 γ3 γ2

γ2 γ1 0 γ1 γ2 γ3 γ4 γ3

γ3 γ2 γ1 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 γ1 γ2 γ3

γ3 γ4 γ3 γ2 γ1 0 γ1 γ2

γ2 γ3 γ4 γ3 γ2 γ1 0 γ1

γ1 γ2 γ3 γ4 γ3 γ2 γ1 0





11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Spectral norm achieved by uniform eigenvector: γn + 2
n−1∑

i=1

γi

Adversary SDP for ordered search

Also by the automorphism principle, it suffices to consider

‖Γ2n‖ = ‖Toeplitz(γn, γn−1, . . . , γ1)‖In general, .

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ8 =





0 0 0 0 γ4 γ3 γ2 γ1

0 0 0 0 γ3 γ4 γ3 γ2

0 0 0 0 γ2 γ3 γ4 γ3

0 0 0 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 0 0 0
γ3 γ4 γ3 γ2 0 0 0 0
γ2 γ3 γ4 γ3 0 0 0 0
γ1 γ2 γ3 γ4 0 0 0 0





11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

2
!n/2"∑

i=1

1
πi
≈ 2

π
lnnObjective function:

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

2
!n/2"∑

i=1

1
πi
≈ 2

π
lnnObjective function:

Hilbert matrix:

∥∥∥∥∥∥∥∥∥





1 1
2

1
3 · · ·

1
2

1
3

1
3
...





∥∥∥∥∥∥∥∥∥

= π

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Theorem.

ADV(OSP2m) = 2
m−1∑

i=0

((2i
i

)

4i

)2

=
2
π

(ln 16m + γ) + O(1
m)

ADV(OSP2m+1) = 2
m−1∑

i=0

((2i
i

)

4i

)2

+

((2m
m

)

4m

)2

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

tri(P) =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1 ≥
n−i−1∑

j=0

ξjξn−i−j−1 = 1

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Primal is more technical but uses similar ideas.

tri(P) =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1 ≥
n−i−1∑

j=0

ξjξn−i−j−1 = 1

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

i

γ i

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n
5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f) .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f) .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

Furthermore, there are functions for which the negative adversary
gives a significantly better lower bound.

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

Negative adversary for ordered search

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

We give a general analysis of the spectra of such matrices.

Summary

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better
algorithm?

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better
algorithm?

• Can we find optimal adversary lower bounds for other problems?
(Element distinctness?)

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

Proof.

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

Proof.

GF for : g(z) :=
∞∑

i=0

ξiz
i =

1√
1− z

{ξi}

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

GF for LHS:
1

1− z
=
∞∑

i=0

zi

Proof.

GF for : g(z) :=
∞∑

i=0

ξiz
i =

1√
1− z

{ξi}

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

Proof. GF of {ADV(OSP2m)} is
2 · 2F1(1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1
using Darboux’s method.

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

For comparison, the HNS bound says

ADV(OSPn) ≥ 2
π

(lnn + γ − ln 2) + O(1/n)

Proof. GF of {ADV(OSP2m)} is
2 · 2F1(1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1
using Darboux’s method.

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

