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Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S.  Given a black box for the 
bits of x, how many queries are required to compute f(x)?

Deterministic classical query complexity: n
Randomized classical query complexity: £(n)
Quantum query complexity:Θ(

√
n)
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Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal.  (One bit of information per query.)

Query complexity formulation: f : S → Σ

, and                (i.e., this is an oracle identification problem)Σ = S f(x) = x

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

In the above example, we have x =

S = strings of the form                     with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k
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Theorem [C., Lee 07]  This is 
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I. Upper bounds by 
semidefinite programming
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Symmetry

Intuitively, symmetries of f should make it easier to deal with.

f : S → Σ π ∈ SnDefinition:  An automorphism of                  is a permutation           
satisfying

π(S) = S and                                                                         .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S

The automorphisms of f form a group, Aut(f).  This group structure 
can be exploited both when designing algorithms for computing f and 
when proving lower bounds showing that f is hard to compute.
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Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}
The automorphism group is trivial!  No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Now we just try to identify the input modulo n.
Now the automorphism group is the direct product of

• Cyclic group with 2n elements (cyclic shift of the input)
• Cyclic group with 2 elements (negation of the input)

Note that an algorithm for this problem gives an algorithm for the 
original ordered search problem.
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FGGS polynomials
Consider exact algorithms for ordered search that are translation-
invariant (no loss of generality), with no workspace and with no “null 
query” (possible loss of generality).

A k-query algorithm corresponds to a solution of the following:

Q0(z) =
∑n−1

i=−(n−1)(1−
|i|
n )zi

Qt(z) = Qt−1(z) at zn = (−1)t, t = 1, 2, . . . , k

Qk(z) = 1

1
2π

∫ 2π

0
Qt(eiθ) dθ = 1 t = 0, 1, . . . , k

Find Laurent polynomials of degree n ¡ 1,                                   ,
that are symmetric (             ) and non-negative (                  ), satisfyingqi = q−i Qt(eiθ) ≥ 0

Q(z) =
∑n−1

i=−n−1 qi zi



θ

Q
t(

eiθ
)

0 π
3

2π
3

π 4π
3

5π
3

2π
0

1

2

3

4

5
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Semidefinite programming

In a semidefinite program, we optimize a linear objective function 
subject to matrix positivity constraints.

Two important features:

• There are fast (classical) algorithms to solve semidefinite 
programs numerically (using so-called interior point methods).

• From a primal SDP (say, a minimization problem), we can 
construct a dual SDP (a maximization problem).
The minimum value of the primal SDP equals the mazimum 
value of the dual SDP.
A particular solution of the primal gives an upper bound; a 
particular solution of the dual gives a lower bound.



SDP reformulation of FGGS algorithms
The existence of an exact k-query quantum algorithm for ordered 
search (with no workspace and no null query) is equivalent to an SDP:



SDP reformulation of FGGS algorithms

where E is the matrix with every entry equal to 1, and
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SDP reformulation of FGGS algorithms

where E is the matrix with every entry equal to 1, and

Find n £ n symmetric positive semidefinite matrices Q1, ..., Q k ¡ 1 
satisfying

Q0 = E/n

Tt Qt = Tt Qt−1 t = 1, 2, . . . , k

Qk = I/n

tr Qt = 1 t = 0, 1, . . . , k

Tt Q :=
n−t∑

i=1

Qi,i+t + (−1)t
t∑

i=1

Qi,i+n−t .

The existence of an exact k-query quantum algorithm for ordered 
search (with no workspace and no null query) is equivalent to an SDP:

Proof: Uses Fejér-Riesz theorem to relate non-negative polynomials to 
positive semidefinite matrices.
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Results

k n k/log2 n 

2 6 0.7737

3 56 0.5166

4 605 0.4329

5 > 5000 ?

For each k, the SDP is infeasible if we replace n by n + 1 (but this does 
not imply that this n is best possible, even among the FGGS class of 
algorithms).

However, for k = 2, 3 we know these are best possible (by solving a 
different SDP that characterizes general quantum query algorithms 
[Barnum, Saks, Szegedy 03]).
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The quantum adversary method

Proof idea: Define a progress measure for algorithms.  It starts at 0 and 
must reach k¡k for the algorithm to succeed; the maximum change 
per query is 2 maxi k¡ik.
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{
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ADV(f) is a semidefinite program

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Automorphism principle [Høyer, Lee, Špalek 07]:  If    is an 
automorphism of f, then we can choose an optimal adversary matrix ¡ 
satisfying                                    for all pairs of inputs x, y.
Furthermore, if the automorphism group is transitive, then the uniform 
vector is a principal eigenvector of ¡, and all         are equal. 

π

Γ[x, y] = Γ[π(x),π(y)]

‖Γi‖

Solving this SDP can be simplified using symmetry.

(Maximize c subject to constraints              and              , with linear 
constraints on form of ¡ and relationship of ¡i to ¡.)

‖Γi‖ ≤ 1c ≤ ‖Γ‖
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Symmetric ordered search ≈ Ordered search

This problem looks similar to the original ordered search problem, but 
maybe its query complexity is dramatically different!
In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query
Asymptotically, this is negligible.

Now consider the problem of identifying the input in the 
symmetrized ordered search problem on 2n bits (not just mod n).
Then the automorphism group is simply cyclic with 2n elements.
We call this problem OSPn.
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
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0 γ1 γ2 γ3 γ4 γ5 γ6 γ7
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γ2 γ8 0 γ14 γ15 γ16 γ17 γ18
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Γ =





0 γ1 γ2 γ3 γ4 γ3 γ2 γ1

γ1 0 γ1 γ2 γ3 γ4 γ3 γ2

γ2 γ1 0 γ1 γ2 γ3 γ4 γ3

γ3 γ2 γ1 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 γ1 γ2 γ3
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Also by the automorphism principle, it suffices to consider

‖Γ2n‖ = ‖Toeplitz(γn, γn−1, . . . , γ1)‖In general,                                                           .
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



0 0 0 0 γ4 γ3 γ2 γ1

0 0 0 0 γ3 γ4 γ3 γ2

0 0 0 0 γ2 γ3 γ4 γ3

0 0 0 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 0 0 0
γ3 γ4 γ3 γ2 0 0 0 0
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γ1 γ2 γ3 γ4 0 0 0 0
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Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi:  Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

2
!n/2"∑

i=1

1
πi
≈ 2

π
lnnObjective function:

Hilbert matrix:

∥∥∥∥∥∥∥∥∥





1 1
2

1
3 · · ·

1
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1
3

1
3
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
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Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P ) subject to P ! 0, tri(P ) ≥ 1 for i = 0, . . . , n− 1

Theorem.

ADV(OSP2m) = 2
m−1∑

i=0

((2i
i

)

4i

)2

=
2
π

(ln 16m + γ) + O( 1
m )

ADV(OSP2m+1) = 2
m−1∑

i=0

((2i
i

)

4i

)2

+

((2m
m

)

4m

)2
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Dual:

min tr(P ) subject to P ! 0, tri(P ) ≥ 1 for i = 0, . . . , n− 1
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Optimal ordered search adversary: dual

Dual:

min tr(P ) subject to P ! 0, tri(P ) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Primal is more technical but uses similar ideas.

tri(P ) =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1 ≥
n−i−1∑

j=0

ξjξn−i−j−1 = 1

Then                             as claimed.tr(P ) = 2

n
2−1∑

i=0

ξ2
i
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The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f )                                          .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

Furthermore, there are functions for which the negative adversary 
gives a significantly better lower bound.

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:
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Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With                                                                        ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix         has correct above-diagonal traces.!v !wT

We give a general analysis of the spectra of such matrices.
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Summary

Quantum computers can search ordered lists faster than classical 
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better 
algorithm?

• Can we find optimal adversary lower bounds for other problems?  
(Element distinctness?)
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A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition.  For any j,                        .
j∑

i=0

ξi ξj−i = 1

GF for LHS:
1

1− z
=
∞∑

i=0

zi

Proof.

GF for       : g(z) :=
∞∑

i=0

ξiz
i =

1√
1− z

{ξi}

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,
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Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

For comparison, the HNS bound says

ADV(OSPn) ≥ 2
π

(lnn + γ − ln 2) + O(1/n)

Proof.  GF of {ADV(OSP2m)} is
2 · 2F1( 1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1 
using Darboux’s method.
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