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Abstract 

Because of their conceptual simplicity and superior flexibility, point-based geometries evolved into a valuable 
alternative to surfiice representations based on polygonal meshes. Elliptical sulface splats were shown to al- 
low for high-quality anti-aliased rendering by sophisticated EWA filtering. Since the publication .of the original 
sofnyare-based EWA splatting, several authors tried to map this technique to the GPU in order to exploit hard- 
ware acceleration. Due to the lacking support for splat primitives, these methods always have to find a trade-off 
between rendering quality and rendering pe$omnce. 
In this papes we discuss the capabilities of today's GPUs for hardware-accelerated sugace splatting. We present 
an approach that achieves a quality comparable to the original EWA splam'ng at a rate of more than 20M elliptical 
splats per second. In contrast to previous CPU renderers, our method provides per-pixel Phong shading even for 
dymm'cally changing geometries and high-quality anti-aliasing by employing a screen-space pre-jilter in addition 
to the object-space reconstruction jilter; The use of deferred shuding techniques efectively avoids unnecessaly 
shader computations and additionally provides a clear separation be'ween the msterization and the shading 
of elliptical splats, which considerably simplifies the development of custom shaders. We demonstrate quality, 
eficiency, andflexibility of our approach by showing several shaders on a mnge of models. 

1. Introduction 

In the last five years, point-based surface representations 
have proven to be a flexible and efficient alternative to mesh- 
based surface representations. Directly working on point- 
sampled geometries greatly simplifies the 3D content cre- 
ation and surface reconstruction process, as no connectivity 
information has to be generated and no topological mani- 
fold constraints have to be taken care of. Since there is also 
no need to maintain consistency during surface modifica- 
tions, algorithms which require frequent re-structuring or re- 
sampling of surfaces benefit the most from point-sampled 
surfaces. 

When considering point-based surface representations in 
general, we further distinguish between a piecewise constant 
point sampling [PZvSGOO, ABCO*Ol) and piecewise Linear 
surface splats [ZFvBGOl]. h this paper we focus on surface 
splats, since besides providmg a higher approximation or- 
der, they also allow for more efficient rendering and achieve 
a higher visual quality by sophisticated anti-aliasing tech- 
niques [KBW]. 

One key component for any interactive application pro- 
cessing point-based surfaces is a suitable point or splat ren- 
dering method. On the one hand, performance is a major 
goal, since otherwise the rendering might limit the flow of 
the user interaction. On the other hand, many applications 
require a high visual quality, e.g., in order to rate the quality 
of a surface based on its specular shading or reflection lines. 
Since both goals are typically conflicting, a trade-off has to 
be found in an application-dependent manner. 

At one end of this quality-vs-performance scale, the orig- 
inal surface splatting [ZFVBGOI] is located. This approach 
employs per-pixel lighting and thus achieves results compa- 
rable to Phong shading if the surface is sampled sufficiently 
densely. Aliasing artifacts are effectively avoided by EWA 
filtering, which is conceptually similar to anisotropic texture 
filtering. However, the original renderer is purely software- 
based and therefore limited to about IM splatslsec on a 
3.0GHz Pentium4 CPU, which is by far not sufficient for 
the massive datasets to be processed in many current appli- 
cations. 
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To overcome these limitations, several authors tried to im- 
plement EWA splatting on graphics hardware, but - de- 
pending on the generation of GPUs available at that time - 
certain compromises had to be made, in terms of either ren- 
dering performance or visual quality. While each new graph- 
ics hardware typically increases the rendering performance 
and thus improves the rendering results quantitatively, the 
jump to the latest GPU generation additionally yields a sig- 
nificant qualitative improvement. 

In this paper we show how to exploit the increased capa- 
bilities of latest graphics hardware for GPU-based surface 
splatting, such that the trade-off between quality and effi- 
ciency is effectively minimized. The availability of multiple 
render targets with floating point precision and blending ca- 
pabilities now finally enables us to implement all computa- 
tions required for high-quality surface splatting directly on 
the GPU. Hence, this paper does not introduce genuinely 
new concepts, but focuses on the efficient implementation 
of a hardware-accelerated deferred shading framework and 
a simple and effective approximation of the EWA pre-filter 
to achieve fast and high-quality surface splatting: 

Deferred shading allows us to closely follow the orig- 
inal EWA splatting approach and perform high-quality 
per-pixel Phong shading. Lighting is computed only once 
for each pixel of the final image, instead of once for 
each generated fragment. This is especially important for 
splat-based rendering, since due to the required overlap 
of individual splats, the number of generated fragments 
is much larger than the number of resulting image pixels. 
The use of floating point render targets furthermore avoids 
commonly observed shading artifacts due to discretization 
problems. We wiIl prove the quality and efficiency of our 
deferred shading approach on complex shadow-mapped 
Phong and NPR shadem 

EWA approximation. The original EWA filtering method 
is based on a composition of an object-space reconstruc- 
tion filter with a screen-space pre-filter. Many previous 
approaches omit the screen-space filter and sacrifice anti- 
aliasing quality for higher rendering performance. We 
propose a simple approximation to the EWA pre-filter, 
which can be computed efficiently, but still provides high- 
quality anti-aliasing in magnified and minified regions. 

A. Related Work 

In this section we briefly review recent approaches to 
hardware-accelerated surface splatting. For a more detailed 
discussion on point-based rendering the reader i s  referred to 
the surveys [KBM, SPM]. We roughly classify the methods 
discussed below by the compromises they had to make due 
to GPU limitations, or, equivalently, by the amount of pro- 
grammable shader features they exploit. 

All approaches have in common that they use three ren- 
dering passes in order to achieve correct blending of over- 

lapping splats. In the first pass called visibiliry splurting the 
object is rendered without lighting in order to fill the depth 
buffer only [RLOO]. In the blending pass the object is slightly 
shifted towards the viewer by E and rendered with light- 
ing and alpha blending options enabled. This achieves a 
Gouraud-like blending of overlapping splats whose depths 
differ by less than E, but stiIl leads to correct occlusions for 
splats with larger depth offsets. In a final normalization pass 
each pixel is normalized by dividing the accumulated colors 
stored in its RGB components by the sum of weights stored 
in its alpha component, which can be done directly on the 
GPU mK03, GW31. 

Early methods do not exploit pixel shaders for the splat 
rasrerization, but instead represent each splat by an alpha- 
textured quad [RPZ02] or triangle [PSW].  However, this 
multiplies the memory consumption as well as the per-vertex 
computation costs by a factor of 4 or 3, respectively, which is 
especially critical for highly complex or dynamically chang- 
ing geometries. 

This overhead can be avoided by representing each splat 
by just one OpenGL vertex and using pixel shaders for their 
rasterization instead [BK03, GP031. In this case, special care 
has to be taken to generate correct depth values for each 
pixel, since this is a requirement for correct blending results. 
However, both methods only approximate the exact elliptical 
shape of the projected splats, which might lead to small holes 
in the resulting image. These holes can be avoided either by 
a perspectively more accurate affine approximation that cor- 
rectly maps the splat contours [ZRB*M], or by a per-pixel 
projectively correct ray casting approach PSKM]. 

Sharp surface features can be represented by clip- 
ping splats at lines defined in their tangent space, which 
was first proposed by [PKKG03]. Efficient hardware im- 
plementations of this technique were then presented in 
[ZFtB*04,BSK04]. Since these methods cut splats by 
boolean intersections with tangent half-spaces, the result- 
ing clipped splats are always convex. For more complicated 
sharp features one therefore has to fall back to a software- 
based rendering solution (WTGD41. 

In comparison to Gouraud-like shading by blending the 
colors of overlapping splats, per-pixel shading considerably 
improves the visual quality [ZPVBGOI, KVOI]. The GPU- 
accelerated Phong splatting approach [BSK04] uses the orig- 
inal point normals for precomputing a linear normal field for 
each splat, which is evaluated at render-time for per-pixel 
lighting computations. In combination with the splat dec- 
imation technique of IwKo4] they achieve high rendering 
quality even for coarsely sampled models. However, as the 
normal fields have to be precomputed, their approach would 
not be suitable for dynamically changing geometries, like 
for instance [BK05]. Since this approach requires to trans- 
fer more data to the pixels shaders, and since the normal 
field evaluation and per-pixel lighting complicate the com- 
putations, this approach is limited to about 4M splatdsec, 
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measured on a Linux machine equipped with a 3.mHz Pen- 
tium4 CPU and a NVIDIA GeForce 6800 Ultra GPU. All 
timings and splat rates given in this paper were measured 
using this configuration. 

Most of the above methods neglect the screen space fil- 
ter of the EWA framework and restrict to the Gauss& re- 
construction filter in object space. While this leads to suf- 
ficient anti-aliasing in magnified regions, it cannot prevent 
aliasing artifacts in minified areas. In contrast, the method 
of [ZRB*O4J implements the full EWA splatting approach 
on the GPU, but due to the complex computations its per- 
formance is limited to about 4M splatshec using the above 
mentioned hardware configuration. Finally, the use of de- 
ferred shading techniques has shown to allow for efficient 
high-quality per-pixel shading in EWA surface splatting as 
well as splat-based volume rendering [MMC99]. 

Using per-pixel Phong shading and a simple but effec- 
tive approximation to the screen space filter, the approach 
presented in this paper provides results comparable to the 
original EWA splatting. By exploiting deferred shading tech- 
niques we achieve this superior visual quality at a rate of 
about 23M splatdsec, such that our method is close to 
EWA splatting in terms of quality and close to the fast but 
low-quality renderer of [BK03], which achieves about 27M 
splatslsec. 

3. Splat Rasterization 

In this section we shortly describe the perspectively cor- 
rect rasterization of elliptical splats, which was introduced in 
[BSK04]. This method will then be used in the next section 
to accumulate normal and color contributions of individual 
splats in the rendering buffer. 

Following the notation of [BSKW], a splat Sj is defined 
by its center cj  and two orthogonal tangent directions uj and 
vj. These tangent vectors are scaled according to the princi- 
pal radii of the elliptical splat, such that an arbitrary point q 
in the splat’s embedding plane Lies in the interior of the splat 
if its local parameter values U and v satisfy the condition 

The rasterization of a spiat Sj is performed by sending 
its center c j ,  tangent axes (uj,vj), and optional material 
properlies to OpenGL, which are then processed by custom 
shaders for both the vertex and the pixel stage. The vertex 
shader conservatively estimates the size d of the projected 
splat based on a perspective division of the larger of the el- 
lipse radii r by the eye-space depth value cz of the splat cen- 
ter, followed by a window-to-viewport scaling as described 
in [BSKM]. 

This causes the single OpenGL vertex c to be rasterized 
as a d x d image space square, each pixel ( q y )  of which 

is then tested by a pixel shader to lie either inside or out- 
side of the projected elliptical splat contour. Local ray cast- 
ing through the corresponding projected point q, on the near 
plane yields the eye-space point q on the splat’s supporting 
plane. From this projectively exact 3D position the local pa- 
rameter values ( U ,  v) can be determined and tested as shown 
in (1). While pixels corresponding to points outside the splat 
are discarded, pixels belonging to the splat are accepted and 
processed further. Lf a pixel ( x , y )  is accepted, its weighting 
factor is determined as 

w (x ,y)  = h ( 4 3 3 )  , (2) 

where h (.) is typically chosen as a Gaussian. To allow for 
exact blending and occlusion, the pixel’s depth value has to 
be adjusted as described in mSKO4] in order to correspond 
to the computed 3x3 position q. This finally results in a per- 
pixel projectively correct rasterization of elliptical splats. 

The output of the rasterization pixel shader are depth val- 
ues only for the visibility pass, and additionally weighted 
splat attributes, such as normal vectors or color values, in the 
second pass, which are then accumulated in the render target 
by additive alpha blending. The final normalizatiodshading 
pass then processes each pixel in order to compute its final 
color, as described in the next section. 

4. Hardware-Accelerated Deferred Shading 

For both point-based models and polygonal meshes, one ma- 
jor requirement for high-quality visualization is the use of 
per-pixel Phong shading based on interpolated normal vec- 
tors, instead of Gouraud shading, which blends color con- 
tributions resulting from lighting each splat or mesh ver- 
tex, respectively. In contrast to polygonal meshes, point- 
based models do not store any neighborhood relation be- 
tween splats, therefore an equivalent interpolation of neigh- 
boring splats’ normal vectors is not possible. 

In order to still be able to generate smoothly interpolated 
per-pixel normal vectors, two basic approaches are possible. 
The first is to associate with each splat a pre-computed linear 
normal field, as proposed in the Phong splatting approach 
[BSKO4]. However, while leading to a high-quality shad- 
ing, this method is limited to static geometries and bound 
to about 6M splatdsec, as mentioned in Section 2. 

The second approach for normal interpolation was 
proposed in the software-based EWA splatting approach 
[ZPVBGOl]. Instead of splatting color values into the frame- 
buffer, they use multiple buffers into which they splat normal 
vectors and material properties. As a consequence, normals 
and colors of overlapping splats are smoothly interpolated 
and averaged into the pixels they cover, with weights de- 
pending on the respective EWA filter kernels evaluated at 
that pixel. In a final pass over each image pixel, lighting 
computations are performed based on the pixel’s accumu- 
lated normal vector and surface material. 
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Visibility Pass Attribute Pass Shading Pass 

Figure 1: B e  deferred shading pipeline for GPU-based spplatting. The visibility pass j l ls  rhe z-buffer; such that the attribute 
pass can cowectly accumulate surface attributes, like color values and normal vectors, in separate render targers. Thejnal 
shading pass compures rhe actual COEOT value for each image pixel based on the ififomtion stored in these render targets. 

4.1. Multipass Algorithm 

The latest NV40 generation of NVIDIA GPUs provides all 
the hardware features required to implement the latter ap- 
proach on the GPU. Originally targeted at high-quality cin- 
ematic rendering effects and high dynamic range imaging, 
the NV40 provides floating point pmision at all necessary 
stages of the rendering pipeline, i.e., for shader arithmetic, 
alpha blending, textures, and render targets. In combination 
with the availability of multiple render targets, which allow 
outputting up .to four different RGBA color values within a 
single rendering pass, these features enable the implementa- 
tion of accurate per-pixel deferred shading in the context of 
surface splatting. 

Attribute Pass. After the visibility pass (cf. Fig. , I ,  left), we 
use multiple render targets to splat and accumulate normal 
vectors as well as material properties during the so-called 
attribute pass (cf. Fig. I ,  center). The corresponding pixel 
shader performs the computations outlined in Section 3, but 
instead of shading each accepted pixel, its (weighted) nor- 
mal vector and color value are output to the two render tar- 
gets. These buffers and the depth buffer are then used as tex- 
tures for the final normalization and shading pass, for which 
a window-size rectangle is drawn in order to send each pixel 
through the rendering pipeline again. 

Shading Pass. The shading pass (cf. Fig. 1, right) CO=- 
sponds to the normalization pass of previous approaches, 
but it additionally performs (deferred) per-pixel shading. For 
each pixel, an averaged normal and color can be computed 
by fetching the accumulated values from the textures and 
normalizing them. From the depth texture, the corresponding 
3D position can easily be derived by inverting the viewing 
and projection mappings. Having position, normal, and color 
information at hand then enables deferred per-pixel shad- 
ing computations [DWS'SS]. The resulting Phong shading 

clearly improves the rendering quality over the G o m u d  
shading used by most previous methods. 

Notice that lighting computations are performed onby 
once for each pixel of the projected object in the final image. 
In contrast, previous approaches incorporate lighting com- 
putations into the splat mterization process and perform a 
per-pixel blending of the resulting colors instead. Due to the 
required mutual overlap of individual spiats, this multiplies 
the number of lighting computations by a factor of about 
6-10 for typical datasets, which we measured by counting 
the fragments contributing to each pixel using the stencil 
buffer. 

Depending on the complexity of the employed shaders, 
saving these unnecessary lighting computations yields no- 
ticeable performance improvements. As we will show in 
Section 6, the performance of our deferred shading approach 
is almost independent of the actual surface shading. Incor- 
porating more complex lighting computations into the ras- 
terization pixel shader would in contrast significantly slow 
down the rendering, as the pixel stage is known to be the 
bottleneck of the splat rasterization. 

In addition to this, deferred shading also provides a clear 
separation between the splat rasterization process and the ac- 
tual surface lighting or shading computations. This greatly 
simplifies the development of custom shaders, as the care- 
fully optimized pixel shader for splat rasterization (cf. Sec- 
tion 3) is left untouched. The deferred shading approach thus 
allows for a simple yet highly efficient implementation of 
custom shaders, of which we show several examples in Sec- 
tion 6. Since the input to these shaders are textures holding 
normal, material, and depth information, they are indepen- 
dent of the actual geometry that was rasterized to gener- 
ate these textures. As a consequence, the shaders can even 
be shared for point-based models and traditional polygonal 
meshes. 
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Another important point to be considered is the precision 
of the render targets. The standard framebuffer used in pre- 
vious approaches offers 8 bits for each of the four RGBA 
components. As an additional constraint, these color channel 
also have to be clamped to [0,1]. This leads to the €requently 
observed shading artifacts due to color buffer overflows or 
insufficient precision for the sum of weights stored in the al- 
pha channel. The NV40 GPU generation now allows to use 
un-clamped floating point values for render targets, which 
effectively avoids these problems (cf. Fig. 2). This is espe- 
cially important as in addition' to colors we also accumulate 
normal vectors, where noise due to discretization would im- 
mediately lead to shading artifacts. 

Figure 2: Standardfmmebuflers provide 8 bit precision for 
each channel and chmp color values to [O,l] .  Due io large 
overlaps of individual splars, these buffers may ovelfrow dur- 
ing accumulation, resulting in the too bright and sparkled 
left image. Using $oaring point render targets (on the same 
illumination conditions) efeciively avoids these problems 
(right). 

5. EWA Approximation 

In the original EWA surface splatting, two components are 
responsible for high visual quality: per-pixel Phong shad- 
ing, which can be mapped to the GPU as shown in the last 
section, and anisotropic anti-aliasing provided by the EWA 
filter. 

The complete EWA filter is composed of an object-space 
reconstruction kernel (the weight function of Q. (2)) and a 
band-limiting screen-space pre-filter. As the required com- 
putations are quite involved, many rendering approaches 
simply omit the screen-space filter and use the reconsbuc- 
tion kernel only. However, in the case of extreme minifica- 
tion, when the size of projected splats falls below one pixel, 
the signal corresponding to the accumulated projected splats 
may have frequencies higher than the Nyquist frequency of 
the pixel sampling grid, resulting in the alias artifacts shown 
in the top image of Fig. 3. 

Figure 3: The object-space reconstmcrion jilter alone can- 
not avoid aliasing in minification regions (top). Full-screen 
anti-aliasing removes aliasing to some degree, but the super- 
sampled image can still contain sampling artifacts (center). 
Our approximation to the EWAjLter band-limits the signal 
before it is sampled on the pixel grid and hence successfully 
removes the aliasing problems (bottom). 

An appeaIing idea might be to diminish these aliasing arti- 
facts by full-screen anti-aliasing (FSAA), which is supported 
by any modem graphics hardware. In general, FSAA redi- 
rects the rendering to a higher resolution framebuffer in or- 
der to achieve a (typically 2 x 2 or 3 x 3) super-sampling 
of the image signal. This buffer is then scaled down to the 
actual framebuffer resolution using h e a r  or Gaussian filter- 
ing. The problem with that approach is that even the high 
resolution super-sampling buffer might suffer from aliasing, 
in which case a high resolution aliased image will be down- 
scaled to the framebuffer. The resulting image will still con- 
tain alias artifacts (cf. Fig. 3, center). 

We propose a simple - and hence efficient - heuristic 
for approximating the EWA screen-space filter. By clamp 
ing the size of projected splats to be at least 2 x 2 pixels it 
is guaranteed that enough fragments are generated for anti- 
aliasing purposes, even for splats projecting to sub-pixel U- 
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Figure 4: f i isfgure gives a qualitative comparison of the 
original EWA filter and our approximation. In the left col- 
umn, three typical configurations of screen-size ratios be- 
tween the pmjected object-space reconstmction filter and 
the low-pass screen-space filter are shown. The right col- 
umn compares the resulting contours of the combined filter 
L m e b .  Although the approximation ermr can become arbi- 
trarily large, we did not perceive any visible artifacts in our 
experiments. 

eas. This restriction on the minimum size can easily be in- 
corporated into the vertex shader, 

Instead of computing the weight w (x,y)  based only on the 
reconstruction filter, the pixel shader is adjusted to compute 
two radii r 3 ~  :=u2+v2 (seem. ( 1 ) ) a n d q ~  :=d(x,y)'/?, 
with d(x,y)  being the 2D distance of the current fragment 
from the respective projected splat center and r = f i  being 
the band-limiting screen-space filter radius. A given fmg- 
ment is then accepted, if it lies within the union of the low- 
pass and the reconstruction filter (cf. Fig. 4) 

i.e., either if it corresponds to a 3D point within the splat's 
interior, or if it Iies within a certain radius around the pro- 
jected spat center. The final weight corresponding to Eq. (2) 
is computed as w(x,y)  = h ( m ) .  

Notice that we enforce the minimal splat size only in the 
attribute pass, but not in the visibility pass. This means that 
the E-depth test, which is simulated by the two rendering 
passes, is not applied to those pixels which are additionally 
generated on silhouettes by the screen-space fi€ter. In con- 
trast, these pixels are blended with the surface parts behind 
them, which results in a pseudo edge-anti-aliasing for object 
silhouettes. 

This approximation to the EWA filter provides high- 
quality anti-aliasing in magnified as well as in minified re- 
gions (cf. Fig. 3, bottom). Our results are comparable to 
those of the exact EWA filter, but in contrast our approxima- 
tion is considerably easier to compute. If the projected splat 

center is passed from the vertex shader to the pixel shader, 
the screen-space filter requires three additional instructions 
only. 

Limiting the minimal projected splat size obviously gen- 
erates more fragments, such that the average number of frag- 
ments contributing to each resulting image pixel increases by 
a maximum factor of 4 from about 7 to 15-30 for complex 
models with small projected splat sizes. As a consequence, 
the acceleration offered by the deferred shading approach 
becomes even more important, since by this the screen-space 
filter decreases the rendering perfomance only slightly from 
25M to 23M splatslsec. 

6. Results 

In this section we discuss the quality and efficiency of the 
presented approach and compare both criteria to previous 
GPU-based renderers. The clear separation of splat rasteriza- 
tion and (deferred) surface shading allows for easy and em- 
cient implementation of custom shading methods, for which 
we show several examples. 

In terms of quality, our method can be compared to the 
software-based EWA splatting [ZPvBGOl] and the GPU- 
based Phong splatring [BSKM]. Our per-pixel Phong shad- 
ing is a GPU implementation of the original EWA splatting 
and therefore yields equivalent results. However, our splat 
rasterization is perspectively correct, whereas the affine ap- 
proximation of the projective mapping in [ZPvBGOl] might 
cause small holes in the image, as pointed out in [ZRB*O4]. 

In comparison to Phong splatting, our per-pixel shad- 
ing provides equivalent results for densely sampled models. 
For coarse models, Phong splatting can achieve better re- 
sults by pre-computing the linear normal fields from the un- 
decimated original dense models. However, as Phong splat- 
ting does not use a screen-space pre-filter, this method might 
suffer from aliasing in minification areas. 

In order to test the performance implications of the sur- 
face shader's complexity, we compared the simple Phong 
shader using a precomputed light map [BSKM] to a more 
complex non-photo-redistic (NPR) shader (cf. Fig. 5). The 
latter generates contour and silhouette outlines at depth con- 
tinuities and at shallow viewing angles. Using deferred shad- 
ing, this technique can be implemented easily by sampling 
the depth map in the pixel's neighborhood and by consider- 
ing the normal map information. The diffuse lighting result 
is further modified by a 1D transfer function texture, e.g., in 
order to achieve the quantized color set typical for toon shad- 
ing [GGC98]. In total, the NPR shader requires 12 texture 
lookups and is much more involved compared to the Phong 
shader, which needs only 3 texture fetches. However, ourre- 
sults show that, due to deferred shading, the effect on the to- 
tal timings are almost negligible, whereas for non-deferred 
splatting, the shader complexity has a considerably larger 
impact on the rendering speed. 
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Figure 5: Fmm left to right: The Phung-shaded octopus model and NPR-shaded rendeiings of the dinosaur model, the &ea 
artifaci, and the massive h c y  datasei. All models are rendered with shadow mapping enabled and hence require one additional 
visibility rendering pass for the shudow map generation. 

We further enhanced the Phong shader as well as the NPR 
shader by standard shadow mapping, which requires trans- 
forming each image pixel first back to object-space and then 
into the viewport coordinate system of the shadow map. 
Based on the comparison of the resulting depth value with 
the corresponding entry of the shadow map, lighting is per- 
formed only in un-shadowed regions. The additional shader 
computations again have a minor influence on the rendering 
performance, but as one extra visibility pass is required for 
the generation of the shadow map, the splat rate drops down 
to about 15M splatdsec. 

Table 1 shows performance statistics of our Phong and 
NPR shader, both with and without shadow mapping. The 
numbers correspond to splat rates in million splats per sec- 
ond, for a 512 x 512 window, using a GeForce 6800 Ul- 
tra GPU. We also give the average number of fragments 
contributing to each final image pixel in order to show the 
amount of shading computations which is saved by the de- 
ferred shading approach. A comparison to the high perfor- 
mance but low quality renderer of [BK03] and the high- 
quality but low-performance Phong splatting [BSK04] on 
identical hardware reveals that our method achieves a per- 
formance close to the fast low-quality renderer, but yields a 
quality superior to even the Phong splatting approach. 

In order to minimize data transfer costs, the geometry data 
is stored in high performance GPU memory using OpenCL 
vertex buffer objects. For massive models, however, this data 
might not fit into the available GPU memory. In order to still 
be able to efficiently render those datasets, we switch to 16 
bit floating point values for representing positions and nor- 
mals. This effectively halves the memory consumption with- 
out leading to any noticeable loss of visible quality. The two 
most complex models shown in Table 1 still cannot be up- 
Ioaded to the video memory, but as the data transfer costs 
are also halved by the 16 bit quantization, they can be ren- 

dered quite efficiently. The massive Lucy model can there- 
fore be rendered at 1.6 f p s  with Phong shading and approxi- 
mate EWA anti-aliasing, and at still more than 1 fps with the 
4-pass shadow mapping shaders. 

7. Conclusion 

In this paper we showed how to exploit the increased ca- 
pabilities of the latest generation of graphics processors for 
point-based rendering. The availability of multiple render 
targets in combination with a floating point precision ren- 
dering pipeline enabled us to derive one of the fastest and 
highest quality GPU-based surface splatting technique avail- 
able to date. 

This was achieved by introducing a splat-rendering 
pipeline based on deferred shading and an approximation 
to the screen-space EWA filter. Due to the required mutual 
overlap of individual surface splats, deferred shading was 
shown to be especially suited for point-based rendering, and 
to provide high-quality per-pixel shading as well as signif- 
icant performance improvements. Our approximation to the 
EWA screen-space filter effectively removes aliasing arti- 
facts in minified areas, while still preserving the superior 
rendering performance. 

The most problematic limitation for current point-based 
rendering approaches is still the restricted flexibility of 
z-buffering, which necessitates the expensive two render 
passes for visibility splatting and attribute blending, and 
which also restricts current surface splatting approaches to 
completely opaque surfaces only. 

Acknowledgments 

The octopus model is courtesy of Mark Pauly, the Lucy 
model courtesy of Stanford university, and the dinosaur and 
Igea datasets are courtesy of Cyberwax. 

@ The &"phics Association 2005. 



24 M. Botsch, A. Hornwtg, M. Zwicker, L. Kobbelt /High-Qualily Surface Splaiting 

Model #splats Overdraw Phong-SM NPR-SM Phong+SM NPR+SM 

Balljoint 137k 5.917.2 20.1 15.5 13.3 11.9 
M m  655k 7.9 115.4 22.0 20.4 14.9 14.5 
David Head 1.1M 6.4 / 14.4 23.9 22.6 16.3 15.8 
David Head 4.OM 6.9 / 37.7 26.0 25.3 17.5 17.2 
David 8.3M 7.0/ 202 22.6 22.0 16.2 15.5 
Lucy 14M 19.31242 22.6 22.1 15.9 15.2 

[BK03] [BSK04] 

24.8 4.5 
27.0 5.9 
27.1 5.6 
31.3 5.5 
19.6 4.6 
20.2 5.0 

Table 1: This table shows the perj5ormunce of our rendering approach in million spIats per second for a 512 x 51 2 window 
using n GeForce 6800 Ultra GPU. We give timings for several different shaders (Phong shading, NPR shading, wirh and without 
shadow mapping) and compare to the fast but low-quality splatring of [BKO3], and the high-quality but expensive Phong 
splatting [BSKOQ]. Due to per-pixel Phong shading and anti-uliasing, the quality of our method is superior even to [BSKM], 
while the rendering pelformame is still romparable to [BKO3]. The third column shows the average number of fragments 
contributing tu resulting image pixels, without and with our anti-aliasing technique. Since ihe latter generates signijcantly 
more fragments for complex models, the acceleration provided by the deferred shading approach is even more important. 
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