
Eurographics Symposium on Point-Based Graphics (2005)
M. Pauly, M. Zwicker (Editors)

High-Quality Surface Splatting on Today's GPUs

Mario Botsch', Alexander Bomung', Matthias Zwicke?, kif Kobbelt'

Computer Graphics Group;RWTH Aacben Technical University
Computer Graphics Group, Massachusetts Institute of Technology

Abstract

Because of their conceptual simplicity and superior flexibility, point-based geometries evolved into a valuable
alternative to surfiice representations based on polygonal meshes. Elliptical sulface splats were shown to al-
low for high-quality anti-aliased rendering by sophisticated EWA filtering. Since the publication .of the original
sofnyare-based EWA splatting, several authors tried to map this technique to the GPU in order to exploit hard-
ware acceleration. Due to the lacking support for splat primitives, these methods always have to find a trade-off
between rendering quality and rendering pe$omnce.
In this papes we discuss the capabilities of today's GPUs for hardware-accelerated sugace splatting. We present
an approach that achieves a quality comparable to the original EWA splam'ng at a rate of more than 20M elliptical
splats per second. In contrast to previous CPU renderers, our method provides per-pixel Phong shading even for
dymm'cally changing geometries and high-quality anti-aliasing by employing a screen-space pre-jilter in addition
to the object-space reconstruction jilter; The use of deferred shuding techniques efectively avoids unnecessaly
shader computations and additionally provides a clear separation be'ween the msterization and the shading
of elliptical splats, which considerably simplifies the development of custom shaders. We demonstrate quality,
eficiency, andflexibility of our approach by showing several shaders on a mnge of models.

1. Introduction

In the last five years, point-based surface representations
have proven to be a flexible and efficient alternative to mesh-
based surface representations. Directly working on point-
sampled geometries greatly simplifies the 3D content cre-
ation and surface reconstruction process, as no connectivity
information has to be generated and no topological mani-
fold constraints have to be taken care of. Since there is also
no need to maintain consistency during surface modifica-
tions, algorithms which require frequent re-structuring or re-
sampling of surfaces benefit the most from point-sampled
surfaces.

When considering point-based surface representations in
general, we further distinguish between a piecewise constant
point sampling [PZvSGOO, ABCO*Ol) and piecewise Linear
surface splats [ZFvBGOl]. h this paper we focus on surface
splats, since besides providmg a higher approximation or-
der, they also allow for more efficient rendering and achieve
a higher visual quality by sophisticated anti-aliasing tech-
niques [KBW].

One key component for any interactive application pro-
cessing point-based surfaces is a suitable point or splat ren-
dering method. On the one hand, performance is a major
goal, since otherwise the rendering might limit the flow of
the user interaction. On the other hand, many applications
require a high visual quality, e.g., in order to rate the quality
of a surface based on its specular shading or reflection lines.
Since both goals are typically conflicting, a trade-off has to
be found in an application-dependent manner.

At one end of this quality-vs-performance scale, the orig-
inal surface splatting [ZFVBGOI] is located. This approach
employs per-pixel lighting and thus achieves results compa-
rable to Phong shading if the surface is sampled sufficiently
densely. Aliasing artifacts are effectively avoided by EWA
filtering, which is conceptually similar to anisotropic texture
filtering. However, the original renderer is purely software-
based and therefore limited to about IM splatslsec on a
3.0GHz Pentium4 CPU, which is by far not sufficient for
the massive datasets to be processed in many current appli-
cations.

0 'Ihe Euqmpbica Assaiarjan 2W5

18 M. Botsch, A. Hornung, M. Zwicker, L Kobbeli 1 High-Quality SurJace Splaning

To overcome these limitations, several authors tried to im-
plement EWA splatting on graphics hardware, but - de-
pending on the generation of GPUs available at that time -
certain compromises had to be made, in terms of either ren-
dering performance or visual quality. While each new graph-
ics hardware typically increases the rendering performance
and thus improves the rendering results quantitatively, the
jump to the latest GPU generation additionally yields a sig-
nificant qualitative improvement.

In this paper we show how to exploit the increased capa-
bilities of latest graphics hardware for GPU-based surface
splatting, such that the trade-off between quality and effi-
ciency is effectively minimized. The availability of multiple
render targets with floating point precision and blending ca-
pabilities now finally enables us to implement all computa-
tions required for high-quality surface splatting directly on
the GPU. Hence, this paper does not introduce genuinely
new concepts, but focuses on the efficient implementation
of a hardware-accelerated deferred shading framework and
a simple and effective approximation of the EWA pre-filter
to achieve fast and high-quality surface splatting:

Deferred shading allows us to closely follow the orig-
inal EWA splatting approach and perform high-quality
per-pixel Phong shading. Lighting is computed only once
for each pixel of the final image, instead of once for
each generated fragment. This is especially important for
splat-based rendering, since due to the required overlap
of individual splats, the number of generated fragments
is much larger than the number of resulting image pixels.
The use of floating point render targets furthermore avoids
commonly observed shading artifacts due to discretization
problems. We wiIl prove the quality and efficiency of our
deferred shading approach on complex shadow-mapped
Phong and NPR shadem

EWA approximation. The original EWA filtering method
is based on a composition of an object-space reconstruc-
tion filter with a screen-space pre-filter. Many previous
approaches omit the screen-space filter and sacrifice anti-
aliasing quality for higher rendering performance. We
propose a simple approximation to the EWA pre-filter,
which can be computed efficiently, but still provides high-
quality anti-aliasing in magnified and minified regions.

A. Related Work

In this section we briefly review recent approaches to
hardware-accelerated surface splatting. For a more detailed
discussion on point-based rendering the reader i s referred to
the surveys [KBM, SPM]. We roughly classify the methods
discussed below by the compromises they had to make due
to GPU limitations, or, equivalently, by the amount of pro-
grammable shader features they exploit.

All approaches have in common that they use three ren-
dering passes in order to achieve correct blending of over-

lapping splats. In the first pass called visibiliry splurting the
object is rendered without lighting in order to fill the depth
buffer only [RLOO]. In the blending pass the object is slightly
shifted towards the viewer by E and rendered with light-
ing and alpha blending options enabled. This achieves a
Gouraud-like blending of overlapping splats whose depths
differ by less than E, but stiIl leads to correct occlusions for
splats with larger depth offsets. In a final normalization pass
each pixel is normalized by dividing the accumulated colors
stored in its RGB components by the sum of weights stored
in its alpha component, which can be done directly on the
GPU mK03, GW31.

Early methods do not exploit pixel shaders for the splat
rasrerization, but instead represent each splat by an alpha-
textured quad [RPZ02] or triangle [PSW]. However, this
multiplies the memory consumption as well as the per-vertex
computation costs by a factor of 4 or 3, respectively, which is
especially critical for highly complex or dynamically chang-
ing geometries.

This overhead can be avoided by representing each splat
by just one OpenGL vertex and using pixel shaders for their
rasterization instead [BK03, GP031. In this case, special care
has to be taken to generate correct depth values for each
pixel, since this is a requirement for correct blending results.
However, both methods only approximate the exact elliptical
shape of the projected splats, which might lead to small holes
in the resulting image. These holes can be avoided either by
a perspectively more accurate affine approximation that cor-
rectly maps the splat contours [ZRB*M], or by a per-pixel
projectively correct ray casting approach PSKM].

Sharp surface features can be represented by clip-
ping splats at lines defined in their tangent space, which
was first proposed by [PKKG03]. Efficient hardware im-
plementations of this technique were then presented in
[ZFtB*04,BSK04]. Since these methods cut splats by
boolean intersections with tangent half-spaces, the result-
ing clipped splats are always convex. For more complicated
sharp features one therefore has to fall back to a software-
based rendering solution (WTGD41.

In comparison to Gouraud-like shading by blending the
colors of overlapping splats, per-pixel shading considerably
improves the visual quality [ZPVBGOI, KVOI]. The GPU-
accelerated Phong splatting approach [BSK04] uses the orig-
inal point normals for precomputing a linear normal field for
each splat, which is evaluated at render-time for per-pixel
lighting computations. In combination with the splat dec-
imation technique of IwKo4] they achieve high rendering
quality even for coarsely sampled models. However, as the
normal fields have to be precomputed, their approach would
not be suitable for dynamically changing geometries, like
for instance [BK05]. Since this approach requires to trans-
fer more data to the pixels shaders, and since the normal
field evaluation and per-pixel lighting complicate the com-
putations, this approach is limited to about 4M splatdsec,

@ The Eumgrsphics Association 2005.

M. Boisch, A. Homung, M. Zwickel; L Kobbelt /High-Qualiry Surface Splotring 19

measured on a Linux machine equipped with a 3.mHz Pen-
tium4 CPU and a NVIDIA GeForce 6800 Ultra GPU. All
timings and splat rates given in this paper were measured
using this configuration.

Most of the above methods neglect the screen space fil-
ter of the EWA framework and restrict to the Gauss& re-
construction filter in object space. While this leads to suf-
ficient anti-aliasing in magnified regions, it cannot prevent
aliasing artifacts in minified areas. In contrast, the method
of [ZRB*O4J implements the full EWA splatting approach
on the GPU, but due to the complex computations its per-
formance is limited to about 4M splatshec using the above
mentioned hardware configuration. Finally, the use of de-
ferred shading techniques has shown to allow for efficient
high-quality per-pixel shading in EWA surface splatting as
well as splat-based volume rendering [MMC99].

Using per-pixel Phong shading and a simple but effec-
tive approximation to the screen space filter, the approach
presented in this paper provides results comparable to the
original EWA splatting. By exploiting deferred shading tech-
niques we achieve this superior visual quality at a rate of
about 23M splatdsec, such that our method is close to
EWA splatting in terms of quality and close to the fast but
low-quality renderer of [BK03], which achieves about 27M
splatslsec.

3. Splat Rasterization

In this section we shortly describe the perspectively cor-
rect rasterization of elliptical splats, which was introduced in
[BSK04]. This method will then be used in the next section
to accumulate normal and color contributions of individual
splats in the rendering buffer.

Following the notation of [BSKW], a splat Sj is defined
by its center cj and two orthogonal tangent directions uj and
vj. These tangent vectors are scaled according to the princi-
pal radii of the elliptical splat, such that an arbitrary point q
in the splat’s embedding plane Lies in the interior of the splat
if its local parameter values U and v satisfy the condition

The rasterization of a spiat Sj is performed by sending
its center c j , tangent axes (uj,vj), and optional material
properlies to OpenGL, which are then processed by custom
shaders for both the vertex and the pixel stage. The vertex
shader conservatively estimates the size d of the projected
splat based on a perspective division of the larger of the el-
lipse radii r by the eye-space depth value cz of the splat cen-
ter, followed by a window-to-viewport scaling as described
in [BSKM].

This causes the single OpenGL vertex c to be rasterized
as a d x d image space square, each pixel (q y) of which

is then tested by a pixel shader to lie either inside or out-
side of the projected elliptical splat contour. Local ray cast-
ing through the corresponding projected point q, on the near
plane yields the eye-space point q on the splat’s supporting
plane. From this projectively exact 3D position the local pa-
rameter values (U , v) can be determined and tested as shown
in (1). While pixels corresponding to points outside the splat
are discarded, pixels belonging to the splat are accepted and
processed further. Lf a pixel (x , y) is accepted, its weighting
factor is determined as

w (x ,y) = h (4 3 3) , (2)

where h (.) is typically chosen as a Gaussian. To allow for
exact blending and occlusion, the pixel’s depth value has to
be adjusted as described in mSKO4] in order to correspond
to the computed 3x3 position q. This finally results in a per-
pixel projectively correct rasterization of elliptical splats.

The output of the rasterization pixel shader are depth val-
ues only for the visibility pass, and additionally weighted
splat attributes, such as normal vectors or color values, in the
second pass, which are then accumulated in the render target
by additive alpha blending. The final normalizatiodshading
pass then processes each pixel in order to compute its final
color, as described in the next section.

4. Hardware-Accelerated Deferred Shading

For both point-based models and polygonal meshes, one ma-
jor requirement for high-quality visualization is the use of
per-pixel Phong shading based on interpolated normal vec-
tors, instead of Gouraud shading, which blends color con-
tributions resulting from lighting each splat or mesh ver-
tex, respectively. In contrast to polygonal meshes, point-
based models do not store any neighborhood relation be-
tween splats, therefore an equivalent interpolation of neigh-
boring splats’ normal vectors is not possible.

In order to still be able to generate smoothly interpolated
per-pixel normal vectors, two basic approaches are possible.
The first is to associate with each splat a pre-computed linear
normal field, as proposed in the Phong splatting approach
[BSKO4]. However, while leading to a high-quality shad-
ing, this method is limited to static geometries and bound
to about 6M splatdsec, as mentioned in Section 2.

The second approach for normal interpolation was
proposed in the software-based EWA splatting approach
[ZPVBGOl]. Instead of splatting color values into the frame-
buffer, they use multiple buffers into which they splat normal
vectors and material properties. As a consequence, normals
and colors of overlapping splats are smoothly interpolated
and averaged into the pixels they cover, with weights de-
pending on the respective EWA filter kernels evaluated at
that pixel. In a final pass over each image pixel, lighting
computations are performed based on the pixel’s accumu-
lated normal vector and surface material.

20 M. Borsch, A. Hamung, M. Zwickeq E, fibbelt/ High-Qualiry Surface Splatting

1

Visibility Pass Attribute Pass Shading Pass

Figure 1: B e deferred shading pipeline for GPU-based spplatting. The visibility pass j l ls rhe z-buffer; such that the attribute
pass can cowectly accumulate surface attributes, like color values and normal vectors, in separate render targers. Thejnal
shading pass compures rhe actual COEOT value for each image pixel based on the ififomtion stored in these render targets.

4.1. Multipass Algorithm

The latest NV40 generation of NVIDIA GPUs provides all
the hardware features required to implement the latter ap-
proach on the GPU. Originally targeted at high-quality cin-
ematic rendering effects and high dynamic range imaging,
the NV40 provides floating point pmision at all necessary
stages of the rendering pipeline, i.e., for shader arithmetic,
alpha blending, textures, and render targets. In combination
with the availability of multiple render targets, which allow
outputting up .to four different RGBA color values within a
single rendering pass, these features enable the implementa-
tion of accurate per-pixel deferred shading in the context of
surface splatting.

Attribute Pass. After the visibility pass (cf. Fig. , I , left), we
use multiple render targets to splat and accumulate normal
vectors as well as material properties during the so-called
attribute pass (cf. Fig. I , center). The corresponding pixel
shader performs the computations outlined in Section 3, but
instead of shading each accepted pixel, its (weighted) nor-
mal vector and color value are output to the two render tar-
gets. These buffers and the depth buffer are then used as tex-
tures for the final normalization and shading pass, for which
a window-size rectangle is drawn in order to send each pixel
through the rendering pipeline again.

Shading Pass. The shading pass (cf. Fig. 1, right) CO=-
sponds to the normalization pass of previous approaches,
but it additionally performs (deferred) per-pixel shading. For
each pixel, an averaged normal and color can be computed
by fetching the accumulated values from the textures and
normalizing them. From the depth texture, the corresponding
3D position can easily be derived by inverting the viewing
and projection mappings. Having position, normal, and color
information at hand then enables deferred per-pixel shad-
ing computations [DWS'SS]. The resulting Phong shading

clearly improves the rendering quality over the G o m u d
shading used by most previous methods.

Notice that lighting computations are performed onby
once for each pixel of the projected object in the final image.
In contrast, previous approaches incorporate lighting com-
putations into the splat mterization process and perform a
per-pixel blending of the resulting colors instead. Due to the
required mutual overlap of individual spiats, this multiplies
the number of lighting computations by a factor of about
6-10 for typical datasets, which we measured by counting
the fragments contributing to each pixel using the stencil
buffer.

Depending on the complexity of the employed shaders,
saving these unnecessary lighting computations yields no-
ticeable performance improvements. As we will show in
Section 6, the performance of our deferred shading approach
is almost independent of the actual surface shading. Incor-
porating more complex lighting computations into the ras-
terization pixel shader would in contrast significantly slow
down the rendering, as the pixel stage is known to be the
bottleneck of the splat rasterization.

In addition to this, deferred shading also provides a clear
separation between the splat rasterization process and the ac-
tual surface lighting or shading computations. This greatly
simplifies the development of custom shaders, as the care-
fully optimized pixel shader for splat rasterization (cf. Sec-
tion 3) is left untouched. The deferred shading approach thus
allows for a simple yet highly efficient implementation of
custom shaders, of which we show several examples in Sec-
tion 6. Since the input to these shaders are textures holding
normal, material, and depth information, they are indepen-
dent of the actual geometry that was rasterized to gener-
ate these textures. As a consequence, the shaders can even
be shared for point-based models and traditional polygonal
meshes.

@ The Eurographir Association 2005.

M. Botsch, A. Hommg, M. ZwickI; L. Kobbelt /High-QuaIiay Surface Splaiting 21

Another important point to be considered is the precision
of the render targets. The standard framebuffer used in pre-
vious approaches offers 8 bits for each of the four RGBA
components. As an additional constraint, these color channel
also have to be clamped to [0,1]. This leads to the €requently
observed shading artifacts due to color buffer overflows or
insufficient precision for the sum of weights stored in the al-
pha channel. The NV40 GPU generation now allows to use
un-clamped floating point values for render targets, which
effectively avoids these problems (cf. Fig. 2). This is espe-
cially important as in addition' to colors we also accumulate
normal vectors, where noise due to discretization would im-
mediately lead to shading artifacts.

Figure 2: Standardfmmebuflers provide 8 bit precision for
each channel and chmp color values to [O,l] . Due io large
overlaps of individual splars, these buffers may ovelfrow dur-
ing accumulation, resulting in the too bright and sparkled
left image. Using $oaring point render targets (on the same
illumination conditions) efeciively avoids these problems
(right).

5. EWA Approximation

In the original EWA surface splatting, two components are
responsible for high visual quality: per-pixel Phong shad-
ing, which can be mapped to the GPU as shown in the last
section, and anisotropic anti-aliasing provided by the EWA
filter.

The complete EWA filter is composed of an object-space
reconstruction kernel (the weight function of Q. (2)) and a
band-limiting screen-space pre-filter. As the required com-
putations are quite involved, many rendering approaches
simply omit the screen-space filter and use the reconsbuc-
tion kernel only. However, in the case of extreme minifica-
tion, when the size of projected splats falls below one pixel,
the signal corresponding to the accumulated projected splats
may have frequencies higher than the Nyquist frequency of
the pixel sampling grid, resulting in the alias artifacts shown
in the top image of Fig. 3.

Figure 3: The object-space reconstmcrion jilter alone can-
not avoid aliasing in minification regions (top). Full-screen
anti-aliasing removes aliasing to some degree, but the super-
sampled image can still contain sampling artifacts (center).
Our approximation to the EWAjLter band-limits the signal
before it is sampled on the pixel grid and hence successfully
removes the aliasing problems (bottom).

An appeaIing idea might be to diminish these aliasing arti-
facts by full-screen anti-aliasing (FSAA), which is supported
by any modem graphics hardware. In general, FSAA redi-
rects the rendering to a higher resolution framebuffer in or-
der to achieve a (typically 2 x 2 or 3 x 3) super-sampling
of the image signal. This buffer is then scaled down to the
actual framebuffer resolution using h e a r or Gaussian filter-
ing. The problem with that approach is that even the high
resolution super-sampling buffer might suffer from aliasing,
in which case a high resolution aliased image will be down-
scaled to the framebuffer. The resulting image will still con-
tain alias artifacts (cf. Fig. 3, center).

We propose a simple - and hence efficient - heuristic
for approximating the EWA screen-space filter. By clamp
ing the size of projected splats to be at least 2 x 2 pixels it
is guaranteed that enough fragments are generated for anti-
aliasing purposes, even for splats projecting to sub-pixel U-

@ The Eumpphics Asmiation 2005.

22 M. Borscla, A. Homung, M. Zwicker; L Kobbelt /High-Quality Surface Splaning

... +, ,,_.____A
- Rwmnnclmnfiltcr . - h r a p m t b n

iauparrfihm W A R M

Figure 4: f i isfgure gives a qualitative comparison of the
original EWA filter and our approximation. In the left col-
umn, three typical configurations of screen-size ratios be-
tween the pmjected object-space reconstmction filter and
the low-pass screen-space filter are shown. The right col-
umn compares the resulting contours of the combined filter
L m e b . Although the approximation ermr can become arbi-
trarily large, we did not perceive any visible artifacts in our
experiments.

eas. This restriction on the minimum size can easily be in-
corporated into the vertex shader,

Instead of computing the weight w (x,y) based only on the
reconstruction filter, the pixel shader is adjusted to compute
two radii r 3 ~ :=u2+v2 (seem. (1)) a n d q ~ :=d(x,y)'/?,
with d(x,y) being the 2D distance of the current fragment
from the respective projected splat center and r = f i being
the band-limiting screen-space filter radius. A given fmg-
ment is then accepted, if it lies within the union of the low-
pass and the reconstruction filter (cf. Fig. 4)

i.e., either if it corresponds to a 3D point within the splat's
interior, or if it Iies within a certain radius around the pro-
jected spat center. The final weight corresponding to Eq. (2)
is computed as w(x,y) = h (m) .

Notice that we enforce the minimal splat size only in the
attribute pass, but not in the visibility pass. This means that
the E-depth test, which is simulated by the two rendering
passes, is not applied to those pixels which are additionally
generated on silhouettes by the screen-space fi€ter. In con-
trast, these pixels are blended with the surface parts behind
them, which results in a pseudo edge-anti-aliasing for object
silhouettes.

This approximation to the EWA filter provides high-
quality anti-aliasing in magnified as well as in minified re-
gions (cf. Fig. 3, bottom). Our results are comparable to
those of the exact EWA filter, but in contrast our approxima-
tion is considerably easier to compute. If the projected splat

center is passed from the vertex shader to the pixel shader,
the screen-space filter requires three additional instructions
only.

Limiting the minimal projected splat size obviously gen-
erates more fragments, such that the average number of frag-
ments contributing to each resulting image pixel increases by
a maximum factor of 4 from about 7 to 15-30 for complex
models with small projected splat sizes. As a consequence,
the acceleration offered by the deferred shading approach
becomes even more important, since by this the screen-space
filter decreases the rendering perfomance only slightly from
25M to 23M splatslsec.

6. Results

In this section we discuss the quality and efficiency of the
presented approach and compare both criteria to previous
GPU-based renderers. The clear separation of splat rasteriza-
tion and (deferred) surface shading allows for easy and em-
cient implementation of custom shading methods, for which
we show several examples.

In terms of quality, our method can be compared to the
software-based EWA splatting [ZPvBGOl] and the GPU-
based Phong splatring [BSKM]. Our per-pixel Phong shad-
ing is a GPU implementation of the original EWA splatting
and therefore yields equivalent results. However, our splat
rasterization is perspectively correct, whereas the affine ap-
proximation of the projective mapping in [ZPvBGOl] might
cause small holes in the image, as pointed out in [ZRB*O4].

In comparison to Phong splatting, our per-pixel shad-
ing provides equivalent results for densely sampled models.
For coarse models, Phong splatting can achieve better re-
sults by pre-computing the linear normal fields from the un-
decimated original dense models. However, as Phong splat-
ting does not use a screen-space pre-filter, this method might
suffer from aliasing in minification areas.

In order to test the performance implications of the sur-
face shader's complexity, we compared the simple Phong
shader using a precomputed light map [BSKM] to a more
complex non-photo-redistic (NPR) shader (cf. Fig. 5). The
latter generates contour and silhouette outlines at depth con-
tinuities and at shallow viewing angles. Using deferred shad-
ing, this technique can be implemented easily by sampling
the depth map in the pixel's neighborhood and by consider-
ing the normal map information. The diffuse lighting result
is further modified by a 1D transfer function texture, e.g., in
order to achieve the quantized color set typical for toon shad-
ing [GGC98]. In total, the NPR shader requires 12 texture
lookups and is much more involved compared to the Phong
shader, which needs only 3 texture fetches. However, ourre-
sults show that, due to deferred shading, the effect on the to-
tal timings are almost negligible, whereas for non-deferred
splatting, the shader complexity has a considerably larger
impact on the rendering speed.

@ The E w p p h k a Assoeiation 2005.

M. Botsch, A. Hornung, hi. Zwickel; L. Kobbelt /High-Quality Sutface Splatting 23

Figure 5: Fmm left to right: The Phung-shaded octopus model and NPR-shaded rendeiings of the dinosaur model, the &ea
artifaci, and the massive h c y datasei. All models are rendered with shadow mapping enabled and hence require one additional
visibility rendering pass for the shudow map generation.

We further enhanced the Phong shader as well as the NPR
shader by standard shadow mapping, which requires trans-
forming each image pixel first back to object-space and then
into the viewport coordinate system of the shadow map.
Based on the comparison of the resulting depth value with
the corresponding entry of the shadow map, lighting is per-
formed only in un-shadowed regions. The additional shader
computations again have a minor influence on the rendering
performance, but as one extra visibility pass is required for
the generation of the shadow map, the splat rate drops down
to about 15M splatdsec.

Table 1 shows performance statistics of our Phong and
NPR shader, both with and without shadow mapping. The
numbers correspond to splat rates in million splats per sec-
ond, for a 512 x 512 window, using a GeForce 6800 Ul-
tra GPU. We also give the average number of fragments
contributing to each final image pixel in order to show the
amount of shading computations which is saved by the de-
ferred shading approach. A comparison to the high perfor-
mance but low quality renderer of [BK03] and the high-
quality but low-performance Phong splatting [BSK04] on
identical hardware reveals that our method achieves a per-
formance close to the fast low-quality renderer, but yields a
quality superior to even the Phong splatting approach.

In order to minimize data transfer costs, the geometry data
is stored in high performance GPU memory using OpenCL
vertex buffer objects. For massive models, however, this data
might not fit into the available GPU memory. In order to still
be able to efficiently render those datasets, we switch to 16
bit floating point values for representing positions and nor-
mals. This effectively halves the memory consumption with-
out leading to any noticeable loss of visible quality. The two
most complex models shown in Table 1 still cannot be up-
Ioaded to the video memory, but as the data transfer costs
are also halved by the 16 bit quantization, they can be ren-

dered quite efficiently. The massive Lucy model can there-
fore be rendered at 1.6 f p s with Phong shading and approxi-
mate EWA anti-aliasing, and at still more than 1 fps with the
4-pass shadow mapping shaders.

7. Conclusion

In this paper we showed how to exploit the increased ca-
pabilities of the latest generation of graphics processors for
point-based rendering. The availability of multiple render
targets in combination with a floating point precision ren-
dering pipeline enabled us to derive one of the fastest and
highest quality GPU-based surface splatting technique avail-
able to date.

This was achieved by introducing a splat-rendering
pipeline based on deferred shading and an approximation
to the screen-space EWA filter. Due to the required mutual
overlap of individual surface splats, deferred shading was
shown to be especially suited for point-based rendering, and
to provide high-quality per-pixel shading as well as signif-
icant performance improvements. Our approximation to the
EWA screen-space filter effectively removes aliasing arti-
facts in minified areas, while still preserving the superior
rendering performance.

The most problematic limitation for current point-based
rendering approaches is still the restricted flexibility of
z-buffering, which necessitates the expensive two render
passes for visibility splatting and attribute blending, and
which also restricts current surface splatting approaches to
completely opaque surfaces only.

Acknowledgments

The octopus model is courtesy of Mark Pauly, the Lucy
model courtesy of Stanford university, and the dinosaur and
Igea datasets are courtesy of Cyberwax.

@ The &"phics Association 2005.

24 M. Botsch, A. Hornwtg, M. Zwicker, L. Kobbelt /High-Qualily Surface Splaiting

Model #splats Overdraw Phong-SM NPR-SM Phong+SM NPR+SM

Balljoint 137k 5.917.2 20.1 15.5 13.3 11.9
M m 655k 7.9 115.4 22.0 20.4 14.9 14.5
David Head 1.1M 6.4 / 14.4 23.9 22.6 16.3 15.8
David Head 4.OM 6.9 / 37.7 26.0 25.3 17.5 17.2
David 8.3M 7.0/ 202 22.6 22.0 16.2 15.5
Lucy 14M 19.31242 22.6 22.1 15.9 15.2

[BK03] [BSK04]

24.8 4.5
27.0 5.9
27.1 5.6
31.3 5.5
19.6 4.6
20.2 5.0

Table 1: This table shows the perj5ormunce of our rendering approach in million spIats per second for a 512 x 51 2 window
using n GeForce 6800 Ultra GPU. We give timings for several different shaders (Phong shading, NPR shading, wirh and without
shadow mapping) and compare to the fast but low-quality splatring of [BKO3], and the high-quality but expensive Phong
splatting [BSKOQ]. Due to per-pixel Phong shading and anti-uliasing, the quality of our method is superior even to [BSKM],
while the rendering pelformame is still romparable to [BKO3]. The third column shows the average number of fragments
contributing tu resulting image pixels, without and with our anti-aliasing technique. Since ihe latter generates signijcantly
more fragments for complex models, the acceleration provided by the deferred shading approach is even more important.

References
[ABCO*OI] ALEXA M.. BEHR I. , COHEN-OR D., FLEISHMAN

S . . LEVIN D., SILVA C. T.: Point set surfaces. In
Pmc. afIEEE VisuuIizurion 01 (2001), pp. 21-28.

BOTSCH M., KOBBELT L.: Highquality point-based
rendering on modern GPUs. In Pmc. of Pacific
Graphics 03 (2003), pp. 335343.

BOTSCH M. , KOBBELT L.: Real-time shape editing
using radial basis functions. In Pmc. ofEuumgmphics
U5 (2005).

splatting.
Graphics 04 (2004).

DEERING M., WINNER S. , SCHEDIWY B., DUwY
C., HUNT N.: The triangle processor and normal vec-
tor shader: a vlsi system for high performance graph-
ics. In Pmc. ofACM SIGGRAPH 88 (1988), pp. 21-
30.

GoocH A., GOOCH B., COHEN E.: A non-
photorealistic lighting model for automatic technical
illustration. In Pmc. of ACM SIGGRAPH 98 (1998),
pp. 447-452.

GUENNEBAUD G . . PAULIN M.: Efficient screen
space approach for hardware accelerated surfel ren-
derjng. In Pmc. of Vuion, Modeling, and Ksualiza-
r i m 03 (2003).

KOBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics. Computers
& Graphics 28,6 (2004), 801-814.

BOTSCH M., SPERNAT M.. KOBBELT L.: Phong
In Pmc. of symposium on Poini-Eased

KALAIAH A., VARSHNEY A.: Differential point =U-

dering. In Pmc. of Eumgrophics Workshop an Ren-
dering Techniques 2001 (2001).

MUELLER K., MOLLER T., CRAWFIS R.: Splat-
ting without the blur. In Pmc. of IEEE Ksuulimtion
(1999), pp. 363-370.

PAULY M., KEISBR R. , KOBBELT I.., GROSS M.:
Shape modeling with point-sampled gmmehy.
Proc. ofACMSIGGRAPH 03 (2003), pp. 6 4 1 4 5 0 .

PAJAROLA R., SAINZ M., GUIDOTTT P.: Confetti:
Object-space point blending and splatting. IEEE
Transacfions an Vtrunlization and Camputer Graph-
ics 10, 5 (2004),598-608.

In

PFISTER H., ZWCKER M., VAN BAAR J., GROSS
M.: Surfels: Surface elements as rendering primitives.
In Pmc. ofACM SIGGRAPH W (ZOOO), pp. 335-342.

RUSINKIEWlCz S.. LEVOY M.: QSplat: a m u l h s -
olution point rendering system for large meshes. In
Pmc. of ACM SIGGRAPH 00 (2000), pp. 343-352.

REN L., PFISTER H., ZWICKER M . : Object space
ewa surface splatting: A hardware accelemed ap-
proach to high quality point rendering. In Pmc. of
Eumgmphics 02 (2002), pp. 461470.

SAINZ M., PAJAROLA R.: Point-based rendering
techniques. Compurers & Graphics Z8,6 (2004), 869-
879.

WO I., KOBBELT L.: Optimized subsampling of
point sets for surface splatting. In Pmc. of Eurogmph-
ics 04 (2004). pp. 6 4 3 4 5 2 .

WlCKE M., TESCHNER M., GROSS M.: CSG tree
rendering for point-sampled objects. In Pmc. of Pa-
cific Gmphics W (2004), pp. 160-168.

ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Pmc. ofACM SIGGRAPH

ZWICKER M., RASANEN I., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splat-
ting. In Proc. of Graphics htelface 04 (2004).

01 (2001), pp. 371-378.

@ The Bumpaphics Asrocinlion ZWJ.

