
Homogeneous Rasterization

Matthias Zwicker

October 9, 2008

1 Introduction

This document gives a short summary of the homogeneous rasterization tech-
nique proposed by Olano and Greer [2]. The main advantage of this algorithm
is that it does not require a homogeneous division at the triangle vertices to
compute the interpolation parameters for vertex attributes. The algorithm is
elegant and simple to implement.

The main idea of homogeneous rasterization is to first look at the problem
of interpolating arbitrary linear functions across triangles. Once we have un-
derstood this problem, we can implement both perspective correct interpolation
and rasterization using this idea. Rasterization is achieved by defining specific
edge functions that allow us to determine if a pixel is inside or outside a triangle.

2 Interpolating Linear Functions on Triangles

Assume that you have transformed triangle vertices such that the projection to
pixel coordinates is simply achieved by dividing by the homogeneous coordinate.
Let us denote these transformed vertex coordinates by (x, y, z, w), and pixel
coordinates after homogeneous division by (x/w, y/w).

The main observation is that any linear function on the triangle, before
homogeneous division, can be written in the form u(x, y, w) = aux + buy +
cuw. We call the coefficients au, bu, cu the interpolation parameters for the
function u. We show how to determine them below. Note that we could also
have used the z coordinate here. You will see why we use the w coordinate
instead. The coordinates (x, y, w) can also be interpreted as 2D homogeneous
coordinates. Our goal is now to express the interpolated function u in terms of
pixel coordinates (x/w, y/w), i.e., we want to compute the function u(x/w, y/w).
This setup is illustrated in Figure 1.

Any linear function on a triangle is given by its values at the triangle vertices.
We denote the coordinates of the triangle vertices by (xi, yi, wi), i = 0, 1, 2, and
the function values by ui, i = 0, 1, 2. We solve for the interpolation param-
eters au, bu, cu by formulating constraints that the values at the vertices are

1



u(x,y,w)

u(x/w,y/w)

u0, (x0,y0,w0)
u1, (x1,y1,w1)

u2, (x2,y2,w2)

w=1

Figure 1: The setup for interpolating linear functions on triangles parameterized
by pixel coordinates (x/w, y/w).

2



interpolated. This leads to a system of equations, x0 y0 w0

x1 y1 w1

x2 y2 w2

  au
bu
cu

 = M

 au
bu
cu

 =

 u0

u1

u2

 .
The interpolation parameters are found by inverting the matrix, au

bu
cu

 =

 x0 y0 w0

x1 y1 w1

x2 y2 w2

−1  u0

u1

u2

 = M−1

 u0

u1

u2

 .
We first observe that we can easily interpolate the function 1/w given pixel

coordinates x/w, y/w. To achieve this, we choose a constant function on the
triangle, i.e., ui = 1, i = 0, 1, 2. We solve for its set of coefficients denoted by
a1, b1, c1 as shown above. This means we have 1 ≡ a1x+ b1y + c1w for points
on the plane defined by the triangle, or 1/w = a1x/w + b1y/w + c1. To make
clear that this means “given pixel coordinates, compute 1/w”, we write this
explicitly as a function f(x/w, y/w) of pixel coordinates, i.e., f(x/w, y/w) =
a1x/w + b1y/w + c1 = 1/w.

We now show how to interpolate an arbitrary function u, which may rep-
resent color, texture coordinates or any other vertex attribute. We denote the
coefficients by au, bu, cu and solve for them as shown above. Homogeneous
division yields u/w = aux/w + buy/w + cu. Or as above, g(x/w, y/w) =
aux/w + buy/w + cu = u/w.

So far we have shown how to interpolate both 1/w and u/w in terms of
pixel coordinates x/w, y/w. We now get the desired function u(x/w, y/w) =
g(x/w, y/w)/f(x/w, y/w) = u/w · 1/w! Therefore, we have already solved the
perspective correct interpolation problem.

3 Edge Functions

Our next goal is to define linear functions on triangles that allow us to determine
whether a pixel is inside or outside the triangle. We define an edge function
as a linear function that is zero along one edge, and positive on the opposite
vertex. It is clear that this function is positive inside the triangle, and negative
in the half-plane that lies outside the triangle across the edge. A point lies in the
triangle if all edge functions are positive. Therefore, we can rasterize a triangle
by simply interpolating all three edge functions at each pixel. If they are all
positive, the pixel is inside the triangle.

One can also omit the division by 1/w when evaluating the edge functions,
since we are only interested in the sign of the functions. We denote the edge
functions by α = aαx+ bαy + cα, β = aβx+ bβy + cβ , and γ = aγx+ bγy + cγ .
If 0 < α/w, β/w, γ/w, the pixel is inside the triangle and the triangle lies in
front of the eye (w is positive). If 0 > α/w, β/w, γ/w, the pixel is inside the
triangle, but the triangle lies behind the eye (w is negative). Otherwise, the
pixel is outside the triangle.

3



Note that because the edge functions are zero at two vertices and one at the
third vertex, the coefficients of each edge function correspond to one column of
M−1.

4 Implementation

The homogeneous rasterization algorithm requires the inversion of a 3×3 matrix.
This involves the computation of the matrix determinant, which provides some
useful information that can be exploited. If the determinant is negative the
triangle is back facing. If the determinant is zero, the triangle has zero area in
homogeneous space, or it is viewed edge on. In both cases it does not need to
be drawn.

Key to the efficiency of the algorithm is a fast binning technique. Binning is
the process of determining for which pixels the edge functions should be evalu-
ated in the first place. A simple and efficient way is to use axis aligned bounding
boxes for the triangles. Bounding boxes can be computed without homogeneous
division using the method proposed by Blinn [1]. Multi-level bounding boxes
can further speed up the process.

References

[1] James Blinn. Jim blinn’s corner: Calculating screen coverage. IEEE Com-
puter Graphics & Applications, 16(3), 1996.

[2] Marc Olano and Trey Greer. Triangle scan conversion using 2d ho-
mogeneous coordinates. In HWWS ’97: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 89–95,
1997.

4


