Computergrafik

Matthias Zwicker
Universität Bern
Herbst 2016
Rendering pipeline

- Scene data
 - Vertex processing, modeling and viewing transformation
 - Projection
 - Rasterization, fragment processing, visibility
 - Image

Lectures 1 and 2
Lecture 3 (last time)
Lecture 4 (today):
 - rasterization, visibility
Lecture 5-7: shading
Base code architecture

Java library

- Scene data
- Vertex processing, modeling and viewing transformation
- Projection
- Rasterization, fragment processing, visibility
- Image

jrtr

Java executable

Application program

- No OpenGL/jogl calls
- Independent of „rendering backend“ (low level graphics API)
- Can easily change rendering backend (OpenGL/jogl, software renderer)

simple
The complete vertex transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$p' = DPC^{-1}Mp$$

Object space

World space

Camera space

Canonic view volume

Image space
The complete vertex transform

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$\mathbf{p}' = DPC^{-1}M\mathbf{p}$$

$$\mathbf{p}' = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Pixel coordinates $\begin{bmatrix} x/w \\ y/w \end{bmatrix}$
Today

Drawing triangles

• Homogeneous rasterization

• Texture mapping

• Perspective correct interpolation

• Visibility
Scan conversion and rasterization are synonyms

One of the main operations performed by GPU

Draw triangles, lines, points (squares)

Focus on triangles in this lecture
• How many pixels can a modern graphics processor draw per second?

• See for example
 http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
Rasterization

• Ideas?

Center of projection
(camera)

Image plane

\((x_1, y_1, w_1) \)

\((x_0, y_0, w_0) \)

Transformed triangle, vertex coordinates \(p' \), z coordinate is ignored

\[
p' = DPC^{-1}Mp
\]

\[
p' = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}
\]
Rasterization

• Idea
 - Project vertices by dividing by w
 - Fill triangle given by projected vertices
Rasterization

• Idea
 - Project vertices by dividing by w
 - Fill triangle given by projected vertices

• Problems
 - What happens if $w=0$ for some vertices?
 - What happens if some vertices have $w>0$, others $w<0$?
Clipping

• Split (subdivide) triangles along view volume boundary into smaller ones

• Draw only triangles completely within view volume

• Many sophisticated algorithms, but still complicated and slow
 - Sutherland-Hodgman
 http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman
 - Weiler-Atherton
 http://en.wikipedia.org/wiki/Weiler%E2%80%93Atherton

• Try to avoid clipping!
Homogeneous rasterization

- Based on not-so-old research (1995)
 [link](http://www.cs.unc.edu/~olano/papers/2dh-tri/)
- Method of choice for GPU rasterization
 - Patent (NVidia) [link](http://www.patentstorm.us/patents/6765575.html)
- Does **not** require homogeneous division at vertices
 - Does not require costly clipping
- Caution
 - Different algorithm than in Shirley’s book (Sec. 3.6)
 - Read for comparison
Homogeneous rasterization

- Idea: define linear edge functions on triangles
 - Three functions, one for each edge
 - In x,y,w coordinates (2D homogeneous coordinates), before projection (i.e., homogeneous division)
 - Functions denoted $\alpha(x,y,w)$, $\beta(x,y,w)$, $\gamma(x,y,w)$
Edge functions

- Edge functions are zero on one edge, one at opposite vertex
- Sign indicates on which side of edge we are (inside or outside triangle)

\[\alpha(x, y, w) = 0 \]

\[\alpha(x, y, w) > 0 \]

\[\alpha(x, y, w) < 0 \]
Edge functions

- Edge functions are zero on one edge, one at opposite vertex
- Sign indicates on which side of edge we are (inside or outside triangle)
Edge functions

- Edge functions are zero on one edge, one at opposite vertex
- Sign indicates on which side of edge we are (inside or outside triangle)

\[\gamma(x, y, w) < 0 \]
\[\gamma(x, y, w) = 0 \]
\[\gamma(x, y, w) > 0 \]
Edge functions

- Functions α, β, γ are also called barycentric coordinates.
- Functions are defined for any point x, y, w, not only on plane of triangle!
- Points x, y, w on plane defined by triangle have $\alpha(x, y, w) + \beta(x, y, w) + \gamma(x, y, w) = 1$
- Points inside the triangle have $0 < \alpha, \beta, \gamma < 1$
Edge functions

- Points inside double pyramid spanned by triangle and center of projection: $0 < \alpha, \beta, \gamma$
Edge functions

- Linear functions have form
 \[\alpha(x, y, w) = a_\alpha x + b_\alpha y + c_\alpha w\]
 \[\beta(x, y, w) = a_\beta x + b_\beta y + c_\beta w\]
 \[\gamma(x, y, w) = a_\gamma x + b_\gamma y + c_\gamma w\]

- Need to determine coefficients \(a_\alpha, b_\alpha, c_\alpha, \ldots\)

- Using interpolation constraints
 (zero on one edge, one at opposite vertex)

\[
\begin{bmatrix}
 x_0 & y_0 & w_0 \\
 x_1 & y_1 & w_1 \\
 x_2 & y_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
 a_\alpha & a_\beta & a_\gamma \\
 b_\alpha & b_\beta & b_\gamma \\
 c_\alpha & c_\beta & c_\gamma \\
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]
Finding coefficients

- Determine coefficients using interpolation constraints

\[
\begin{bmatrix}
 x_0 & y_0 & w_0 \\
 x_1 & y_1 & w_1 \\
 x_2 & y_2 & w_2
\end{bmatrix}
\begin{bmatrix}
 a_\alpha \\
 b_\alpha \\
 c_\alpha
\end{bmatrix}
\begin{bmatrix}
 a_\beta & a_\gamma \\
 b_\beta & b_\gamma \\
 c_\beta & c_\gamma
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 0 \\
 0
\end{bmatrix}
\begin{bmatrix}
 0 \\
 1 \\
 0
\end{bmatrix}
\begin{bmatrix}
 1 \\
 0 \\
 1
\end{bmatrix}
\]

\[\alpha(x_0, y_0, w_0) = 1\]

\(\alpha\) needs to be 1 on vertex 0
Finding coefficients

- Determine coefficients using interpolation constraints

\[
\begin{bmatrix}
 x_0 & y_0 & w_0 \\
 x_1 & y_1 & w_1 \\
 x_2 & y_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
 a_\alpha & a_\beta & a_\gamma \\
 b_\alpha & b_\beta & b_\gamma \\
 c_\alpha & c_\beta & c_\gamma \\
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]

\[\alpha(x_1, y_1, w_1) = 0\]

\(\alpha\) needs to be 0 on vertex 1
Finding coefficients

- Determine coefficients using interpolation constraints

\[\begin{bmatrix} x_0 & y_0 & w_0 \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix} \begin{bmatrix} a_\alpha & a_\beta & a_\gamma \\ b_\alpha & b_\beta & b_\gamma \\ c_\alpha & c_\beta & c_\gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[\gamma(x_1, y_1, w_1) = 0 \]

\(\gamma \) needs to be 0 on vertex 1

Etc., matrix equation encodes 9 constraints necessary to determine coefficients
Finding coefficients

- Determine coefficients using interpolation constraints

\[
\begin{bmatrix}
x_0 & y_0 & w_0 \\
x_1 & y_1 & w_1 \\
x_2 & y_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
a_\alpha & a_\beta & a_\gamma \\
b_\alpha & b_\beta & b_\gamma \\
c_\alpha & c_\beta & c_\gamma \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

- Matrix inversion to solve for coefficients

\[
\begin{bmatrix}
a_\alpha & a_\beta & a_\gamma \\
b_\alpha & b_\beta & b_\gamma \\
c_\alpha & c_\beta & c_\gamma \\
\end{bmatrix}^{-1} \begin{bmatrix}
x_0 & y_0 & w_0 \\
x_1 & y_1 & w_1 \\
x_2 & y_2 & w_2 \\
\end{bmatrix}
\]
Pixel inside/outside test

- Our question: Are pixel coordinates \((x/w, y/w)\) inside or outside projected triangle?

- Homogeneous division applied to edge functions:

\[
\begin{align*}
\alpha/w &= a_\alpha(x/w) + b_\alpha(y/w) + c_\alpha \\
\beta/w &= a_\beta(x/w) + b_\beta(y/w) + c_\beta \\
\gamma/w &= a_\gamma(x/w) + b_\gamma(y/w) + c_\gamma
\end{align*}
\]

Functions of pixel coordinates! \((x/w, y/w)\)!
Pixel inside/outside test

- Pixel is inside if \(0 < \alpha/w, \beta/w, \gamma/w \)
- Pixel is inside, but behind eye \((w \text{ negative})\) if \(0 > \alpha/w, \beta/w, \gamma/w \)
- Intuitively, test if pixel in double pyramid

![Diagram showing pixel coordinates and test conditions]
Pixel inside/outside test

- **Trick**
 - Evaluate edge equations using pixel coordinates \((x/w,y/w)\)
 - Result we get is \(\alpha/w, \beta/w, \gamma/w\)
 - Can still determine inside outside based on signs of \(\alpha/w, \beta/w, \gamma/w\)

- **Main benefits**
 - Division by \(w\) is not actually computed, no division by 0 problem
 - No need for clipping
Summary

• Triangle setup
 - Compute coefficients for edge functions a_α, \ldots using 3x3 matrix inversion

• At each pixel of the image
 - Evaluate $\alpha/w, \beta/w, \gamma/w$ using pixel coordinates $(x/w, y/w)$
 - Perform inside test $0 < \alpha/w, \beta/w, \gamma/w$
Open issues

• Matrix to find edge functions may be singular
 - Triangle has zero area before projection
 - Projected triangle has zero area
 - No need to draw triangle in this case

• Determinant may be negative
 - Backfacing triangle
 - Allows backface culling

• Do we really need to test each pixel on the screen?
Binning

• Try to determine tightly enclosing area for triangle
 - Patent (NVidia) http://www.patentstorm.us/patents/6765575.html
• Simpler but potentially inefficient solution: 3 cases
 1. If all vertices have $w > 0$, project them, find axis aligned bounding box, limit extent to image boundaries
 2. If all vertices have $w < 0$, triangle is behind eye, don‘t draw
 3. Otherwise, don‘t project vertices, test all image pixels (inefficient, but happens rarely)

Axis aligned bounding boxes based on projected vertices
Improvement

- If block of $n \times n$ pixels is outside triangle, discard whole block, no need to test individual pixels

- Conservative test
 - Never discard a block that intersects the triangle
 - May still test pixels of some blocks that are outside triangle, but most of them are discarded

- How?

4 x 4 Blocks
Further improvement

• Can have hierarchy of blocks, usually two levels

• Find right size of blocks for best performance (experimentally)
 - Fixed number of pixels per block, e.g., 4x4 pixels
Where is the center of a pixel?

- Depends on conventions
- With our viewport transformation from last lecture
 - 4 x 3 pixels \iff viewport coordinates are in $[0...4] \times [0...3]$
 - Center of lower left pixel is 0.5, 0.5
 - Center of upper right pixel is 3.5, 2.5
Shared edges

- Each pixel needs to be rasterized exactly once
- Result image is independent of drawing order
- Rule: If pixel center exactly touches an edge or vertex
 - Fill pixel only if triangle extends to the right
Implementation optimizations

- Performance of rasterizer is crucial, since it's "inner loop" of renderer

- CPU: performance optimizations
 - Integer arithmetic
 - Incremental calculations
 - Multi-threading
 - Vector operations (SSE instructions)
 - Use C/C++ or assembler

- GPU: hardwired!
Drawing triangles

- Homogeneous rasterization
- Texture mapping
- Perspective correct interpolation
- Visibility
Large triangles

Pros
- Often ok for simple geometry
- Fast to render

Cons
- Per vertex colors look bad
- Need more interesting surfaces
 - Detailed color variation, small scale bumps, roughness
- Ideas?
Texture mapping

- Glue textures (images) onto surfaces
- Same triangles, much more interesting appearance
- Think of colors as reflectance coefficients
 - How much light is reflected for each color
 - More later in course
Creating textures

- Photographs
- Paint directly on surfaces using modeling program
- Stored as image files

Images by Paul Debevec

Texture painting in Maya
Texture mapping

- Goal: assign locations in texture image to locations on 3D geometry

- Introduce **texture space**
 - Texture pixels (texels) have texture coordinates \((u,v)\)

- Common convention
 - Bottom left corner of texture is \((u,v) = (0,0)\)
 - Top right corner is \((u,v) = (1,1)\)
 - Requires scaling of \((u,v)\) to access actual texture pixels stored in 2D array
Texture mapping

- Store texture coordinates at each triangle vertex

Triangle (in any space before projection)
Texture mapping

- Each point on triangle has barycentric coordinates with $0 < \alpha, \beta, \gamma$, $\alpha + \beta + \gamma = 1$

- Use barycentric coordinates to interpolate texture coordinates

$\alpha \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} + \beta \begin{bmatrix} 0.65 \\ 0.75 \end{bmatrix} + \gamma \begin{bmatrix} 0.4 \\ 0.475 \end{bmatrix}$

$v_1 = (0.65, 0.75)$
$v_0 = (0.6, 0.4)$
$v_2 = (0.4, 0.45)$

Triangle (in any space before projection)
Texture mapping

- Each point on triangle has corresponding point in texture
- Texture is “glued” on triangle

Triangle (in any space before projection)
Rendering

• Given
 - Texture coordinates at each vertex
 - Texture image
• At each pixel, interpolate texture coordinates
• Look up corresponding texel
• Paint current pixel with texel color
• All computations on GPU
Texture look-up

- Given interpolated texture coordinates \((u, v)\) at current pixel

- Closest four texels in texture space are at \((u_0, v_0), (u_1, v_0), (u_1, v_0), (u_1, v_1)\)

- How to compute color of pixel?
Nearest-neighbor interpolation

- Use color of closest texel

- Simple, but low quality
1. Linear interpolation horizontally

\[w_u = \frac{u - u_0}{u_1 - u_0} \]

\[c_b = tex(u_0, v_0)(1 - w_u) + tex(u_1, v_0)w_u \]

\[c_t = tex(u_0, v_1)(1 - w_u) + tex(u_1, v_1)w_u \]
Bilinear interpolation

1. Linear interpolation horizontally

\[w_u = \frac{u - u_0}{u_1 - u_0} \]

\[c_b = tex(u_0, v_0)(1 - w_u) + tex(u_1, v_0)w_u \]

\[c_t = tex(u_0, v_1)(1 - w_u) + tex(u_1, v_1)w_u \]

2. Linear interpolation vertically

\[w_v = \frac{v - v_0}{v_1 - v_0} \]

\[c = c_b(1 - w_v) + c_t w_v \]
Texture mapping

Scene data

- Vertex processing, modeling and viewing transformation
 - Projection
 - Rasterization, fragment processing, visibility
 - Image

Fragment processing includes texture mapping (and shading, later in course)
Today

Drawing triangles

- Homogeneous rasterization
- Texture mapping
- Perspective correct interpolation
- Visibility
Attribute interpolation

- Rasterizer needs to
 - Determine inside/outside test for each pixel
 - Fill in triangle by interpolating vertex attributes
 - For example \((u,v)\) texture coordinates, color, etc.

![Triangle before projection](image)

Interpolated texture coordinate

\[u(x, y, w) \]

\[u_0, (x_0, y_0, w_0) \]

\[u_1, (x_1, y_1, w_1) \]

\[u_2, (x_2, y_2, w_2) \]
Observation

- Linear interpolation in image coordinates does not correspond to linear interpolation in camera space.

- “Equal step size on image plane does not correspond to equal step size on object”

- **Perspective correct interpolation**: “translate step size in image plane correctly to step size on object”
Linear interpolation of texture coordinates on image plane

Perspective correct interpolation
1. Find **linear function** $u(x,y,w)$ in 2D homogeneous space that interpolates vertex attribute u

2. Project to pixel coordinates, find function of pixel coordinates $u(x/w,y/w)$
Step 1: 2D homogeneous interp.

- Linear function for vertex attribute \(u \)

\[
u(x, y, w) = a_u x + b_u y + c_u w
\]

- Interpolation constraints (as for edge fncts.)

\[
\begin{bmatrix}
x_0 & y_0 & w_0 \\
x_1 & y_1 & w_1 \\
x_2 & y_2 & w_2
\end{bmatrix}
\begin{bmatrix}
a_u \\
b_u \\
c_u
\end{bmatrix}
=
\begin{bmatrix}
u_0 \\
u_1 \\
u_2
\end{bmatrix}
\]

Unknown coefficients \(u \) texture coordinate at vertices

\[a_u x_2 + b_u y_2 + c_u w_2 = u_2\]
Step 1: 2D homogeneous interp.

- Linear function for vertex attribute u

$$u(x, y, w) = a_u x + b_u y + c_u w$$

Given vertex coordinates

$$\begin{bmatrix} x_0 & y_0 & w_0 \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix} \begin{bmatrix} a_u \\ b_u \\ c_u \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

Unknown

- Same matrix inversion to find coefficients

$$\begin{bmatrix} a_u \\ b_u \\ c_u \end{bmatrix} = \begin{bmatrix} x_0 & y_0 & w_0 \\ x_1 & y_1 & w_1 \\ x_2 & y_2 & w_2 \end{bmatrix}^{-1} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}$$

Given texture coordinates
Step 2: projection to pixel coord.

- Homogeneous division yields function of pixel coordinates
 \[u/w = a_u(x/w) + b_u(y/w) + c_u \]

- **But:** we need \(u \), not \(u/w \) as function of pixels \(x/w, y/w \)

- **Trick:** get coefficients of constant function
 \[1 \equiv a_1 x + b_1 y + c_1 w \]

- Homogeneous division
 \[1/w = a_1(x/w) + b_1(y/w) + c_1 \]
Step 2: projection to pixel coord.

- Finally

\[u(x/w, y/w) = \frac{u/w}{1/w} \]
Summary

• Triangle setup
 - Invert 3x3 matrix
 - Compute coefficients for edge functions a_α, \ldots, attribute functions a_u, \ldots, constant fnct. a_1, \ldots
 - Requires 3x3 matrix-vector multiplication each

• At each pixel $(x/w, y/w)$
 - Linearly interpolate $1/w$
 - For each attribute function
 • Linearly interpolate $function/w$
 • Divide $(function/w)/(1/w)$
Today

Drawing triangles

- Homogeneous rasterization
- Texture mapping
- Perspective correct interpolation
- Visibility
Visibility

- At each pixel, need to determine which triangle is visible
Painter’s algorithm

http://en.wikipedia.org/wiki/Painter's_algorithm

- Paint from back to front
- Every new pixel always paints over previous pixel
- Need to sort geometry according to depth
- May need to split triangles if they intersect

- Old style, before memory became cheap
Z-buffering

• Store “depth” at each pixel
 - Store $1/w$ because we compute it for rasterization already

• Depth test
 - During rasterization, compare stored value to new value
 - Update pixel only if new $1/w$ value is larger

 \[
 \text{setpixel}(\text{int } x, \text{ int } y, \text{ color } c, \text{ float } w) \\
 \text{if}((1/w)>\text{zbuffer}(x,y)) \text{ then} \\
 \quad \text{zbuffer}(x,y) = (1/w) \\
 \quad \text{color}(x,y) = c
 \]

• In graphics hardware, z-buffer is dedicated memory reserved for GPU (graphics memory)

• Depth test is performed by GPU
Next time

- Color