Computergrafik

Matthias Zwicker
Universität Bern
Herbst 2016
Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation
Rendering pipeline

Scene data → Rendering pipeline → Image

- Hardware & software that draws 3D scenes on the screen
- Access to hardware through low-level 3D API (DirectX, OpenGL)
 - jogl is a Java binding to OpenGL, used in our projects http://jogamp.org/jogl/www/
- All scene data flows through the pipeline at least once for each frame (i.e., image)
Rendering pipeline

- Rendering pipeline implements object order algorithm
 - Loop over all objects
 - Draw triangles one by one (rasterization)

- Alternatives?

- Advantages, disadvantages?
Object vs. image order

Object order: loop over all triangles

- **Rasterization** type algorithms
- Desirable memory access pattern ("streaming" scene data one-by-one, data locality, avoid random scene access)

- Suitable for **real time rendering** (OpenGL, DirectX)
- Popular for production rendering (Pixar RenderMan), where scenes often do not fit in RAM
- **No global illumination** (light transport simulation) with purely object order algorithm
Object vs. image order

Image order: loop over all pixels

- Ray tracing type algorithms
- Undesirable memory access pattern (random scene access)
- Requires sophisticated data structures for fast scene access
- Full global illumination possible
- Most popular for photo-realistic image synthesis
Rendering engine

- Additional software layer ("middle-ware") encapsulating low-level API (OpenGL, DirectX, ...)
- Additional functionality (file I/O, scene management, ...)
- Layered software architecture common in industry
 - Game engines
 http://en.wikipedia.org/wiki/Game_engine
Rendering pipeline stages (simplified)

Scene data

• Geometry
 - Vertices and how they are connected
 - Triangles, lines, point sprites, triangle strips
 - Attributes such as color

Vertex processing, modeling and viewing transformation

• Specified in object coordinates

Projection

• Processed by the rendering pipeline one-by-one

Rasterization, fragment processing, visibility

Image
Rendering pipeline stages (simplified)

1. Transform object to camera coordinates
 \[p_{\text{camera}} = C^{-1} M p_{\text{object}} \]
 - MODELVIEW matrix

2. Additional processing on per-vertex basis
 - Shading, i.e., computing per-vertex colors
 - Deformation, animation
 - Etc.
Rendering pipeline stages (simplified)

Scene data

- Vertex processing, modeling and viewing transformation
 - Projection
 - Rasterization, fragment processing, visibility

- Project 3D vertices to 2D image positions
- This lecture
Rendering pipeline stages (simplified)

Scene data

- Vertex processing, modeling and viewing transformation
- Projection
- Rasterization, fragment processing, visibility
- Draw primitives pixel by pixel on 2D image (triangles, lines, point sprites, etc.)
- Compute per fragment (i.e., pixel) color
- Determine what is visible
- Next lecture
Rendering pipeline stages (simplified)

- Scene data
 - Vertex processing, modeling and viewing transformation
 - Projection
 - Rasterization, fragment processing, visibility
 - Image

- Grid (2D array) of RGB pixel colors
Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation
Object, world, camera coords.

$p' = C^{-1}Mp$
Objects in camera coordinates

- We have things lined up the way we like them on screen
 - x to the right
 - y up
 - $-z$ going into the screen
- Objects to look at are in front of us, i.e. have negative z values

- But objects are still in 3D
- Today: how to project them into 2D
Projections

• Given 3D points (vertices) in camera coordinates, determine corresponding 2D image coordinates

Orthographic projection

• Simply ignore z-coordinate

• Use camera space xy coordinates as image coordinates

• What we want, or not?
Orthographic projection

- Project points to x-y plane along parallel lines

- Graphical illustrations, architecture
Perspective projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (*pinhole camera*)
- Things farther away seem smaller

- Discovery/formalization attributed to Filippo Brunelleschi in the early 1400’s
Perspective projection

- Project along rays that converge in center of projection
Perspective projection

Parallel lines no longer parallel, converge at one point

Earliest example
La Trinitá (1427) by Masaccio

Perspective projection

The math: simplified case

\[y' = \frac{y_1 d}{z_1} \]

\[z' = d \]

Center of projection

Image plane
Perspective projection

The math: simplified case

\[y' = \frac{y_1 d}{z_1} \]

\[z' = d \]

• Can express this using **homogeneous coordinates, 4x4 matrices**
Perspective projection

The math: simplified case

\[y' = \frac{y_1 d}{z_1} \]
\[z' = d \]

Projection matrix

| 1 0 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 1/d 0 |

Homogeneous coord. \(\neq 1 \)

Homogeneous division
Perspective projection

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z/d \\
1 \\
\end{bmatrix}
\begin{bmatrix}
xd/z \\
yd/z \\
d \\
1 \\
\end{bmatrix}
\]

Projection matrix

Homogeneous division

- Using projection matrix and homogeneous division seems more complicated than just multiplying all coordinates by \(d/z\), so why do it?

- Will allow us to
 - handle different types of projections in a unified way
 - define arbitrary view volumes
Detour: projective space

http://en.wikipedia.org/wiki/Projective_space

- **Projective space**: the space of one-dimensional vector subspaces of a given vector space
 - Elements of projective spaces are 1D vector subspaces
 - Each element of 1D subspace is *equivalent* (represents same element of projective space)
Intuitive example

- All points that lie on one projection line (i.e., a "line-of-sight", intersecting with center of projection of camera) are projected onto same image point
- All 3D points on one projection line are equivalent
- Projection lines form 2D projective space, or 2D projective plane
3D Projective space

- Projective space \mathbb{P}^3 represented using \mathbb{R}^4 and homogeneous coordinates
 - Each point along 4D ray is equivalent to same 3D point at $w=1$

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} \sim \begin{bmatrix}
 \lambda x \\
 \lambda y \\
 \lambda z \\
 \lambda w
\end{bmatrix} \sim \begin{bmatrix}
 x/w \\
 y/w \\
 z/w \\
 1
\end{bmatrix}
\]

1D vector subspace, arbitrary scalar value λ

Equivalent element, for any λ
3D Projective space

- **Projective mapping (transformation):** any non-singular linear mapping on homogeneous coordinates, for example,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\sim
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
xd/z \\
yd/z \\
d \\
1
\end{bmatrix}
\]

- **Generalization of affine mappings**
 - 4th row of matrix is arbitrary (not restricted to \([0 0 0 1]\))

- **Projective mappings are collineations**
 - Preserve straight lines, but not parallel lines

- **Much more theory**
 - http://www.math.toronto.edu/mathnet/questionCorner/projective.html
3D Projective space

- \mathbb{P}^3 can be interpreted as consisting of \mathbb{R}^3 and its „points at infinity“

- Points are said to be at infinity if homogeneous coordinate $w = 0$
 - Represented by direction vector
 - Can actually perform computations with points at infinity (not possible with ∞ sign!)
Points at infinity

Point at infinity, direction vector

(2,1,0,0)
• Do parallel lines intersect at infinity? In projective geometry, yes.

http://www.math.toronto.edu/mathnet/questionCorner/infinity.html
2D line intersection

- Two line equations

\[a_0 x' + b_0 y' + c_0 = 0 \]
\[a_1 x' + b_1 y' + c_1 = 0 \]

- Intersection: solve two equations in two unknowns

\[x_i' = \begin{vmatrix} -c_0 & b_0 \\ -c_1 & b_1 \end{vmatrix} / \begin{vmatrix} a_0 & b_0 \\ a_1 & b_1 \end{vmatrix} \]
\[y_i' = \begin{vmatrix} a_0 & -c_0 \\ a_1 & -c_1 \end{vmatrix} / \begin{vmatrix} a_0 & b_0 \\ a_1 & b_1 \end{vmatrix} \]

- If lines are parallel: division by zero
2D line intersection

• Note: can multiply each of the equations by arbitrary scalar number \(w \), still describes the same line!

\[
a_0 x' + b_0 y' + c_0 = 0 \\
\]

\[
a_0 w x' + b_0 w y' + c_0 w = 0 \\
\]

• Using **homogeneous coordinates**

\[
x = w x', y = w y', w \\
\]

\[
a_0 x + b_0 y + c_0 w = 0 \\
\]
Using homogeneous coordinates

- **Line equations**

\[
\begin{align*}
a_0x + b_0y + wc_0 &= 0 \\
a_1x + b_1y + wc_1 &= 0
\end{align*}
\]

Or equivalent:

\[
\begin{bmatrix}
a_0 & b_0 & c_0 \\
a_1 & b_1 & c_1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
w
\end{bmatrix} = 0
\]
Using homogeneous coordinates

- **Line equations**

 \[
 a_0 x + b_0 y + wc_0 = 0 \\
 a_1 x + b_1 y + wc_1 = 0
 \]

 Or equivalent:

 \[
 \begin{bmatrix}
 a_0 & b_0 & c_0 \\
 a_1 & b_1 & c_1 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 w
 \end{bmatrix} = 0
 \]

- **Intersection:** any scalar multiple of

 \[
 \begin{bmatrix}
 x_i \\
 y_i \\
 w_i
 \end{bmatrix}
 =
 \begin{bmatrix}
 a_0 \\
 b_0 \\
 c_0
 \end{bmatrix}
 \times
 \begin{bmatrix}
 a_1 \\
 b_1 \\
 c_1
 \end{bmatrix}
 \]

- **Lines not parallel:** intersection

 \[
 \begin{bmatrix}
 x_i/w_i \\
 y_i/w_i \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 x'_i \\
 y'_i \\
 1
 \end{bmatrix}
 \]

- **Lines parallel:** \(w_i = 0 \), intersection at **infinity!**
Projective space

- [xyzw] homogeneous coordinates
- includes points at infinity \((w=0)\)
- projective mappings (perspective projection)

Vector space
- [xyz] coordinates
- represents vectors
- linear mappings (rotation around origin, scaling, shear)

Affine space
- [xyz1], [xyz0] homogeneous coords.
- distinguishes points and vectors
- affine mappings (translation)
In practice

- Use 4x4 homogeneous matrices like other 4x4 matrices
- Modeling & viewing transformations are affine mappings
 - points keep $w=1$
 - no need to divide by w when doing modeling operations or transforming into camera space
- 3D-to-2D projection is a projective transform
 - Resulting w coordinate not always 1
- Divide by w (perspective division, homogeneous division) after multiplying with projection matrix
 - OpenGL rendering pipeline (graphics hardware) does this automatically
Realistic image formation

• More than perspective projection

• Lens distortions, artifacts

Barrel distortion
Realistic image formation

• More than perspective projection

• Lens distortions, artifacts

Focus, depth of field

Fish-eye lens

Realistic image formation

Chromatic aberration

Motion blur

- Often too complicated for hardware rendering pipeline/interactive rendering

http://en.wikipedia.org/wiki/Chromatic_aberration

http://en.wikipedia.org/wiki/Motion_blur
Today

• Rendering pipeline
• Projections
• View volumes, clipping
• Viewport transformation
View volumes

- View volume is **3D volume seen by camera**

Perspective view volume
Orthographic view volume

Camera coordinates

World coordinates

World coordinates
Perspective view volume

General view volume

- Defined by 6 parameters, in camera coordinates
 - Left, right, top, bottom boundaries
 - Near, far clipping planes
- Clipping planes to avoid numerical problems
 - Divide by zero
 - Low precision for distant objects
- Often symmetric, i.e., left=-right, top=-bottom
Perspective view volume

Symmetric view volume

• Only 4 parameters
 - Vertical field of view (FOV)
 - Image aspect ratio (width/height)
 - Near, far clipping planes

\[
\text{aspect ratio} = \frac{\text{right} - \text{left}}{\text{top} - \text{bottom}} = \frac{\text{right}}{\text{top}}
\]

\[
\tan\left(\frac{\text{FOV}}{2}\right) = \frac{\text{top}}{\text{near}}
\]
Orthographic view volume

- Parametrized by 6 parameters
 - Right, left, top, bottom, near, far
- If symmetric
 - Width, height, near, far
Clipping

- Need to identify objects outside view volume
 - Avoid division by zero
 - Efficiency, don’t draw objects outside view volume
- Performed by OpenGL rendering pipeline
- Clipping always to canonic view volume
 - Cube [-1..1]x[-1..1]x[-1..1] centered at origin
- Need to transform desired view frustum to canonic view frustum
Canonic view volume

- Projection matrix is set such that
 - User defined view volume is transformed into canonic view volume, i.e., unit cube \([-1,1] \times [-1,1] \times [-1,1]\)

 “Multiplying vertices of view volume by projection matrix and performing homogeneous divide yields canonic view volume, i.e., cube \([-1,1] \times [-1,1] \times [-1,1]\)“

- Perspective and orthographic projection are treated exactly the same way
Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation (later)
Perspective projection matrix

- General view frustum

\[
P_{\text{persp}}(\text{left}, \text{right}, \text{top}, \text{bottom}, \text{near}, \text{far}) =
\begin{bmatrix}
\frac{2\text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} + \text{left}}{\text{top} + \text{bottom}} & 0 \\
0 & \frac{2\text{near}}{\text{top} - \text{bottom}} & \frac{\text{top} - \text{bottom}}{\text{far} + \text{near}} & 0 \\
0 & 0 & \frac{-\text{far} - \text{near}}{\text{far} - \text{near}} & 0 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Perspective projection matrix

- Compare to simple projection matrix from before

Simple projection

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1/d & 0
\end{bmatrix}
\]

General view frustum

\[
\begin{bmatrix}
\frac{2\text{near}}{\text{right–left}} & 0 & 0 & \frac{\text{right}+\text{left}}{\text{top–bottom}} \\
0 & \frac{2\text{near}}{\text{top–bottom}} & 0 & 0 \\
0 & 0 & \frac{-(\text{far}+\text{near})}{\text{far–near}} & 0 \\
0 & 0 & \frac{\text{far}+\text{near}}{\text{far–near}} & -1
\end{bmatrix}
\]
Perspective projection matrix

- Symmetric view frustum with field of view, aspect ratio, near and far clip planes

\[
P_{\text{persp}}(\text{FOV}, \text{aspect}, \text{near}, \text{far}) =
\begin{bmatrix}
\frac{1}{\text{aspect} \cdot \tan(\text{FOV} / 2)} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\tan(\text{FOV} / 2)} & 0 & 0 & 0 \\
0 & 0 & \frac{\text{near} + \text{far}}{\text{near} - \text{far}} & \frac{2 \cdot \text{near} \cdot \text{far}}{\text{near} - \text{far}} & 0 \\
0 & 0 & \frac{\text{near} - \text{far}}{\text{near} - \text{far}} & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Orthographic projection matrix

$P_{ortho}(right, left, top, bottom, near, far) =$
\[
\begin{bmatrix}
\frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\
0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\
0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

$P_{ortho}(width, height, near, far) =$
\[
\begin{bmatrix}
\frac{2}{width} & 0 & 0 & 0 \\
0 & \frac{2}{height} & 0 & 0 \\
0 & 0 & \frac{2}{far - near} & \frac{far + near}{far - near} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

$w = 1$ after mult. with orthographic projection matrix
Today

- Rendering pipeline
- Projections
- View volumes
- Viewport transformation
Viewport transformation

- After applying projection matrix, image points are in normalized view coordinates
 - Per definition range \([-1..1] \times [-1..1]\)
- Map points to image (i.e., pixel) coordinates
 - User defined range \([x_0 \ldots x_1] \times [y_0 \ldots y_1]\)
 - E.g., position of rendering window on screen
Viewport transformation

- Scale and translation

\[
D(x_0, x_1, y_0, y_1) = \begin{bmatrix}
\frac{(x_1 - x_0)}{2} & 0 & 0 & \frac{(x_0 + x_1)}{2} \\
0 & \frac{(y_1 - y_0)}{2} & 0 & \frac{(y_0 + y_1)}{2} \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix C_p, viewport matrix D

\[p' = DPC^{-1}M|p \]

Object space
The complete transform

• Mapping a 3D point in object coordinates to pixel coordinates

• Object-to-world matrix \mathbf{M}, camera matrix \mathbf{C}, projection matrix \mathbf{C}, viewport matrix \mathbf{D}

$$p' = DPC^{-1}Mp$$

Object space

World space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates

- Object-to-world matrix M, camera matrix C, projection matrix C, viewport matrix D

\[
p' = DPCC^{-1}Mp
\]

- Object space
- World space
- Camera space
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix M, camera matrix C, projection matrix C, viewport matrix D

$$p' = DPC^{-1}Mp$$

Object space
World space
Camera space
Canonic view volume
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix M, camera matrix C, projection matrix C, viewport matrix D

$$p' = DPC^{-1}Mp$$

<table>
<thead>
<tr>
<th>Object space</th>
<th>World space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera space</td>
<td>Canonic view volume</td>
</tr>
<tr>
<td>Image space</td>
<td></td>
</tr>
</tbody>
</table>
The complete transform

- Mapping a 3D point in object coordinates to pixel coordinates
- Object-to-world matrix M, camera matrix C, projection matrix C, viewport matrix D

$$p' = DPC^{-1}Mp$$

$$p' = \begin{bmatrix} \frac{x'}{w'} \\ \frac{y'}{w'} \\ z' \\ w' \end{bmatrix}$$

Pixel coordinates $\frac{x'}{w'}, \frac{y'}{w'}$
OpenGL details

- Object-to-world matrix M, camera matrix C, projection matrix P, viewport matrix D

$$p' = DPC^{-1}Mp$$

- OpenGL rendering pipeline performs these matrix multiplications in vertex shader program
 - More on shader programs later in class
- User just specifies the model-view and projection matrices
- See Java code `jrtr.GLRenderContext.draw` and default vertex shader in file `default.vert`
OpenGL details

- Object-to-world matrix \mathbf{M}, camera matrix \mathbf{C}, projection matrix \mathbf{P}, viewport matrix \mathbf{D}

 Model-view matrix

 \[p' = \mathbf{DPC}^{-1}\mathbf{Mp} \]

 Projection matrix

- Exception: viewport matrix, \mathbf{D}
 - Specified implicitly via `glViewport()`
 - No direct access, not used in shader program
Coming up

Next lecture
• Drawing (rasterization)
• Visibility (z-buffering)

Exercise session
• Project 2, interactive viewing