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Abstract— Place recognition plays an important role in multi-
robot collaborative perception, such as aerial-ground search and
rescue, in order to identify the same place they have visited.
Recently, approaches based on semantics showed the promising
performance to address cross-view and cross-modal challenges
in place recognition, which can be further categorized as graph-
based and geometric-based methods. However, both methods
have shortcomings, including ignoring geometric cues and af-
fecting by large non-overlapped regions between observations.
In this paper, we introduce a novel approach that integrates
semantic graph matching and distance fields (DF) matching for
cross-view and cross-modal place recognition. Our method uses
a graph representation to encode visual-spatial cues of semantics
and uses a set of class-wise DFs to encode geometric cues of a
scene. Then, we formulate place recognition as a two-step match-
ing problem. We first perform semantic graph matching to iden-
tify the correspondence of semantic objects. Then, we estimate
the overlapped regions based on the identified correspondences
and further align these regions to compute their geometric-
based DF similarity. Finally, we integrate graph-based similarity
and geometry-based DF similarity to match places. We evaluate
our approach over two public benchmark datasets, including
KITTI and AirSim. Compared with the previous methods, our
approach achieves around 10% improvement in ground-ground
place recognition in KITTI and 35% improvement in aerial-
ground place recognition in AirSim.

I. INTRODUCTION

Multi-robot systems have been widely studied over the
past decades due to their scalability [1], parallelism [2] and
reliability to failures [3], [4]. To enable efficient multi-robot
collaboration, collaborative perception is an essential compo-
nent to build a shared situational awareness of the surrounding
environments by integrating individual perceptions. Collab-
orative perception has various real-world applications, such
as collaborative multi-simultaneous localization and mapping
(CSLAM) [5], [6], connected autonomous driving [7], [8],
multi-robot delivery [9] and collaboratively search and rescue
[10], [11].

Place recognition is a fundamental capability in multi-robot
collaborative perception, with the goal of deciding if two
robots are observing the same place. As shown in Figure
1, when unmanned ground vehicles (UGVs) and unmanned
aerial vehicles (UAVs) collaboratively search an area, they
need to recognize if they are observing the same place given
their own observations before performing further operations,
such as merging local maps, collaborative tracking and rea-
soning. However, place recognition in multi-robot systems
is very challenging, as the multi-robot observations can be
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Fig. 1. An example scenario for place recognition in a robot team consisting
of ground and aerial robots with different visual sensing capabilities. When
three robots collaboratively search an area, before they merge their local
maps (graph-based maps), they need to recognize the same place given their
observations acquired by different sensors.

acquired by different sensors and the observations can appear
quite different due to large perspective changes.

Given the importance of place recognition, a variety of
studies have been developed. Traditional methods typically
learn representations based on various sensing information,
such as RGB images [12], [13] or LiDAR points [14], [15].
However, when a pair of observations have large perspective
changes or are acquired from different sensors, these methods
will lose effect. Recently, semantic-based approaches demon-
strate promising performance to deal with perspective changes
[16], [17] and sensing modality changes [18], [19]. They can
be further divided into two groups, including graph-based
methods based on the topology of semantic objects [16], [18],
[17] and geometric-based methods based on fine geometry of
semantics (e.g., shape, contour, density) [19], [20]. However,
these methods still face several shortcomings. First, graph-
based approaches simply abstract semantic objects as graph
nodes, which ignore the important geometric cues, such as
shape. Second, geometric-based approaches can not well ad-
dress large non-overlapped regions due to perspective and
scale changes.

In this work, we represent an observation as a semantic
graph and a set of class-wise distance fields (DFs), thus en-
coding visual, spatial, and geometric cues of the observation.
In the semantic graph, nodes denote objects with semantic
attributes and edges denote the spatial distance between a pair
of objects. In a DF of a specific class, each element is labeled
with the distance to the closest pixel/point of that class. Given
the graph representations, we perform a novel deep semantic
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graph matching approach based on the geometric transformer
to identify the correspondences of objects. The identified cor-
respondences are further used to estimate the overlapped re-
gions between a pair of DFs. Given the estimated overlapped
region, we align two DFs by estimating their relative rotation
(yaw angle) and compute the geometric similarity based on
the aligned DFs. The final place recognition is performed by
integrating graph-based similarity and geometric-based DF
similarity.

The key contribution of this work is the introduction of
visual, spatial, and geometric preserved place recognition for
both ground-ground and aerial-ground multi-robot systems
with different sensing capabilities. Specifically,

• We propose a novel representation that consistently rep-
resents an observation as a semantic graph and a set of
class-wise DFs, which encodes visual, spatial, and geo-
metric cues to improve expressiveness for place recog-
nition. Our representations can be used in a multi-robot
team with the same sensing modality or with different
modalities.

• We propose an effective place recognition approach that
integrates semantic graph matching and DF matching in
a unified way. Our approach is able to not only perform
ground-ground place recognition but also aerial-ground
place recognition with large perspective changes.

The remainder of the paper is organized as follows. In Sec-
tion II, we review existing methods for place recognition.
In Section III, we introduce the proposed visual, spatial and
geometric preserved place recognition approach. In Section
IV, we present and discuss our experimental results in the
scenarios of ground-ground and aerial-ground cases in KITTI
and AirSim. Finally, we conclude the paper in Section V.

II. RELATED WORK

Traditional methods for place recognition can be divided
into two groups, including keypoint-based and region-based
methods. The first group of methods focuses on using lo-
cal features of key points in observations to perform place
recognition, such as SIFT features [21], visual-spatial features
[13], and super-point features of point clouds [22], [23].
The second group of methods focuses on using region-based
holistic features to represent a scene, such as landmark-based
graph [24], VLAD descriptor [25], HOG [26], GIST [27] and
multi-modal VLAD features [28]. However, these methods
can not work well in scenarios with large perspective changes,
in which visual appearances of the same scene look quite
different [29]. In addition, these methods can not work when a
pair of observations are acquired by different sensors mounted
on two robots.

To deal with the large-perspective challenge, some meth-
ods are proposed to learn view-invariant features based on
Siamese network architectures [30], [31], [32], which are able
to perform aerial-ground place recognition in geo-localization
between ground-view observations and satellite maps. How-
ever, these methods can only work for specific scenarios with
aerial-ground views, and they are not suitable to be deployed
directly for ground-ground views [33].

Recently, several methods aim to study semantic represen-
tations and matching for cross-view and cross-modal place
recognition. We further divide these methods into two cate-
gories, including graph-based and geometric-based methods.
First, graph-based methods perform place recognition based
on semantic graph representations, such as using semantic
graph matching [16], [34], semantic histogram [17], bag of
words [35], maximum clique [33], and semantic random walk
[18]. Second, geometric-based methods focus on using fine
geometric information of semantic objects for place recogni-
tion, such as shape, density, and contour of semantics. The
existing methods include using truncated distance field (TDF)
matching with manually defined scale factors to perform
cross-view localization between RGB and LiDAR observa-
tions [19], learning view-invariant semantic scan representa-
tions [20], [36] and registering road shapes [37].

Even though semantic-based methods achieve promising
performance, there are several shortcomings that have not
been well addressed yet. First, graph-based representations
are constructed by abstracting an object as a graph node,
which ignores important geometric cues of semantics. Sec-
ond, even though geometric-based approaches can well pre-
serve geometric cues, they can not deal with large non-
overlapped regions caused by large perspective and scale
changes, which leads to strict limitations, such as requiring
close viewpoints [20], manually selecting scale factors [19],
or traveling a long distance to generate a unique road pattern
[37] or collect enough number of static vehicles [33]. Our
approach that integrates graph-based and geometric-based
matching in a unified way can address these shortcomings for
place recognition in multi-robot collaborative perception.

III. APPROACH

Notation. Matrices are denoted as boldface capital letters,
e.g., M = {Mi,j} ∈ Rn×m. Mi,j denotes the element in
the i-th row and the j-th column of M. Mi:j denotes all
the elements from the i-th column to the j-th column of M.
Vectors are denoted as boldface lowercase letters v ∈ Rn, and
scalars are denoted as lowercase letters.

A. Problem Formulation

We consider three kinds of observations in this paper,
including RGB images acquired by UAVs, RGB-D images,
or LiDAR points acquired by UGVs, which are common
sensor configurations in multi-robot teams. Our approach rep-
resents each observation consistently with a semantic graph
representation and a set of class-wise distance field (DF)
representations, as shown in Figure 2.

Specifically, given an observation with semantic labels
obtained via semantic segmentation algorithms [38], [39], we
first represent a place with a semantic graph G = (P, E ,S) to
encode the visual and spatial cues of the place. The node set
P = {pi, i = 1, . . . , n} represents the centroid locations of
all semantic objects, with pi encoding the centroid location
of the i-th semantic object. We also define a semantic set
S = {si, i = 1, . . . , n} where si ∈ Rm is the one-hot
feature vector to encode the visual semantics of objects in
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P and m denotes the number of semantic classes. The edge
set E = {ei,j , i, j = 1, 2, . . . , n, i ̸= j} represents the
connection between a pair of nodes, where ei,j = 1 represents
the connection between the i-th node pi ∈ P and the j-th
node pj ∈ P .

To encode geometric cues of observations, we further rep-
resent a place with a class-wise DF set F = {Fi}m, i =
1, 2, . . . ,m}, where Fi = {fj,k}l×w denotes a DF belonging
to the i-th class. Specifically, we first project all the observa-
tions to a top-down view and convert them from the Cartesian
coordinate to the polar coordinate, which is computed as
follows:

r =
√
x2 + y2 (1)

ρ = arctan(
y

x
) (2)

where [x, y] denotes the Cartesian coordinates and [r, ρ] de-
notes the polar coordinates. Given the polarized observations,
we compute DF as follows:

fj,k = argmin
j′,k′

||j − j′, k − k′||2 if ϕ(Ij′,k′) = i (3)

where Ij′,k′ denotes the pixel/point at coordinate j, k in the
the top-down projected views. ϕ(Ij′,k′) denotes the semantic
label of the pixel/point and fj,k denotes the distance from the
coordinate j, k to the closest point of the i-th class.

In place recognition, observations observed by a pair of
robots can be represented as M = {G,F} and M′ =
{G′,F ′} respectively. We formulate place recognition as a
two-step matching problem, including the semantic graph
matching with graphs G and G′, as well as the DF matching
with F and F ′. The objective is to compute a similarity score
to determine whether these observations are recorded at the
same place.

B. Deep Semantic Graph Matching

We first formulate place recognition as a graph matching
problem with graphs G and G′. Given a graph representation
G, we encode visual and spatial cues of each object as H =
{hi} = ψ(G), where hi is the embedding vector of the i-th
object and ψ is the geometric transformer network [40]. hi

explicitly encodes not only the i-th object’s visual semantic
cue but also the spatial cues, including distance and angle
information. Formally, ψ is defined as :

ql
i = Wl

qh
l
i, kl

i = Wl
kh

l
i, vl

i = Wl
vh

l
i (4)

where ql
i, kl

i and vl
i denote query, key and value at the

l-th layer, Wl
q,W

l
k,W

l
v denote their associating trainable

weights. hl
i denotes the visual semantic embedding vector of

the i-th object, where h0
i = s0i . The spatial information of

objects is encoded as

rli,j = dl
i,jW

l
d +max

k
{ali,j,kWl

a} (5)

where rli,j denotes the spatial embedding of the i-th object
with respect to its j-th neighbor object, dl

i,j denotes the
distance between them, ali,j,k denotes the angle of vertex i
in the triangle constructed by the i-th, j-th and k-th objects.

Fig. 2. Given different observations with semantic labels (first row),
including an RGB image, an RGBD image pair, and a LiDAR point cloud, our
approach represents them consistently with a semantic graph (second row)
and a set of class-wise DFs (fourth row). DFs are generated by projecting
observations to a top-down view and transforming them to polar coordinates
(third row). As ground RGBD observations’ field of view (FOV) is 60◦,
which is smaller than aerial RGB observations 360◦ and ground Lidar
observations 360◦, thus its polarized regions and DFs are much smaller than
the other two’s.

In the self-attention mechanism, we encode visual semantic
and spatial features of objects given the self attention, which
is computed as follows:

αl
i,j = SoftMax

(
(ql

i)
⊤(kl

j +Wl
rri,j)√

cl

)
(6)

where αl
i,j is the self attention from object j to object i at

layer l. To encode spatial relationships of objects, we add the
spatial embedding ri,j into the learning process, where W l

r

denotes its learnable parameter matrix. cl is the dimensions of
ri,j . This attention weight is obtained by comparing the query
with its neighborhood keys and spatial attributes. The final
attention is normalized by the SoftMax function. The object
embedding vector weighted by self-attention is computed as
hl+1
i =

∑
ei,j=1 α

l
i,j(v

l
j).

In the cross-attention mechanism, we further encode visual-
spatial features of potentially matched objects in the other
observation. The cross attention is computed as follows:

βl
i,j = SoftMax

(
(ql

i)
⊤(k

′l
j )√

cl

)
(7)

where βl
i,j is the cross attention from the i-th object in

graph G to the j-th object in graph G′. The object em-
bedding vector weighted by cross attentions is computed as
hl+1
i =

∑
ei,j=1 β

l
i,j(v

′l
j ). The final object embedding vector

is obtained via alternating self-attention and cross-attention
multiple times on the visual-spatial attributes of objects.

Given the object embedding vectors, we compute the simi-
larity between pairs of nodes in the graph G and the graph G′

as follows:
Si,j = exp(−||hi − h

′

j ||2) (8)
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Fig. 3. Overview of our DF matching approach that consists of estimating overlapped regions based on identified correspondences, transforming RGB images
or point clouds to polar coordinates, estimating rotation (yaw angle) between a pair of polarized observations, and computing the DF similarity based on the
aligned observations. [The figures are best viewed in color].

where exp() denotes the exponential operator and S ∈ Rn×n′

represents the similarity between the two graphs with n and
n′ objects respectively. As there are large perceptual noises
and outliers existed in the observations, it is extremely hard
to find one-to-one correspondences between G and G′. Thus,
we relax the one-to-one constraint to one-to-many constraint.
Formally, we identify correspondences via selecting top M
similarities in {Yi,j}n×n′

= topM(S), where Y denotes the
correspondence matrix with Yi,j = 1 denoting the correspon-
dence between the i-th object in G and the j-th object in G′,
otherwise Yi,j = 0. We use the circle loss to train our network
[41], which is defined as:

LG′→G =
∑

p′
i∈P′

log[1 +
∑

pj∈Pp

exp(γ(Di,j − δp)
2) (9)

∑
pk∈Pn

exp(γ(δn −Di,k)
2)] (10)

where P = {Pp,Pn}G denotes the node set in graph G.
Pp denotes the positive nodes that have corresponding nodes
in graph G′. Similarly, Pn denotes the negative nodes that
have no corresponding nodes in graph G′. D = {Di,j}n×n′

denotes the distance matrix with Di,j = ||hi−hj ||2 denoting
the distance between a pair of feature vectors. δp = 0.2
and δn = 1.4 are two hyperparameters, which denote the
positive and negative margins separately. γ = 40 denotes the
scale factor. LG′→G describes the loss given node set P ′ and
P = {Pp,Pn}. Similarly, we can compute the loss LG→G′

given node set P and P ′ = {P ′p,P ′n}. The overall loss is
defined as L = (LG→G′ + LG′→G)/2.

C. DF Matching

We further perform DF matching to encode geometric cues
(e.g., shape, density) for place recognition. One traditional
way is to directly calculate the distance between a pair of
DF features [19]. Due to the large perspective changes in
observations acquired by different robots, especially aerial-
ground scenarios, the existence of non-overlapped regions
will heavily affect the performance of place recognition.

1) Addressing Non-Overlapped Regions: To address the
problem of non-overlapped regions, we estimate the over-
lapped regions by calculating the convex hull of all the
nodes that have correspondences identified by semantic graph
matching. Formally, the overlapped regions in a pair of
observations are denoted as A and A′ separately, which
are computed as A = covexhull({pi}M ) and A′ =
covexhull({p′

j}M ), where covexhull denotes the function
to compute convex hull given a list of points. The nodes have
correspondences are denoted as {pi}M ∈ P and {p′

j}M ∈
P ′ where M is the number of correspondences encoded in
the constraint Yi,j = 1. We simplify the convex hull as a
rectangle in this paper.

2) Addressing Rotation Changes: Given the estimated
overlapped regions, we estimate the yaw angle (the motion
direction of robots) between two robots’ observations to align
their DFs. Specifically, given a pair of polarized DFs F and
F ′, the estimation of the yaw angle between them is defined
as follows:

fθ = vec([Fθ:,F0:θ]) (11)

where [Fθ:,F0:θ] denotes the shift operation on the polarized
DFs. As F and F′ are all in polar coordinates, rotating their
observations in the yaw direction is equivalent to shifting
their polarized DFs with the yaw angle θ. vec denotes the
vectorization operation that converts a matrix to a vector by
concatenating its rows. Finally, given a pair of DF features fθ

and f
′θ, we estimate the optimal shift as follows:

θ∗ = argmax
θ

(

m∑
i

fθf
′θ

|fθ||f ′θ|
) (12)

where θ∗ denotes the optimal shift between a pair of DFs,
which is computed by maximizing the overall DF similarity,
where m denotes the number of semantic classes. The DF
matching process is illustrated in Figure 3. Not only can our
proposed DF matching deal with the inputs consisting of an
RGB image and a point cloud, but it is also applicable to pairs
of RGB images or pairs of point clouds.
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(a) KITTI (b) AirSim

Fig. 4. Illustrations of the visual observations obtained by a pair of robots
in KITTI and AirSim. KITTI covers the scenario of ground-ground robots
with LiDAR sensors. AirSim covers the scenario of aerial-ground robots with
RGB and RGBD cameras.

D. Place Recognition

Given the semantic graph matching and DF matching, the
place recognition score is computed as follows:

score =
λ

K
topK(Si,j) +

(1− λ)

m

m∑
i

fθ∗f ′θ∗

|fθ ∗ ||f ′θ∗|
(13)

where λ is a hyperparameter that controls the weights of the
graph-level similarity and the geometric-based DF similarity.
The graph-level similarity is computed as the average of top
K graph node similarities. The geometric DF similarity is
computed as the average of m class-wise DF similarities. If
one of fθ∗ and f ′θ∗ is not existed, then fθ∗f ′θ∗

|fθ∗||f ′θ∗| = 0. If

both of them are not existed, then fθ∗f ′θ∗

|fθ∗||f ′θ∗| = 1. Given the
final similarity score that considers visual (e.g., semantics),
spatial (e.g., object topology) and geometric cues (e.g., shape,
density) of semantics, we perform robust place recognition by
thresholding the similarity.

IV. EXPERIMENTS

A. Experimental Setup

We employ two place recognition datasets, including a
large-scale real-world dataset (KITTI) [42] and a simulated
dataset (AirSim) [18] to benchmark our approach. Our ex-
periments cover scenarios including ground-ground robots
with LiDAR sensors and aerial-ground robots with RGB and
RGBD sensors. Information on the benchmark datasets are
presented in Table I.

In the KITTI dataset, we generate over 200, 000 data in-
stances. Each data instance contains a pair of point clouds.
Following the recent method [16], we use RangeNet++ [39]
to perform semantic segmentation on raw point clouds to
detect these semantic objects. A total of 12 classes of objects
is used to construct semantic graphs, including cars, trucks,
other vehicles, sidewalks, other ground, buildings, fences,
vegetation, truck, terrain, pole, and traffic signs. We use 3D
positions of objects to generate the node set and the nearest
neighbor search to generate the edge set. We use fences and
vegetation to construct DFs. The ground-truth loop closure
is obtained based on the ground-truth poses provided by the
KITTI odometry dataset. We decide if two point clouds are
positive or negative based on the Euclidean distance between
them. If the distance is less than 10 m, then they are positive.

TABLE I
DESCRIPTION OF THE REAL-WORLD KITTI AND SIMULATED AIRSIM

DATASETS FOR PLACE RECOGNITION.

Dataset KITTI AirSim
# Training Cases 91,826 10,148

# Validation Cases 40,531 1,000
# Testing Cases 91,674 2,000

Robot Type Ground vs Ground Aerial vs Ground
Sensors LiDAR vs LiDAR RGB vs RGBD

# Semantics 12 5

If the distance is over 20 m, then they are negative. The
ground-truth correspondences of objects are identified based
on the unique ID of vehicles provided by the semantic KITTI
dataset [43] and the ground-truth poses provided by the KITTI
odometry dataset [42].

In the AirSim dataset, we generate over 10, 000 data in-
stances. Each data instance contains one RGBD image pair
acquired from a UGV and one RGB image acquired from
a UAV. Following the recent method [18], we construct se-
mantic graphs with 5 semantic objects, including buildings,
fences, hedges, vegetation, and vehicles. In addition, we select
fences, hedges, vegetation, and vehicles to construct DFs. For
graph representations, we use 3D positions of objects and
the nearest neighbor search to construct semantic graphs. In
particular, 3D positions of objects observed by ground robots
can be obtained directly from the depth images. For the aerial
observations, we assume that the depth values of objects are
the same (ignore the height of objects), which is the flight
height of the UAV. For DF representations, we construct them
using top-down projection of RGBD observations acquired
from the ground view, and the RGB observations acquired
from the aerial view directly. A pair of observations are de-
cided to be positive when there are at least 10 correspondences
between them. If the number of correspondences is 0, then the
pair of observations is decided to be negative. The ground-
truth correspondences are identified based on their ground-
truth poses.

In the implementation of our network ψ, we set the number
of network layers to be L = 6 with 3 self-attention layers
and 3 cross-attention layers alternatively. Each attention layer
has m, 64, and 32 as their input, hidden, and output channels
separately, where m is the number of semantic classes. We
set M = 10 for topM as defined in Eq. (8) and set K = 5
for topK as defined in Eq. (13). In addition, we set λ = 0.8
as defined in Eq. (8). In all the experiments, we use ADMM
as the optimization method with the learning rate setting to
0.0001 and weight decay setting to 0.00005.

For comparison, we first implement two baseline methods,
including (Ours-gm) that only uses semantic graph matching
and (Ours-df) that only uses DF matching. We also evaluate
our full approach (Ours). In addition, we compare our meth-
ods with three previous methods, including one traditional
approach, one graph-based approach and one geometric-based
approach for place recognition.

• Point cloud vector of locally aggregated descriptors
(PointVlad) [44] that is the traditional LiDAR point-
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based place recognition approach. As this method can
not deal with RGB images, we just evaluate it in the
KITTI dataset.

• Semantic graph matching (SG) [16] that recognizes
places based on the similarity between a pair of semantic
graphs.

• Cross-view geometric-based matching (CGM) [19] that
uses top-down projected LiDAR points acquired by
ground robots and aerial-view RGB image patches
cropped from reference maps to perform learning-free
TDF-based matching.

As we treat place recognition as a data retrieval process,
we use the following metrics to evaluate place recognition
performance.

• Precision-recall curve is used as the evaluation metric,
which is a standard metric used in the place recognition
literature [16]. Precision is defined as the ratio of the
retrieved correct places over all the retrieved places.
Recall is defined as the ratio of the retrieved correct
places over the ground-truth correct places.

• Area under the curve (AUC) is a single-value evalua-
tion metric to evaluate the overall performance of place
recognition methods, which takes values in [0, 1] with a
greater value indicating a better performance, and a value
1 indicating the perfect performance.

B. Results on the KITTI Dataset

The KITTI dataset totally contains 11 sequences obtained
by a 64-ring LiDAR, as shown in Figure 4(a). We use se-
quences 00, 01, 03, and 05 for training, sequences 04, 06, and
07 for validation, and sequences 02 and 08 with loop closures
for testing. As sequence 02 has the largest number of instances
among all the sequences with loop closures, and sequence 08
has reverse loops, they are the most challenging sequences in
the evaluation of place recognition.

Quantitative results are presented in Figure 5(a) and Figure
5(b) based on the precision-recall curve. We can see that
Ours-gm outperforms graph-based method SG by explicitly
considering the spatial relationships of objects in the learn-
ing process. Ours-df outperforms geometric-based method
CGM, which indicates the importance of addressing non-
overlapping regions between pairs of observations and esti-
mating the rotation between them. Finally, our full approach
outperforms the baseline method due to its capability of
integrating visual, spatial, and geometric cues, as well as
addressing non-overlapped regions for place recognition. In
addition, we observe that the performance of PointVlad and
CGM drops quickly in sequence 08 compared with it in
sequence 02. It is because they can not deal with totally
opposite-direction cases in sequence 08. SG performs much
better as semantic graph matching is invariant to perspective
changes. However, it still can not address non-overlapped
regions when two observations are recorded far from each
other. By addressing non-overlapped regions, our approach
performs the best.

We also use a single-value evaluation metric AUC to quan-
titatively evaluate our approach and comparisons, as shown in

TABLE II
QUANTITATIVE RESULTS OF OUR APPROACH AND COMPARISONS WITH

THREE PREVIOUS METHODS BASED ON AUC SCORE. OURS ACHIEVES

THE HIGHEST SCORES ON ALL 3 DATASETS.

Method KITTI-02 KITTI-08 AirSim
PointVlad [44] 0.7586 0.076 -
CGM [19] 0.5051 0.1014 0.2216
SG [16] 0.7807 0.7975 0.5054
Ours-df 0.5607 0.3221 0.2759
Ours-gm 0.9159 0.8464 0.6618
Ours-full 0.9357 0.8767 0.8598

Table II. It is observed that our approach obtains the score of
0.9357 and 0.8767 in sequences 02 and 08 separately, which
significantly outperforms the second-best method [16]. The
improvements are around 15% and 8% separately.

C. Results on the Aerial-Ground AirSim Dataset

The AirSim dataset contains observation pairs acquired
from a UAV and a UGV. The whole trajectory is 1km. In
this dataset, we use RGBD images acquired by a UGV as the
ground-view observations. We also use RGB images acquired
by a UAV and the UAV flight height as the aerial-view
observations, as shown in Figure 4(b). This dataset is very
challenging due to the large perspective changes and sensing
modality changes in aerial-ground observations.

The quantitative results obtained by our method and com-
parisons are demonstrated in Figure 5(c). As the sensing
modalities of observations are different, the traditional point
feature-based approach PointVlad can not be used in this
case. In addition, we can see that our baseline method Ours-
gm significantly outperforms SG and Ours-df significantly
outperforms CGM, which indicates the importance of explic-
itly learning visual-spatial cues in semantic graph matching
and estimating overlapping regions to integrate geometric
cues for place recognition. As shown in Table II. Our full
approach achieves 35% improvements compared with the
previous methods [16], [19] on AUC in the aerial-ground
scenarios, which indicates the importance of integrating graph
matching and geometric-based DF matching for place recog-
nition, especially in the aerial-ground scenarios.

The qualitative results obtained by our full approach on the
AirSim dataset are illustrated in Figure 6. The results show
identified correspondences of objects, estimated overlapped
regions, and matched places between aerial-ground observa-
tions. We observe that our approach can well identify the
correspondences of objects in positive cases. Based on the
correctly identified correspondences, our approach can signif-
icantly reduce the non-overlapped regions, as shown in Figure
6(a). For negative cases, the mismatched correspondences
will generate two regions with large visual differences, thus
significantly decreasing the matching score of negative cases,
as shown in Figure 6(b). By correctly identifying correspon-
dences, estimating overlapped regions, and integrating geo-
metric cues into place recognition, our approach can perform
place recognition well in both cross-view (aerial-ground) and
cross-modality (RGBD-RGB) scenarios.
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(a) KITTI-02 (b) KITTI-08 (c) AirSim

Fig. 5. Quantitative results on the KITTI dataset and AirSim dataset based on the precision-recall curve. Our methods are illustrated with solid curves and the
others are shown in dash curves. Our method consistently achieves higher precision over the state-of-the-art methods on 3 datasets. [Best viewed in color].

(a) Positive Case (b) Negative Case

Fig. 6. Qualitative results achieved by our approach in the AirSim dataset. The identified correspondences of objects are demonstrated in white bounding
boxes on semantic segmentation images provided by both aerial (left) and ground (right) robots. The estimated overlapped regions are highlighted with yellow
regions in the aerial observations. [The figures are best viewed in color].

We run our approach on a Linux machine with an i7 16-
core CPU, 16G memory, and an RTX 2080 GPU. The average
execution speed of our graph matching approach is 75Hz. Our
full approach achieves 15Hz execution speed on KITTI and
6Hz on AirSim datasets.

D. Discussion

(a) Influence of SS (b) Analysis on λ

Fig. 7. Characteristics of our approach: (a) the influence caused by semantic
segmentation (SS) and (b) analysis of hyperparameter λ.

1) Influence of Semantic Segmentation: The influence of
semantic segmentation on our approach is shown in Figure
7(a). We compare the performance of our approach based on
the semantic labels provided by RangeNet++ [39] (denoted as
rn) and the ground-truth labels provided by Semantic KITTI
(denoted as sk). We use sequences 02 and 08 to evaluate the
influence. In sequence 02, it is observed that our approach
achieves similar AUC scores based on RangeNet-provided
labels or ground-truth labels, which are 0.9356 and 0.9420
separately. In sequence 08, the performance of our approach
decreases from 0.9613 to 0.8767 when we change ground-
truth labels with RangeNet-provided labels.

2) Hyperparameter: The analysis of hyperparameter λ as
defined in Eq. (13) is shown in Figure 7(b). The hyperparam-
eter λ is used to control the trade-off between graph matching
similarity and DF similarity. We observe that our approach
achieves the best performance when λ ∈ [0.5, 0.8].

V. CONCLUSION

We propose a novel approach that integrates visual, spatial,
and geometric cues to perform cross-view and cross-modal
place recognition. Our approach consistently represents multi-
modal observations, including RGB image, RGBD image
pair, and LiDAR point cloud, as a semantic graph and a set
of class-wise DFs. Given the cross-modal representations,
our approach integrates semantic graph matching and DF
matching in a unified way to perform place recognition,
which can explicitly address non-overlapped regions between
observations. Experimental results on two public benchmark
datasets have shown that our approach obtains promising
place recognition performance in both ground-ground and
aerial-ground multi-robot systems.

Our approach has some limitations, offering possible fu-
ture directions. First, the execution speed of our approach
is affected by the size of the observations, especially in the
generation of DFs. Downsampling techniques can be devel-
oped to reduce this size and further improve the runtime
performance. Second, currently our approach assumes single-
modal observations as input and can be extended to take multi-
modal observations as inputs, such as UGVs with IMU and
LiDAR, and UAVs with visual odometry and RGB camera, to
improve robustness of place recognition.
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