

Task-Driven Domain-Agnostic Learning with Information Bottleneck for Autonomous Steering

Yu Shen, Laura Zheng, Tianyi Zhou, Ming C. Lin

Paper ID: 3254

Motivation

In autonomous driving, when we encounter

- Limited data in a target domain (e.g., a new environment), rich data in known domains
- Limited data in real-world scenarios (e.g., accident data), rich in simulator

How?

Insights

• What information from other domains is useful to target domain task?

• What information from target domain is not contained in the previous answer but is potentially useful?

Insights

- What information from other domains is useful to target domain task?
 - Domain-invariant Features

- What information from target domain is not contained in the previous answer but is potentially useful?
 - Domain-specific Features

Insights

- What information from other domains is useful to target domain task?
 - Domain-invariant Features

- What information from target domain is not contained in the previous answer but is potentially useful?
 - Domain-specific Features

How to utilize both?

Information Theory: Causal Graph

Y	Task label variable
D	Domain variable
Ν	Nuisance variable
Zi	Domain-invariant latent variable
Zd	Domain-dependent latent variable
Z*d	Combined latent variable

Х

Loss

Learning objective:

$$\max_{\theta_{g_i}, \theta_{g_d}, \theta_{f_d*}} I(Z_d^*, Y) - \lambda I(Y, D|Z_d^*)$$

Reformed objective:

$$\min_{g_i, g_d, f_{d^*}} \max_{f_i} \mathcal{L}_{d^*}(g_i, g_d, f_{d^*}) + \lambda(\mathcal{L}_{d^*}(g_i, g_d, f_{d^*}) - \mathcal{L}_i(g_i, f_i))$$
Sufficiency Loss
Invariance Loss

Where:

$$\mathcal{L}_{d^*} = \mathbf{E}_{x,y}[L(y, f_{d^*}(g_i(x), g_d(x)))]$$
$$\mathcal{L}_i = \mathbf{E}_{x,y}[L(y, f_i(g_i(x)))]$$

Our Method

Dataset Images

Fig. 3: Sample images of various datasets. (a) the SullyChen dataset [7] (real dataset, denoted by R). (b) the Udacity dataset [1] (virtual dataset, denoted by V). (c) style-transferred images from virtual to real using CycleGAN [47] (denoted by T_C). (d) style-transferred images from virtual to real using MUNIT [21] (denoted by T_M).

Experiments: Comparison with Other Methods

TABLE IV: Accuracy comparison with domain-adaptation & task-adaptation methods. Ours outperforms others with highest accuracy (mAcc) & lowest mean square error (MSE).

		MA _R (M) (%) on different angle threshol						
	Method	$\mid \tau = 1.5$	$\tau = 3.0$	$\tau = 7.5$	$\tau = 15$	$\tau = 30$	mAcc	MSE
	Baseline	59.5%	82.1%	93.9%	96.3%	98.6%	86.04%	0.96
(a) Domain Adaptation	DANN [13] ADDA [40] BSP [9]	28.9% 33.6% 38.9%	52.5% 54.3% 60.4%	79.3% 84.4% 87.5%	92.2% 93.2% 95.1%	97.3% 97.5% 98.4%	70.04% 72.6% 76.06%	0.58 0.43 0.32
(b) Task Adaptation	DELTA [30] BSS [8] StochNorm [26]	61.9% 67.0% 53.7%	80.9% 83.4% 78.5%	93.9% 93.8% 92.8%	97.7% 97.5% 97.3%	99.2% 98.8% 99.2%	86.72% 88.1% 84.3%	0.16 0.21 0.18
	Ours	70.5%	84.3%	93.8%	97.9 %	99.4%	89.2%	0.15

Experiments: Comparison with Other Methods

TABLE V: Mean Accuracy comparison with domain adaptation and task adaptation methods on different metrics. Our method outperforms others under nearly all angle thresholds.

	MA _R (M) (%) on different angle threshold $\tau = 3(y_{gt}/30)^{1/\alpha}$ (degree)								
			0	-	10	(2)			
	Method	$\alpha = 1(\tau = 0.1y_{gt})$	$\alpha = 2$	$\alpha = 5$	$\alpha = 10$	$\alpha = \infty(\tau = 3)$	mAcc		
	Baseline	31.4%	50.0%	69.7%	74.8%	79.7%	61.13%		
	DANN [13]	11.3%	22.9%	37.3%	44.9%	51.4%	33.55%		
(a) Domain Adaptation	ADDA [40]	11.9%	20.7%	38.5%	46.1%	52.3%	33.91%		
	BSP [9]	17.0%	31.8%	44.9%	52.0%	58.6%	40.86%		
	DELTA [30]	33.6%	56.2%	72.3%	76.6%	79.3%	63.59%		
(b) Task Adaptation	BSS [8]	36.3%	63.1%	74.6%	78.3%	81.6%	66.80%		
	StochNorm [26]	29.5%	43.8%	63.7%	71.7%	76.8%	57.07%		
	Ours	36.7%	60.4%	77.5%	80.5%	82.6%	67.54%		

Experiments: Comparison with Other Methods

Threshold (in degree)

Fig. 4: **Threshold-Accuracy Curve**. Our method (in black) achieves the best (highest) performance – above all other methods.

Experiments: Domain

Experiments show the existence of domain gap and domain-invariant information.

TABLE I: Mean Accuracy cross comparison. RV stands for transferring real dataset to virtual style, VR for transferring virtual dataset to real style. CGAN for the Cycle-GAN method, and CR for the color remapping method.

	Train								
Test	R	V	RV_{CGAN}	VR_{CGAN}	RV_{CR}	VR_{CR}			
$R \\ RV_{CGAN} \\ RV_{CR}$	88.36% 51.42% 60.89%	31.16% 34.22% 35.86%	48.83% 80.08% 48.18%	26.87% 29.34% 27.79%	70.17% 53.18% 85.50%	30.08% 38.86% 37.41%			

Experiments: Training Paradigm

Experiments to help choose the best training paradigm.

TABLE II: Mean Accuracy comparison with different training paradigms. From (a) we can verify the existence of a domain gap between the virtual, style-transferred and real datasets. From (b,c,d,e,f), we find that (e) **"finetuning with reinitialization" outperforms other training paradigms**.

	Model (M)	MA _R (M)
(a) Single dataset	$\begin{array}{c} \operatorname{train}(R)\\ \operatorname{train}(R1)\\ \operatorname{train}(V)\\ \operatorname{train}(T_C)\\ \operatorname{train}(T_M) \end{array}$	88.36% 32.02% 31.16% 26.87% 25.56%
(b) Simply combine	$\begin{aligned} \operatorname{train}(R1 + R) \\ \operatorname{train}(V + R) \\ \operatorname{train}(T_C + R) \\ \operatorname{train}(T_M + R) \end{aligned}$	82.32% 75.74% 75.44% 76.85%
(c) Finetuning	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	81.93% 83.54% 82.70% 79.04%
(d) Partially finetuning	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	70.86% 73.66% 77.17% 72.97%
(e) Finetuning with reinitialization	$ \begin{array}{ c c } \operatorname{train}(R1) \to \operatorname{train}(R) \\ \operatorname{train}(V) \to \operatorname{train}(R) \\ \operatorname{train}(T_C) \to \operatorname{train}(R) \\ \operatorname{train}(T_M) \to \operatorname{train}(R) \end{array} $	88.71% 87.50% 83.12% 80.26%
(f) Partially finetuning with reinitialization	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	76.94% 75.08% 77.78% 74.28%

Experiments: Architecture Component

Experiments to help choose the best architecture component to decouple domain-invariant and domain-specific features.

TABLE III: Mean Accuracy (MA) comparison with different network architectures. Adapter achieves best MA.

	M	$\mid MA_R(M)$
(a) Finetuning + reinit header + BN	$\begin{vmatrix} \operatorname{train}(V) \to \operatorname{train}(R) \\ \operatorname{train}(R1) \to \operatorname{train}(R) \end{vmatrix}$	80.53% 80.77%
(b) AdvProp BN	train(R, V) train(R, R1)	71.22% 75.83%
(c) Finetuning + reinit header + adapter	$\begin{vmatrix} \operatorname{train}(V) \to \operatorname{train}(R) \\ \operatorname{train}(R1) \to \operatorname{train}(R) \end{vmatrix}$	81.32% 82.71%

Experiments: Ablation

TABLE VIII: Ablation study. ADP for adapter, STB for style transferred branch, DP for dynamic probability in each domain, and IBL for information bottleneck loss.

MA _R (M) (%) on different angle threshold τ (degree)										
Method	$\mid \tau = 1.5$	$\tau = 3.0$	$\tau = 7.5$	$\tau = 15$	$\tau = 30$	mAcc	MSE			
Baseline	59.5%	82.1%	93.9%	96.3%	98.6%	86.04%	1.96			
Ours w/o ADP	58.4%	80.3%	93.4%	97.7%	98.6%	85.68%	0.19			
Ours w/o STB	68.0%	81.6%	94.1%	97.7%	99.0%	88.08%	0.16			
Ours w/o DP	65.6%	82.2%	93.4%	97.3%	98.8%	87.46%	0.18			
Ours w/o IBL	69.3%	84.0%	93.9%	97.5%	99.0%	88.74%	0.18			
Ours	70.5%	84.3%	93.8%	97.9%	99.4%	89.2%	0.15			

Experiments: Datasets and Backbones

		MA _R ($\mathrm{MA}_R(M)$ (%) on different angle threshold τ (degree)							
	Method	$\mid \tau = 1.5$	$\tau = 3.0$	$\tau=7.5$	$\tau = 15$	$\tau = 30$	mAcc	MSE		
(a) SullyChen	BSS [8]	67.0%	83.4%	93.8%	97.5%	98.8%	88.1%	0.21		
	Ours	70.5%	84.3%	93.8%	97.9%	99.4%	89.2%	0.15		
(b) Audi	BSS [8]	59.5%	72.3%	81.6%	86.9%	89.7%	78%	0.88		
	ours	62.5%	75.3%	84.8%	89.1%	92.4%	80.8%	0.65		
(c) Honda	BSS [8]	55.4%	70.9%	77.8%	83.7%	86.5%	74.86%	1.16		
	ours	57.6%	73.9%	80.2%	85.7%	89.1%	77.3%	0.91		

TABLE VI: Comparison on different datasets.

TABLE VII: Comparison on different backbones.

	$\operatorname{MA}_R(M)$ (%) on different angle threshold τ (degree)								
	Method	$\mid \tau = 1.5$	$\tau = 3.0$	$\tau=7.5$	$\tau = 15$	$\tau = 30$	mAcc	MSE	
(a) PilotNet	BSS [8]	67.0%	83.4%	93.8%	97.5%	98.8%	88.1%	0.21	
	Ours	70.5%	84.3%	93.8%	97.9%	99.4%	89.2%	0.15	
(b) ResNet	BSS [8]	71.8%	84.9%	93.8%	97.4%	98.3%	89.24%	0.15	
	ours	72.3%	85.6%	94.5%	98.2%	99.5%	90.02%	0.13	
(c) LSTM	BSS [8]	73.1%	85.4%	94%	97.5%	98.9%	89.78%	0.14	
	ours	74.5%	86.9%	95.1%	98.6%	99.7%	90.96%	0.12	

Conclusion

- A novel framework for *domain-agnostic learning* in the end-to-end autonomous steering task, with
 - Loss: Information bottleneck loss
 - Architecture: Adapter for domain-specific feature extraction
 - Training paradigm: Dynamic probability for domain data selection
 - Training data: Style transferred branch for domain-agnostic feature decoupling
- Performance improvement
 - Up to **19.16%** compared to other domain adaptation methods
 - Up to **4.9%** compared to other task adaptation methods

Thank you!

ICRA2024