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Motivation
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In autonomous driving, when we encounter

e Limited data in a target domain (e.g., a new environment), rich data in known
domains
e Limited data in real-world scenarios (e.g., accident data), rich in simulator

How?
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e \What information from other domains is useful to target domain task?

e \What information from target domain is not contained in the previous answer
but is potentially useful?
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is not contained in the previous answer

How to utilize both?



Information Theory: Causal Graph
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Loss |
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Learning objective:
max  I(Z;,Y)— M(Y,D|Z})

egi 709d 79fd*

Reformed objective:

min  max Lg+(9i, 9a, far) + AN La(9i, 9a, far) — Li(gis [i))

girgarfax  Ji Sufficiency Loss Invariance Loss

Where: L = Ea:,y[L(ya fd* (gi(:l:), gd(sc)))]
L; =Eqgy|L(y, fi(9:(2)))]



Our Method
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Dataset Images
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(a) Real (R) (b) Virtual (V) (c) CycleGAN (Tc) (d) MUNIT (Twm)
Fig. 3: Sample images of various datasets. (a) the SullyChen dataset [7] (real dataset, denoted by R). (b) the Udacity
dataset [1] (virtual dataset, denoted by V). (c) style-transferred images from virtual to real using CycleGAN [47] (denoted
by T¢). (d) style-transferred images from virtual to real using MUNIT [21] (denoted by T’y).



Experiments: Comparison with Other Methods

TABLE IV: Accuracy comparison with domain-adaptation & task-adaptation methods. Ours outperforms others with highest

accuracy (mAcc) & lowest mean square error (MSE).
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MA i (M) (%) on different angle threshold 7 (degree)

| Method ‘ 7=15 7=30 =75 T1=15 71=30 mAcc MSE

| Baseline 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 0.96

DANN [13] 28.9% 52.5% 79.3% 92.2% 97.3% 70.04% 0.58

(a) Domain Adaptation ADDA [40] 33.6% 54.3% 84.4% 93.2% 97.5% 72.6% 0.43
BSP [9] 38.9% 60.4% 87.5% 95.1% 98.4% 76.06% 0.32

DELTA [30] 61.9% 80.9% 93.9% 97.7% 99.2% 86.72% 0.16

(b) Task Adaptation BSS [8] 67.0% 83.4% 93.8% 97.5% 98.8% 88.1% 0.21
StochNorm [26] 53.7% 78.5% 92.8% 97.3% 99.2% 84.3% 0.18

| Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15




Experiments: Comparison with Other Methods

TABLE V: Mean Accuracy comparison with domain adaptation and task adaptation methods on different metrics. Our method

outperforms others under nearly all angle thresholds.
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MAR(M) (%) on different angle threshold 7 = 3(y,:/30)"/® (degree)

| Method | I(r=01lyy) a=2 a=5 a=10 a=oo(r=3) mAcc

‘ Baseline | 31.4% 50.0% 69.7%  74.8% 79.7% 61.13%

DANN [13] 11.3% 229% 37.3% 44.9% 51.4% 33.55%

(a) Domain Adaptation ADDA [40] 11.9% 20.7%  38.5% 46.1% 52.3% 33.91%
BSP [9] 17.0% 31.8% 449%  52.0% 58.6% 40.86%

DELTA [30] 33.6% 56.2% 72.3% 76.6% 79.3% 63.59%

(b) Task Adaptation BSS [8] 36.3% 63.1% 74.6%  78.3% 81.6% 66.80%
StochNorm [26] 29.5% 438% 63.7% T1.7% 76.8% 57.07%

‘ Ours | 36.7 % 60.4% 77.5% 80.5% 82.6% 67.54%




Experiments:

Comparison with Other Methods
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Fig. 4: Threshold-Accuracy Curve. Our method (in black)
achieves the best (highest) performance — above all other
methods.
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Experiments: Domain
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Experiments show the existence of domain gap and domain-invariant information.

TABLE I: Mean Accuracy cross comparison. RV stands for transferring real dataset to virtual style, V' R for transferring
virtual dataset to real style. CGAN for the Cycle-GAN method, and C'R for the color remapping method.

Train
Test R \% RVogan VRecgan RVeor VRcr
R 88.36% 31.16% 48.83 % 26.87% 70.17%  30.08%
RVoaan | 5142%  34.22% 80.08 % 29.34% 53.18%  38.86%

RVer 60.89%  35.86% 48.18% 27.79% 85.50%  37.41%




Experiments: Training Paradigm

TABLE II: Mean Accuracy comparison with different training
paradigms. From (a) we can verify the existence of a
domain gap between the virtual, style-transferred and real
datasets. From (b,c,d,e,f), we find that (e) ‘“finetuning with

Experiments to help choose the best
training paradigm.

reinitialization” outperforms other training paradigms.
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| Model (M) | MAR(M)
train(R) 88.36%
train(R1) 32.02%
(a) Single dataset train(V) 31.16%
train(T¢) 26.87%
train(Ty) 25.56%
train(R1 + R) 82.32%
train(V + R) 75.74%
(b) Simply combine train(T¢ + R) 75.44%
train(Ths + R) 76.85%
train(R1) — train(R) 81.93%
train(V) — train(R) 83.54%
(c) Finetuning train(T¢) — train(R) 82.70%
train(Ts) — train(R) 79.04%
train(R1) — ptrain(R) 70.86%
train(V') — ptrain(R) 73.66%
(d) Partially finetuning train(7T¢) — ptrain(R) 71.17%
train(Ths) — ptrain(R) 72.97%
train(R1) — train(R) 88.71%
train(V') — train(R) 87.50%
(e) Finetuning with reinitialization train(T¢) — train(R) 83.12%
train(Thy) — train(R) 80.26%
train(R1) — ptrain(R) 76.94%
train(V)) — ptrain(R) 75.08%
(f) Partially finetuning with reinitialization | train(T¢) — ptrain(R) 77.78%
train(Ths) — ptrain(R) 74.28%




Experiments: Architecture Component E
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Experiments to help choose the best architecture component to decouple
domain-invariant and domain-specific features.

TABLE III: Mean Accuracy (MA) comparison with different network architectures. Adapter achieves best MA.

| M | MAR(M)
(a) Finetuning + reinit header + BN train(V') — train(R) 80.53%
train(R1) — train(R) 80.77%
(b) AdvProp BN train(R, V) 71.22%
train(R, R1) 75.83%
(c) Finetuning + reinit header + adapter | train(V) — train(R) 81.32%
train(R1) — train(R) 82.71%




Experiments: Ablation

TABLE VIII: Ablation study. ADP for adapter, STB for style transferred branch, DP for dynamic probability in each domain,

and IBL for information bottleneck loss.

MAR(M) (%) on different angle threshold 7 (degree)

Method ‘ 7=15 7=30 7=75 7=15 7=30 mAcc MSE
Baseline ‘ 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 1.96
Ours w/o ADP | 58.4% 80.3% 93.4% 97.7%  98.6% 85.68%  0.19
Ours w/o STB 68.0% 81.6% 94.1% 97.7%  99.0% 88.08% 0.16
Ours w/o DP 65.6% 82.2% 93.4% 973% 98.8% 87.46% 0.18
Ours w/o IBL 69.3% 84.0% 93.9% 97.5% 99.0% 88.74%  0.18
Ours 70.5% 84.3% 93.8% 979% 994% 89.2% 0.15
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Experiments: Datasets and Backbones

TABLE VI: Comparison on different datasets.

MAR(M) (%) on different angle threshold 7 (degree)

| Method | 7=15 7=30 7=75 7=15 7=30 mAcc MSE
(a) SullyChen | BSS [8] | 67.0%  834%  93.8% 97.5% 98.8% 88.1% 021
Ours | 70.5%  84.3%  938% 97.9% 99.4% 892%  0.15
(b) Audi BSS [8] | 59.5%  723%  81.6% 869% 89.7%  78%  0.88
ours | 62.5%  753%  84.8% 89.1% 924% 80.8%  0.65
(c) Honda BSS [8] | 554%  709%  718%  83.7% 86.5% 74.86% 1.16
ours | 57.6%  73.9%  802% 857% 89.1% 713% 091
TABLE VII: Comparison on different backbones.

| MAr(M) (%) on different angle threshold 7 (degree)
| Method | 7=1.5 7=30 7=75 7=15 7=30 mAcc MSE
(a) PilotNet | BSS [8] | 67.0%  834% 93.8% 97.5% 98.8% 88.1% 0.1
Ours | 70.5%  84.3%  93.8% 97.9% 99.4% 89.2%  0.15
(b) ResNet | BSS [8] | 71.8%  84.9%  93.8% 97.4% 983% 89.24%  0.15
ours | 72.3%  85.6%  945% 982% 99.5% 90.02% 0.13
() LSTM | BSS[8] | 73.1%  854%  94%  97.5% 98.9% 89.78%  0.14
ours | 74.5%  86.9%  95.1% 98.6% 99.7% 90.96%  0.12
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Conclusion | E
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e A novel framework for domain-agnostic learning in the end-to-end

autonomous steering task, with

o Loss: Information bottleneck loss

o Architecture: Adapter for domain-specific feature extraction

o  Training paradigm: Dynamic probability for domain data selection

o  Training data: Style transferred branch for domain-agnostic feature decoupling

e Performance improvement
o Upto 19.16% compared to other domain adaptation methods
o Up to 4.9% compared to other task adaptation methods
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Thank you!




