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Abstract— Environments for autonomous driving can vary
from place to place, leading to challenges in designing a learning
model for a new scene. Transfer learning can leverage knowledge
from a learned domain to a new domain with limited data. In
this work, we focus on end-to-end autonomous driving as the
target task, consisting of both perception and control. We first
utilize information bottleneck analysis to build a causal graph that
defines our framework and the loss function; then we propose a
novel domain-agnostic learning method for autonomous steering
based on our analysis of training data, network architecture,
and training paradigm. Experiments show that our method
outperforms other SOTA methods.

I. INTRODUCTION

Autonomous driving (AD) has the potential to create
safer and more efficient transportation systems by reducing
congestion and accidents due to human errors. Central to
AD, autonomous steering is a complex task and requires the
choreography of many components to operate. One essential
component is the perception-control module that maps sensor
data to control commands (e.g., steering angles). With recent
advances in machine learning, especially deep learning [27],
the perception-control module is increasingly enabled by
learning-based algorithms, which leverage multimodal input
from sensors including cameras, Lidar, and radar to navigate
autonomous vehicles (AVs). While each type of sensor offers
its unique strength in detecting the environment, the RGB
camera is one of the most universal and accessible sensors
due to its rich visual information and affordable cost.

Many real-world images are collected for training AVs.
Example datasets include KITTI [14], NVIDIA [7], Waymo
Open Dataset [38], CityScapes [10], and BDD100K [44]. In
addition to real-world images, simulators or synthesis images
are also heavily used in training AVs [6]. Example simulation
platforms include CARLA [11], the Udacity Self-Driving Car
Simulator [1], and NVIDIA Drive Constellation [2]. Different
datasets have different data distributions, resulting in domain
gaps – between real-world domains(e.g., different roads,
traffic conditions, and/or sensors, etc.) or between real and
virtual domains (e.g., different image styles, driving scenarios,
etc.). In real-world applications, usually, only limited data
is available in a new scenario. Ideally, it is desirable to use
existing data from the source domain to help the learning in
the target scenario. The challenge is how to utilize both rich
source domain data and limited target domain data.

To address this issue, we first analyze the causal rela-
tionship between variables in tasks with a structural causal
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graph according to information theory [3]. We decouple
the randomness in the input variable into the task label
and nuisance, both depending on the domain. We then
extract domain-invariant latent variables and domain-specific
latent variables from the input. The final latent variable
combines both domain-invariant and domain-specific latent
variables. We perform such decomposition because both
domain-agnostic information in the source domain (e.g.,
general driving policy) and domain-specific information in
the target domain (e.g., color distribution in scenes) can
contribute to the target domain performance, if the target
domain is known. We then design an optimization goal that
considers sufficiency, invariance, and implicit minimality,
which provides high-level guidance for the framework design.

Based on the analysis, we propose a novel framework for
domain-agnostic learning in the steering task, i.e., improve
the target domain performance with additional source domain
data. To extract the domain-specific features and domain-
agnostic features, we use one adapter for each domain and
a shared domain-agnostic feature extractor for all domains.
The sufficiency and invariance loss objective ensures that the
shared feature extractor can extract as many domain-agnostic
features as possible and that the remaining information can be
captured as domain-specific features by adapters. To further
improve the transferability, our method also has two additional
add-ons: (1) a training curriculum that gradually increases the
ratio of target domain data in each epoch for better knowledge
transfer from the source domain to the target domain, and (2)
tuned input data, which involves a style-transferred branch in
the architecture to help extract domain-specific information.
See details in Sec. IV.

Overall, the main contributions of this work include:
• Information theoretic analysis for transfer learning

tasks, i.e., improve the target domain performance with
additional source domain data, providing theory support
to our framework design.

• A novel framework for domain-agnostic learning
in end-to-end steering, by utilizing both domain-
agnostic information across domains and domain-specific
information in the target domain, with additional add-ons
like improved training paradigm and the style-transferred
branch to further enhance the performance.

II. RELATED WORK

A. Transfer Learning

Transfer learning aims to transfer the knowledge learned
in a source domain to a target domain. It has been studied



in different settings. Task adaptation is one of them when
target domain data labels are available. LWF [31] is able
to learn in the target domain while keeping the memory
of the source domain without storing source domain data.
DELTA [30] proposes a novel regularized transfer learning
framework, preserving the outer layer outputs of the target
network. BSS [8] presents a novel regularization approach
to penalizing smaller singular values so that untransferable
spectral components are suppressed. StochNorm [26] proposes
a two-branch design with one branch normalized by mini-
batch statistics and the other branch normalized by moving
statistics. Co-Tuning [43] is a two-step framework that can
learn the relationship between source categories and target
categories, and use source and target labels to collaboratively
supervise the fine-tuning process. Bi-Tuning [46] presents
a general learning framework to fine-tune both supervised
and unsupervised pre-trained representations to downstream
tasks. The disentanglement of domain-specific information
was studied by applying independent Batch Normalization
(BN) layers to different domains in AdvProp BN [41] and
StochNorm [26]. However, the domain-specific information
might not be fully captured by BN layers with a few
parameters. There are also domain adaptation methods like
DANN [13], ADDA [40], BSP [9], FADA [32], that can
utilize target domain data even without ground-truth labels.

Compared to previous works, our method is among the
first that considers all three perspectives, i.e., training data,
training paradigm, and network architecture, while most others
consider one or two perspectives.

B. Virtual and Real Data

While collecting real-world data can be expensive and
challenging, the virtual world enables the economical
production of a large amount of data. In order to study how
virtual images influence learning-based tasks, researchers
have adopted various style-transfer techniques. For example,
Movshovitz-Attias et al. [33] explore the effect of state-of-
the-art rendering techniques on the viewpoint estimation
task of objects. Another style-transfer technique, Generative
Adversarial Networks (GANs), has been used for domain
transfer between different types of images [24]. For example,
CycleGAN [47] and CyCADA [18] have been successfully
applied to style-transfer unpaired images in training data.
Nowadays the diffusion modal also shows potential to achieve
successful style transfer [45], [16]. Finally, the blending
of a virtual world and the real world has shown potential
for learning-based driving tasks. Li et al. [29] proposed an
augmented autonomous driving simulation (AADS), which in-
troduces simulated traffic flows into real-world environments.
The training environment is obtained by scanning the real
world with lidar and cameras, while simulated traffic flows,
including vehicles and pedestrians, are mapped onto the
scanned environment. This method captures the benefits of a
fully controlled virtual environment while retaining realism.

Fig. 1: A structural causal graph that shows causal relation-
ships between variables in our autonomous-steering model.
We decouple the randomness in the input variable X into the
task label Y and nuisance N , both depending on the domain
D. We then extract domain-invariant latent variable Zi and
domain-specific latent variable Zd from input X . The final
latent variable Z∗

d combines Zi and Zd.

III. INFORMATION THEORETIC ANALYSIS

Problem Description. A major challenge for autonomous
driving is the variety of driving scenarios: it is infeasible to
train a model for all possible scenarios. In a new scenario
as the target domain, an emerging challenge is to train a
reliable model using data collected in known scenarios (source
domain) and a few (insufficient) target-domain data, which
can outperform the model trained using the target-domain
data only.

Information-Theoretic Analysis. Learning features trans-
ferable from a source domain to improve the target-domain
performance is a critical challenge in practice. The transfer
learning performance, from an information-theoretic perspec-
tive, can be improved by leveraging the causal relations
between variables. While prior work [28] focuses on finding
invariant features for better generalization ability, our method
utilizes both domain-agnostic (invariant) features and domain-
specific features to better serve our transfer learning goal.

In Fig. 1, we provide a structural causal graph that describes
the causal relationships between variables in our problem.
In particular, follow [42], an input image is assumed to be
generated from a label Y (e.g., for the steering angle) and a
nuisance variable N independent of the label, both of which
depend on the domain D of the image. Inspired by [28], we
extract a domain-agnostic latent variable Zi and a domain-
specific latent variable Zd from input X . Combining Zi and
Zd produces a compressed latent variable Z∗

d .
According to the information bottleneck [39] and the

causal graph in Fig. 1, an information-theoretic objective
for representation learning of Z∗

d can be written as

max
θgi ,θgd ,θfd∗

I(Z∗
d , Y )− λI(Y,D|Z∗

d) (1)

where gi is the feature extractor (for domain-agnostic fea-
tures), gdj are adapters for each domain, and fd∗ is the
determinator. I(X,Y ), the mutual information between X
and Y , is the KL divergence between the joint distribution and
the product of the marginals. The first term in Eq. (1) aims
to maximizes the mutual information between the label and
combined features. This helps learn the combined features to



Fig. 2: Our framework: In each epoch, the input data is randomly selected from multiple domain data, then fed into a
shared feature extractor and a domain-specific adapter for each domain. The combined output feature will then be used to
determine the final steering angle (sufficiency loss). An additional invariance loss is used to force the feature extractor to
extract as much domain-invariant information as possible. The final loss contains both a sufficiency term and an invariance
term. The initial probability of the target domain is small, but will gradually increase as training progresses, enabling better
transfer of domain-agnostic knowledge from source to target domain.

capture and preserve key information of the task label. On the
other hand, the second term minimizes the mutual information
between the label and the domain given the combined feature.
Theoretically, it is necessary to have one additional minimality
term in order to remove the redundancy in the latent feature
as much as possible. However, in practice, supervised training
of the neural network naturally learns the minimal sufficient
representation for the task. So, we removed this item for
simplicity.

IV. OUR METHOD

According to the analysis in Sec. III, we design the learning
framework as follows.

A. Framework

Model Architecture. Our framework is shown in Fig. 2.
According to the information theory analysis in Sec. III, we
developed a neural network architecture that can be trained
on multi-domain data and capture both domain-agnostic
and domain-specific features critical to the steering angle
prediction task, in which the former features can capture the
front-end perception, back-end steering control, etc., while the
latter captures the image style, background data distribution,
etc. In the neural network, we use a feature extractor shared
across different domains to produce the domain-agnostic
features and employ an adapter per domain to produce the
domain-specific features.

Training Paradigm. In each epoch, we randomly select
training data from different domains, e.g., real, virtual,
and style-transferred datasets, according to their pre-defined
probabilities1. The input image will be fed into the shared
feature extractor and a domain-dependent adapter, whose
output features will be combined and then used to determine
the final steering angle. A sufficiency loss Ld∗ is computed by
comparing the predicted angle with the ground truth and used
as an estimate to I(Z∗

d , Y ) in Eq. (1). To estimate I(Y,D|Z∗
d),

1Detailed discussion in the next paragraph

we train another determinator to predict the steering angle
only using the domain-agnostic features, inducing a loss Li.
An invariance loss Ld∗ − Li is then used as an estimate of
I(Y,D|Z∗

d).
Training Curriculum. We start training by learning

the source domain first and then gradually increasing the
target domain data. This is achieved by initializing a small
probability of sampling the target domain R, then gradually
increasing it so the main focus of the training will be
transferred from the source to the target domain. In Sec. IV-
B.2, we show that such progressive finetuning is better
than uniformly sampling training data from both domains.
An explanation for this phenomenon is, learning two skills
together is harder than learning one skill first and then
another.

Loss Functions. Our training objective can be formulated
as an instantiation of Eq. (1), whose two mutual information
terms are estimated by the two aforementioned losses, i.e.,
the sufficiency loss Ld∗ and the invariance loss Ld∗ − Li.
The sufficiency loss aims to minimize the error of using the
combined representation Z∗

d to predict Y . Hence, it tries to
maximize I(Z∗

d , Y ). The invariance loss, on the other hand,
aims to minimize the gap between the error Ld∗ of predicting
Y using Z∗

d and the error Li of predicting Y using the
domain-agnostic representation Zi only. Hence, it enforces
Zi to capture all the domain-agnostic information regarding Y
and remains to Zd the domain-specific information of Y only.
Thereby, Z∗

d contains all the information D carries regarding
Y and I(Y,D|Z∗

d) can be minimized. This equivalence was
rigorously proved in IIB [28]. Therefore, the information-
theoretical objective Eq. (1) reduces to

min
gi,gd,fd∗

max
fa

Ld∗(gi, gd, fd∗)+λ(Ld∗(gi, gd, fd∗)−Li(gi, fa)),

(2)
where gi and gd are domain-agnostic and domain-specific
features, respectively. And fd∗ and fa respectively denote the
determinator using the combined features and the denominator



using the domain-agnostic features gi only. Specifically,

Ld∗ = Ex,y[L(y, fd∗(gi(x), gd(x)))] (3)
Li = Ex,y[L(y, fi(gi(x)))] (4)

In our experiments, we use L2 (MSE) loss for all losses.
Training Data Curation. We add another style-transferred

domain (i.e., the V2R branch in Fig. 2) to the framework
to better separate the (domain-specific) style and (domain-
agnostic) content of the images. Compared to the original
real content + real style images and virtual content + virtual
style images, style-transferred images refer to real content +
virtual style or virtual content + real style. Inspired by recent
works [35], [36], style-transferred images provide more “hints”
as prior information disentangling the content and style to
help the model learn better. The style transferred data can
be generated by CycleGAN [47], a generative model that
can exchange the image style of two sets of unpaired images
by using forward and backward supervision. We provide
examples in Fig. 3.

Fig. 3: Sample images of various datasets. (a) the Nvidia
dataset [7] (real dataset, denoted by R). (b) the Udacity
dataset [1] (virtual dataset, denoted by V ). (c) style-transferred
images from virtual to real using CycleGAN [47] (denoted
by TC ). (d) style-transferred images from virtual to real using
MUNIT [21] (denoted by TM ). All datasets to be released.

B. Experiments

1) Setups: All experiments are conducted using one
Intel(R) Xeon(TM) W-2123 CPU, two Nvidia GTX 1080
GPUs, and 32G RAM. We use the Adam optimizer [25] with
learning rate 0.0001 and batch size 128 for training. The
maximum number of epochs is 1,000.

Datasets. We use the SullyChen dataset [7] as our real
dataset, which contains approximately 63,000 images at the
resolution 455 × 256. We use the data from the Udacity
Self-Driving Car Simulation [1] as our virtual dataset, which
includes about 10,615 images at the resolution 320 × 160 and
is collected on a simulated suburban driving track. We also
use Audi [15], and Honda [34] as real datasets, and CARLA
simulator [12] as a virtual environment for experiments.

Evaluation Metric. Following [37], we use mean accuracy
(MA) to evaluate our regression task, since it can represent
the overall performance under different thresholds. We first
define the accuracy with respect to a particular threshold

τ as accτ = count(|vpredicted − vactual| < τ)/n, where
n denotes the number of test cases; vpredicted and vactual
indicate the predicted and ground-truth value, respectively.
Then, MA is computed as

∑
τ accτ∈T /|T |, where T =

{1.5, 3.0, 7.5, 15, 30} contains empirically selected thresholds
of steering angles. We also use other metrics like Mean Square
Error (MSE).

Backbone. We choose the model by Bojarski et al. [4] as
the default backbone. We also use other backbones in our
experiments, e.g., ResNet, LSTM, etc.

Notation and Training Strategies. In this work, we also
explore different ways to combine datasets for learning,
in order to determine their potential to improve learning
performance. We define the following notation for any two
datasets A and B.

• train(A + B): simply combine datasets A and B and
use the combined dataset for training;

• train(A) → train(B): use A to pretrain a model, then
use B to retrain the model; and

• train(A) → ptrain(B): use A to pretrain a model, then
use B to retrain the model by only updating partial
weights of the model [5].

The output of the above-mentioned three training methods
is a learned model. We use MAA(M) to denote the MA score
of testing a learned model M using the test set extracted from
dataset A. For all datasets, we split them into the training set
and test set using the ratio 10:1.

2) Analysis Experiments: We analyze how training data
(image style, data amount), network architecture (Batch Norm
layers, Adapters), and training paradigm (finetuning, partially
finetuning, reinitialization) influence the transfer learning.

Does Image Style Transfer Reduce Domain Gap? To
reduce the gap between two domains, the first intuition is
to improve the visual similarity of the training data. In this
regard, we study how image style can influence the end-to-end
steering task.

Some existing works can change the style of an image
set to the style of another image set. We use two style-
transfer algorithms in this work, a straight-forward color
remapping (non-learning-based method) and CycleGAN [47]
(learning-based method). We perform cross comparison on six
domains, R (real dataset), V (virtual dataset), RVCGAN (real
to virtual with CycleGAN), V RCGAN (virtual to real with
CycleGAN), RVCR (real to virtual with color remapping),
and V RCR (virtual to real with color remapping), which
is a combination of real/virtual content + real/virtual style
(+ learning/non-learning-based method). We train models on
each of them separately, then test on them separately. Table I
shows the cross comparison results. We observe:

1) Image content is more important than image style.
When testing on real-content datasets (R, RVCGAN ,
RVCR), the models trained on real-content datasets
perform better than the models trained on virtual-
content datasets, no matter they are real or virtual style
(the bolden numbers are greater than the unbolden
numbers).



TABLE I: Mean Accuracy cross comparison. RV stands for
transferring real dataset to virtual style, V R for transferring
virtual dataset to real style. CGAN for the Cycle-GAN
method, and CR for the color remapping method.

Train

Test R V RVCGAN V RCGAN RVCR V RCR

R 88.36% 31.16% 48.83% 26.87% 70.17% 30.08%
RVCGAN 51.42% 34.22% 80.08% 29.34% 53.18% 38.86%
RVCR 60.89% 35.86% 48.18% 27.79% 85.50% 37.41%

TABLE II: Mean Accuracy comparison with different training
paradigms. From (a) we can verify the existence of a
domain gap between the virtual, style-transferred and real
datasets. From (b,c,d,e,f), we find that (e) “finetuning with
reinitialization” outperforms other training paradigms.

Model (M ) MAR(M)

train(R) 88.36%
train(R1) 32.02%

(a) Single dataset train(V ) 31.16%
train(TC ) 26.87%
train(TM ) 25.56%

train(R1 + R) 82.32%
train(V + R) 75.74%

(b) Simply combine train(TC + R) 75.44%
train(TM + R) 76.85%

train(R1) → train(R) 81.93%
train(V ) → train(R) 83.54%

(c) Finetuning train(TC) → train(R) 82.70%
train(TM ) → train(R) 79.04%

train(R1) → ptrain(R) 70.86%
train(V ) → ptrain(R) 73.66%

(d) Partially finetuning train(TC) → ptrain(R) 77.17%
train(TM ) → ptrain(R) 72.97%

train(R1) → train(R) 88.71%
train(V ) → train(R) 87.50%

(e) Finetuning with reinitialization train(TC) → train(R) 83.12%
train(TM ) → train(R) 80.26%

train(R1) → ptrain(R) 76.94%
train(V ) → ptrain(R) 75.08%

(f) Partially finetuning with reinitialization train(TC) → ptrain(R) 77.78%
train(TM ) → ptrain(R) 74.28%

2) With the same content during training and test (the
boldened numbers), using same style is better than
using different styles (the diagonal of the boldened
numbers are greater than other numbers).

3) With different content during training and test (the
unboldened numbers), same style does not necessarily
perform better (when testing on R, the model trained
on V performs best but they are not in the same style,
similar for testing on RVCGAN and RVCR).

We also evaluate the domain gap using Fréchet Inception
Distance (FID) [17] to minimize the need for training
models in new domains. However, we found that FID is
not necessarily an effective metric for evaluating the
domain gap in steering task.

Training Paradigm. The most common technique in
transfer learning to cross the domain gap is modifying
the training paradigm, i.e., changing the way of training
without modifying the network architecture. Some popular
methods [22] include,

• Finetuning. Retrain a model on the target domain which
is pretrained on the source domain.

• Partially finetuning. Finetuning a model with fixed
weights of specific layers, e.g., CNN layers.

• Finetuning with reinitialization. Reinitialize specific
layers before retraining. We use header reinitialization.

TABLE III: Mean Accuracy (MA) comparison with different
network architectures. adapter achieves best MA.

M MAR(M)

(a) Finetuning + reinit header + BN train(V ) → train(R) 80.53%
train(R1) → train(R) 80.77%

(b) AdvProp BN train(R, V ) 71.22%
train(R,R1) 75.83%

(c) Finetuning + reinit header + adapter train(V ) → train(R) 81.32%
train(R1) → train(R) 82.71%

TABLE IV: Accuracy comparison with domain-adaptation
& task-adaptation methods. Ours outperforms others with
highest accuracy (mAcc) & lowest mean square error (MSE).

MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

Baseline 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 0.96

DANN [13] 28.9% 52.5% 79.3% 92.2% 97.3% 70.04% 0.58
(a) Domain Adaptation ADDA [40] 33.6% 54.3% 84.4% 93.2% 97.5% 72.6% 0.43

BSP [9] 38.9% 60.4% 87.5% 95.1% 98.4% 76.06% 0.32

DELTA [30] 61.9% 80.9% 93.9% 97.7% 99.2% 86.72% 0.16
(b) Task Adaptation BSS [8] 67.0% 83.4% 93.8% 97.5% 98.8% 88.1% 0.21

StochNorm [26] 53.7% 78.5% 92.8% 97.3% 99.2% 84.3% 0.18

Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

Table II shows the Mean Accuracy (MA) comparison
with different training paradigms and source domains. From
(a) we can verify the existence of a domain gap between
the virtual, style-transferred and real datasets. (b) is a
basic paradigm that trains a model with source and target
domain data simply combined. From (b,c,d,e,f), we find that
(e) “finetuning with reinitialization” outperforms other
training paradigms in the list, no matter using real (R1,
Audi dataset [15]), virtual (V ), or style transferred (TC , TM )
datasets as source domain.

Network Architecture. Except for the training paradigm
related methods, there are methods that achieve transfer
learning by modifying the network architecture, e.g., batch
norm layers, adapters, etc. Usually they also need to have
specific training paradigms, e.g., adding batch norm layers,
retraining the model with fixed CNN layers but trainable
batch norm weights. Here we mainly investigate two additive
network components,

• Batch Norm (BN) layer [23]. Batch normalization is
a method used to make training of artificial neural
networks faster and more stable through normalization
of the layers’ inputs by re-centering and re-scaling.
Different domains have different feature distributions,
which can be aligned by adding batch norm layers in
the network.

• Adapter [19]. Adapters are new modules added between
layers of a pre-trained network. They add only a few
trainable parameters per task, and new tasks can be
added without revisiting previous ones. The parameters
of the original network remain fixed, yielding a high
degree of parameter sharing.

In Table III, we compare normal BN [23], AdvProp
BN [41], and adapter [20] under the best training paradigms
in previous experiments. adapter achieves the best perfor-
mance in the list.



Fig. 4: Threshold-Accuracy Curve. Our method (in black)
achieves the best (highest) performance – above all other
methods.

C. Final Results
Comparison with other task adaptation methods. We

compare our method with other SOTA task adaptation
methods, i.e., DELTA [30], BSS [8], StochNorm [26]. All of
them use both source and target data and labels. Our method
outperforms others by up to 2.29%. See Table IV and Fig. 4.

Comparison with other domain adaptation methods.
We compare our method with other classic domain adaptation
methods, i.e., DANN [13], ADDA [40], BSP [9]. Since those
domain adaptation methods do not use target domain labels,
our method can achieve up to 15.45% improvement. See
Table IV.

Comparison on other metrics. We use dynamically
interpolated thresholds to test the accuracy, τ = 3(ygt/30)

1/α

(degree). When α = 1, the threshold is 10% of the ground
truth steering angle, while α = ∞, the threshold is a constant
value 3 (degree). Our method outperforms other techniques
under all metrics. Please see Table V.

Comparison on other datasets. We compare our method
with BSS [8] on SullyChen, Audi, and Honda dataset. Our
method achieves better performance across all datasets. See
Table VI.

Comparison on other backbones. We compare our
method with BSS [8] on PilotNet, ResNet, and LSTM. Our
method achieves better performance across all backbones.
See Table VII.

Ablation study. To analyze how each component (ADP is
the adapter, STB stands for style transferred branch, DP stands
for dynamic probability for each domain) takes effect, we
conduct an ablation study on each. Results show that removing
any component will lead to a performance degradation. This
result suggests that each one does indeed contribute to the
overall performance. See Table VIII.

V. CONCLUSION

In autonomous driving, applying knowledge learned in
a known domain to an unknown domain is still one of
the key challenges due to the variety of driving scenarios
in the real world (and virtual world). Domain-agnostic
learning, or transfer learning, makes it possible to achieve
knowledge transfer between different domains. In this work,
we investigate how training data (in terms of image style

TABLE V: Mean Accuracy comparison with domain adapta-
tion and task adaptation methods on different metrics. Our
method outperforms others under nearly all angle thresholds.

MAR(M) (%) on different angle threshold τ = 3(ygt/30)
1/α (degree)

Method α = 1(τ = 0.1ygt) α = 2 α = 5 α = 10 α = ∞(τ = 3) mAcc

Baseline 31.4% 50.0% 69.7% 74.8% 79.7% 61.13%

DANN [13] 11.3% 22.9% 37.3% 44.9% 51.4% 33.55%
(a) Domain Adaptation ADDA [40] 11.9% 20.7% 38.5% 46.1% 52.3% 33.91%

BSP [9] 17.0% 31.8% 44.9% 52.0% 58.6% 40.86%

DELTA [30] 33.6% 56.2% 72.3% 76.6% 79.3% 63.59%
(b) Task Adaptation BSS [8] 36.3% 63.1% 74.6% 78.3% 81.6% 66.80%

StochNorm [26] 29.5% 43.8% 63.7% 71.7% 76.8% 57.07%

Ours 36.7% 60.4% 77.5% 80.5% 82.6% 67.54%

TABLE VI: Comparison on different datasets.
MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

(a) SullyChen BSS [8] 67.0% 83.4% 93.8% 97.5% 98.8% 88.1% 0.21
Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

(b) Audi BSS [8] 59.5% 72.3% 81.6% 86.9% 89.7% 78% 0.88
ours 62.5% 75.3% 84.8% 89.1% 92.4% 80.8% 0.65

(c) Honda BSS [8] 55.4% 70.9% 77.8% 83.7% 86.5% 74.86% 1.16
ours 57.6% 73.9% 80.2% 85.7% 89.1% 77.3% 0.91

TABLE VII: Comparison on different backbones.
MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

(a) PilotNet BSS [8] 67.0% 83.4% 93.8% 97.5% 98.8% 88.1% 0.21
Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

(b) ResNet BSS [8] 71.8% 84.9% 93.8% 97.4% 98.3% 89.24% 0.15
ours 72.3% 85.6% 94.5% 98.2% 99.5% 90.02% 0.13

(c) LSTM BSS [8] 73.1% 85.4% 94% 97.5% 98.9% 89.78% 0.14
ours 74.5% 86.9% 95.1% 98.6% 99.7% 90.96% 0.12

TABLE VIII: Ablation study. ADP for adapter, STB for
style transferred branch, DP for dynamic probability in each
domain, and IBL for information bottleneck loss.

MAR(M) (%) on different angle threshold τ (degree)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 mAcc MSE

Baseline 59.5% 82.1% 93.9% 96.3% 98.6% 86.04% 1.96

Ours w/o ADP 58.4% 80.3% 93.4% 97.7% 98.6% 85.68% 0.19
Ours w/o STB 68.0% 81.6% 94.1% 97.7% 99.0% 88.08% 0.16
Ours w/o DP 65.6% 82.2% 93.4% 97.3% 98.8% 87.46% 0.18
Ours w/o IBL 69.3% 84.0% 93.9% 97.5% 99.0% 88.74% 0.18

Ours 70.5% 84.3% 93.8% 97.9% 99.4% 89.2% 0.15

and data amount), network architecture (Batch-Norm layers,
Adapters), and training paradigm (finetuning, partially fine-
tuning, reinitialization) affect the domain-agnostic learning
in the end-to-end steering task. Based on the analysis, we
propose a novel domain-agnostic learning framework with
(1) domain-specific adapters and shared modules to learn
domain-specific and task-agnostic information that are both
useful to the steering task; (2) style-transferred data domain
to help disentangle domain-specific information; (3) gradually
increased ratio of target domain data in each epoch for better
knowledge transfer from the source to the target domain.

Limitations and Future Works: (a) The style-transferred
data is generated by a style-transfer network, which can be
merged into our framework in the future. (b) The distribution
of the steering values is highly non-uniform and likely domain-
dependent. In our future studies, we will explore whether
there exists a better training paradigm that can take advantage
of this specific prior.
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