

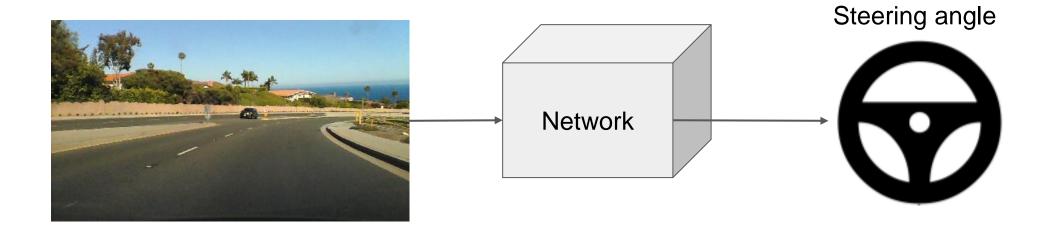
Small-shot Multi-modal
Distillation for Vision-based
Autonomous Steering

Yu Shen, Luyu Yang, Xijun Wang, Ming C. Lin

Paper ID:1818

Target Task

- Learn to steer in end-to-end autonomous driving
- Perception and control



Motivation

Multi-modal distillation in autonomous driving require *paired* data with different modalities. However, sometimes we only have a few auxiliary modality data

- expensive expert-labeled data
- sensing data from a low-frequency sensor
- online inferred data with high computational complexity

How to solve such a small-shot multi-modal distillation problem?

Contributions

A novel framework to distill knowledge from multi-modality model to single-modality model

• small-shot auxiliary modality distillation network (AMD-S-Net)

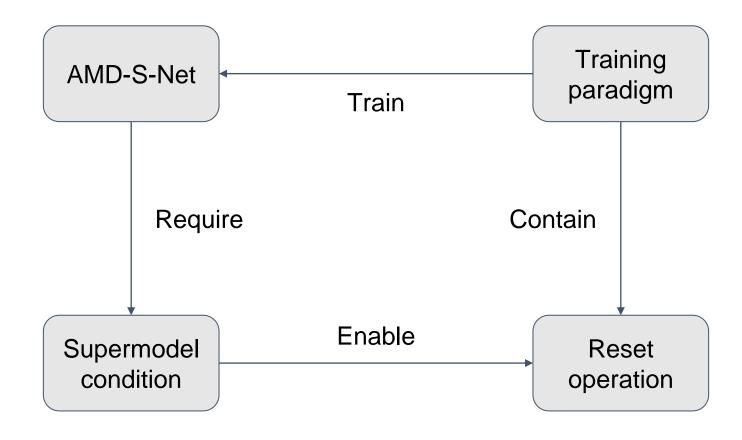
Which is trained with our training paradigm and must satisfy a specific *supermodel* condition.

AMD-S-Net also contains a specific framework design to fully distill the information

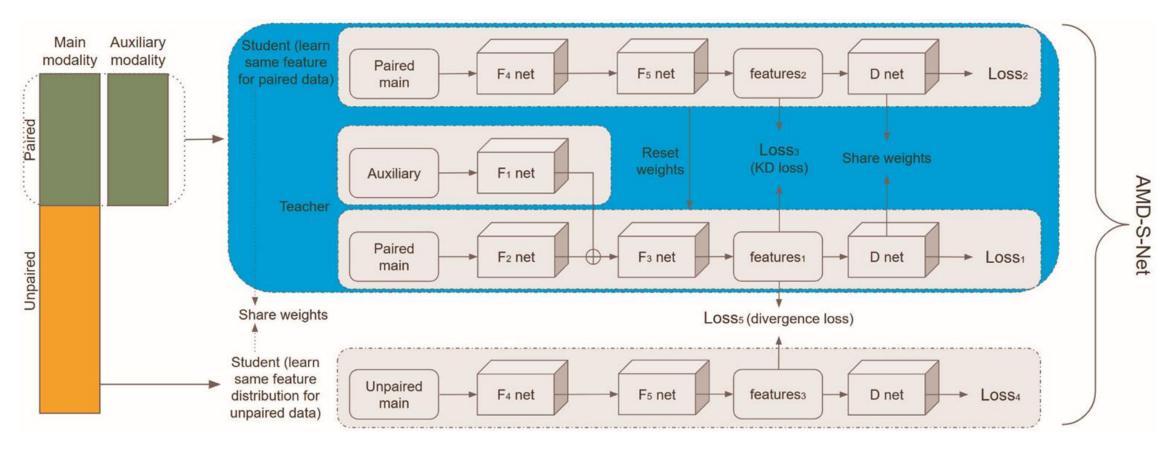
- consistency supervision for the pairwise data
- distribution divergence supervision for the unpaired data.

A novel knowledge distillation *training paradigm* that enables teachers to explore and provide student's local loss landscape information in a higher dimension to students, boosting performance.

Relation of Key Concepts

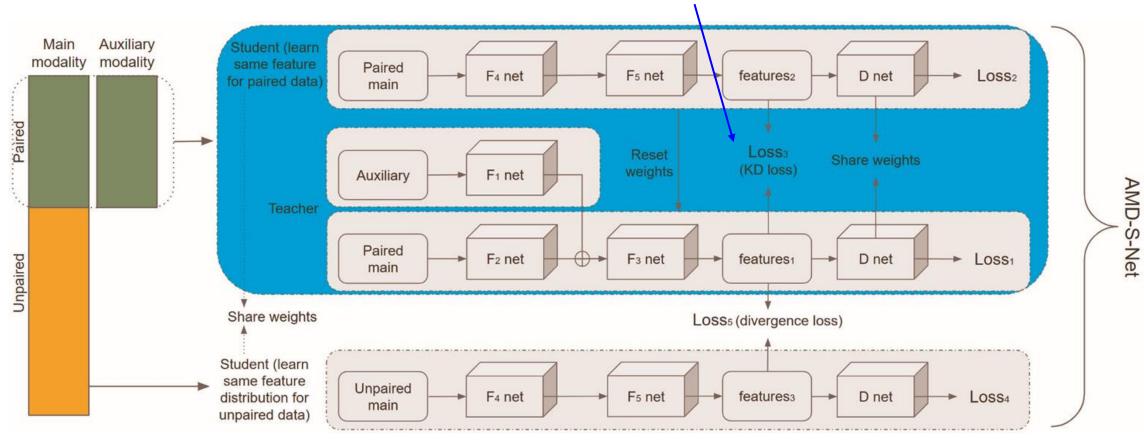


Framework (AMD-S-Net)

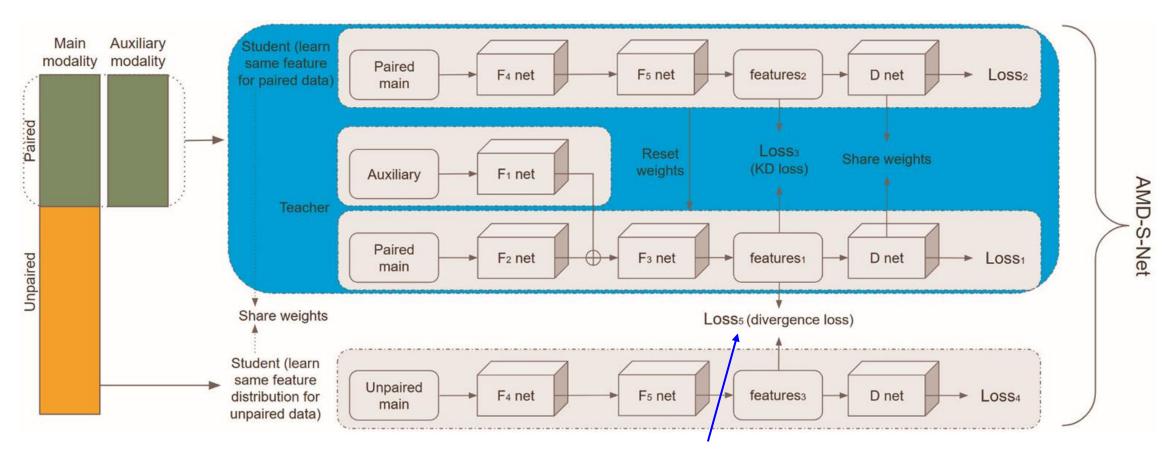


Framework (AMD-S-Net)

consistency supervision for the pairwise data



Framework (AMD-S-Net)



distribution divergence supervision for the unpaired data

Supermodel Condition

Definition 1. Given a model $M_{\theta_A}^{(A)}(I_A)$ (weights θ_A and input I_A), and a model $M_{\theta_B}^{(B)}(I_B)$ (weights θ_B and input I_B), if for any θ_A , there is a θ_B , such that $M_{\theta_A}^{(A)}(I_A) = M_{\theta_B}^{(B)}(I_B)$ for any arbitrary valid input data I_A and its superset I_B . We call model M_B as a "supermodel" of M_A .

Example:



Reset Operation

Definition 2. Given a model $M_{\theta_A}^{(A)}(I_A)$ (weights θ_A and input I_A), and its supermodel $M_{\theta_B}^{(B)}(I_B)$ (weights θ_B and input I_B), we define "reset B with A" to be the process of constructing a new θ_B that meet $M_{\theta_A}^{(A)}(I_A) = M_{\theta_B}^{(B)}(I_B)$ for given θ_A and any arbitrary valid input data I_A and its superset I_B .

Example:

Suppose B is a supermodel of A (e.g., B=A+A'), reset B with A is constructing such $\theta_B=[\theta_A,0]$

, where θ_A is the weights of A and 0 is the weights of A'.

Without VS With Our Training Paradigm

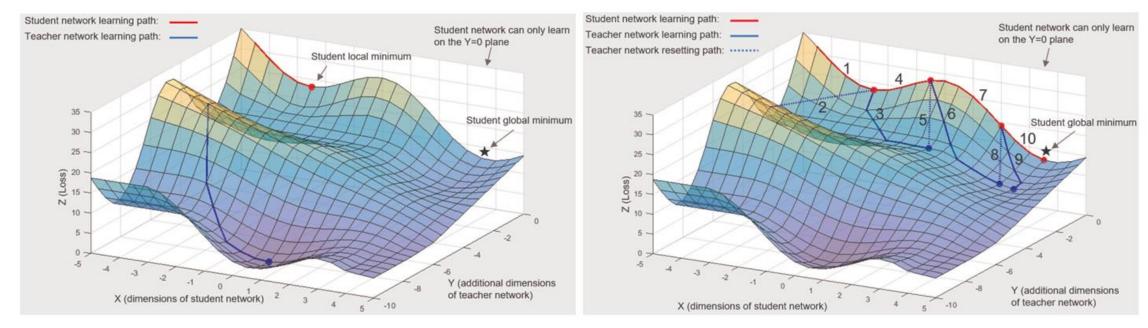


Fig. 2. Training Path Comparison on Loss Landscape. Given the teacher network is a *supermodel* of the student network, the student parameter space (along X axis with Y=0) is a subspace of the teacher parameter space (XY plane). LEFT: Without our training paradigm, the teacher is not aware of the student states, the training path and the final state of the teacher can be far away from the student space, i.e. the landscape may be totally different, thus providing limited guidance and lead to the student getting stuck in a local minimum. RIGHT: In our method, the teacher is reset to the student states at the beginning of each round, and does optimization with additional dimensions but within a certain range of the student space, teaching the student with local landscape information and potential direction to a better solution. The number $1 \sim 10$ is the step order of these processes, see details in Sec. III-C.

Our Training Paradigm

Comparison (AMD-S-Net)

		Accuracy (%) on different angle threshold τ (degree)					
Method	$\tau = 1.5$	$\tau = 3.0$	$\tau = 7.5$	$\tau = 15$	$\tau = 30$	$\tau = 75$	Mean
Oracle (100% auxiliary modality data)	42.7	68.0	88.0	94.4	96.6	98.6	81.4
one stream (RGB only)	27.3	49.0	77.4	90.2	95.4	98.1	72.9
two streams (shared regressor)	25.9	47.2	77.7	88.4	93.6	97.8	71.8
Modified Xiao et al. [1]	40.8	64.1	84.7	92.7	95.8	98.2	79.4
Modified DMCL [26]	39.1	67.5	88.3	93.9	96.7	98.2	80.6
Ours (AMD-S-Net)	52.6	72.7	91.3	95.0	97.0	98.3	84.5

TABLE I

Performance comparison for AMD-S-Net under the small amount of auxiliary modality data setting (20%).

OUR METHOD OUTPERFORMS OTHER METHODS BY UP TO 12.7% MEAN ACCURACY IMPROVEMENT.

Comparison (Our Training Paradigm)

Accuracy on different threshold τ (%)										
Method	$\tau = 1.5$	$\tau = 3.0$		$\tau = 15$	$\tau = 30$	$\frac{7}{1 \tau = 75}$	Mean	Improvement		
Wichiou	T = 1.5	$\tau = 3.0$	$\tau = 7.5$	$\tau = 15$	$\tau = 30$	$\tau = 75$	Mean	Improvement		
train vanilla										
Teacher (img+seg)	40.8	64.1	84.7	92.7	95.8	98.2	79.4			
Student (img)	27.3	49.0	77.4	90.2	95.4	98.1	72.9			
existing distillation methods										
kd [4]	23.4	41.2	68.9	83.7	92.1	97.2	67.7			
hint [11]	28.3	47.6	77.8	89.2	95.0	98.4	72.7			
similarity [13]	20.6	38.9	66.7	81.5	92.6	98.0	66.4			
correlation [15]	21.7	39.5	70.0	86.8	94.6	98.2	68.5			
rkd [16]	26.2	46.5	74.8	87.9	94.1	97.8	71.2			
pkt [9]	30.3	51.0	78.2	88.4	94.4	98.2	73.4			
abound [10]	24.8	45.2	74.9	87.3	93.7	97.7	70.6			
factor [8]	26.8	47.8	76.9	88.8	94.7	98.0	72.2			
fsp [6]	27.1	47.7	74.4	87.9	94.4	97.8	71.6			
attention [7]	27.1	47.0	73.1	84.9	92.8	98.3	70.5			
	existing dis	tillation met	hods with o	ur training	paradigm					
kd [4]	30.4	53.7	78.5	88.3	94.8	97.8	73.9	6.2		
hint [11]	52.7	71.2	88.8	93.6	95.5	97.1	83.1	10.4		
similarity [13]	52.6	72.7	91.3	95.0	97.0	98.3	84.5	18.1		
correlation [15]	21.7	39.7	71.2	87.0	94.4	98.2	68.7	0.2		
rkd [16]	32.4	53.8	79.5	89.3	94.7	97.9	74.6	3.4		
pkt [9]	54.2	72.5	90.0	94.8	96.7	98.3	84.4	11		
abound [10]	24.9	45.3	75.1	87.1	93.5	97.7	70.6	0		
factor [8]	54.3	72.3	90.1	94.8	96.7	98.3	84.4	12,2		
fsp [6]	27.5	48.4	75.0	87.5	94.3	97.8	71.8	0.2		
attention [7]	46.2	68.1	86.8	93.4	96.6	98.2	81.5	11		

TABLE X

COMPARISON WITH KNOWLEDGE DISTILLATION METHODS ON AUDI DATASET (100% RGB IMAGE + 20% SEGMENTATION) WITH NVIDIA PILOTNET [30]. FIRST SECTION IN THE TABLE SHOWS THE PERFORMANCE OF TEACHER AND STUDENT NETWORK TRAINED DIRECTLY. SECOND SECTION SHOWS THE PERFORMANCE OF STUDENT WITH DIFFERENT KNOWLEDGE DISTILLATION METHODS (TRAIN STUDENT FROM START, USING THE PRETRAINED TEACHER MODEL IN THE PREVIOUS SECTION). THIRD SECTION SHOWS THE PERFORMANCE OF STUDENT AFTER USING OUR TECHNIQUE BASED ON OTHER METHODS (TAKE THE TEACHER AND STUDENT NETWORK IN THE SECOND SECTION OF THIS TABLE AS INIT MODEL, AND RETRAIN THE MODEL WITH OUR METHOD). BY COMPARING BETWEEN THE SECOND AND THIRD SECTION, WE CAN SEE OUR METHOD INCREASE THE PERFORMANCE OF MOST EXISTING METHODS WITH UP TO 18.1%.

Comparison (Other Tasks)

Model	DS↑	RC↑	IP↓	CP↓	CV↓	CL↓	RLI↓	SSI↓
RGB	21.0	60.5	0.49	0.01	0.15	0.08	0.14	0.04
RGB+PC	11.2	52.9	0.37	0.02	0.22	0.01	0.38	0.02
Ours	22.0	63.1	0.45	0.02	0.05	0.00	0.20	0.03

TABLE III

PERFORMANCE COMPARISON ON LONG ROUTES WAY POINTS
PREDICTION BETWEEN BASE (100% RGB), MULTI-MODALITY (28%
RGB + 28% POINT CLOUD), AND OUR METHOD (100% RGB + 28%
POINT CLOUD). DS: AVG. DRIVING SCORE, RC: AVG. ROUTE
COMPLETION, IP: AVG. INFRACTION PENALTY, CP: COLLISIONS WITH
PEDESTRIANS, CV: COLLISIONS WITH VEHICLES, CL: COLLISIONS
WITH LAYOUT, RLI: RED LIGHTS INFRACTIONS, SSI: STOP SIGN
INFRACTIONS.

Comparison (Other Tasks)

	Accuracy (%) on different modalities (ID:1~6)								
Method	1	2	3	4	5	6	mean		
Other KD Ours	84.92 87.42	62.98 62.29	68.75 70.86	61.10 66.34	70.35 71.97	43.17 49.49	65.2 68.1		

TABLE IV

Performance comparison on handwritten classification task. Our Method outperforms other KD methods with 2.9% on average.

Comparison (Different Backbones)

		Accuracy (%) on various angle threshold τ (degree)								
Backbone	Method	$\tau = 1.5$	$\tau = 3.0$	$\tau = 7.5$	$\tau = 15$	mAcc				
PilotNet	SIM	20.6	38.9	66.7	81.5	66.4				
PilotNet	SIM+ours	52.6	72.7	91.3	95.0	84.5				
ResNet34	SIM	30.1	54.4	85.5	94.1 93.3	76.6				
ResNet34	SIM+ours	37.2	60.2	85.7		78.6				
ShuffleV2	SIM	39.9	61.3	81.4	89.8	77.7				
ShuffleV2	SIM+ours	47.0	71.2	90.1	94.9	83.0				
MobileNetV2	SIM	31.1	51.4	78.2	89.4	73.9				
MobileNetV2	SIM+ours	52.9	71.8	89.7	94.6	84.0				
WRN	SIM	22.8	42.9	76.9	92.2	71.7				
WRN	SIM+ours	37.7	64.7	89.8	94.6	80.3				

TABLE VI

Performance comparison on different backbones. Our method outperforms SIM [13] on PilotNet [30], ResNet34 [43], ShuffleV2 [44], MobileNetV2 [45], and WRN [46] with up to 18.1% accuracy improvement.

Comparison (Robustness)

	Clean		Blur			Noise			
	Clean	Defocus	Glass	Motion	Zoom	Gauss	Shot	Impulse	
RGB only	73.1	72.7	71.8	69.8	72.3	67.9	66.9	67.0	
$20\%\mathcal{I}^A \ 100\%\mathcal{I}^A$	74.8 77.1	74.3 75.5	73.1 75.2	73.2 73.1	74.2 76.3	69.2 71.4	68.3 70.1	68.6 70.3	
	Clean		Wea	ther			Digital		mAcc
	Clean	Snow	Frost	Fog	Bright	Contrast	Pixel	JPEG	mAcc
RGB only	73.1	62.8	56.5	54.2	64.2	39.9	73.3	70.7	65
$20\%\mathcal{I}^A$ $100\%\mathcal{I}^A$	74.8 77.1	68.1 63.8	65.4 58.7	63.8 56.4	67.6 65.8	65.4 62.0	74.8 77.2	71.8 75.3	69.8 69.4

TABLE VIII

AVERAGE ACCURACY(%) OF OUR METHOD ON CLEAN AND PERTURBED DATA (GENERATED WITH IMAGENET-C EFFECTS [48]). THE LAST COLUMN "MEAN" IS THE MEAN ACCURACY ON ALL PERTURBED DATA (BLUR, NOISE, WEATHER AND DIGITAL). WE SHOW THAT BOTH BASIC AND SMALL-SHOT AUXILIARY MODALITY LEARNING CAN GET HIGHER ACCURACY THAN THE BASE METHOD (ABOUT 4.7% IN AVERAGE), I.E., HIGHER ROBUSTNESS.

Conclusion

A novel framework to distill knowledge from multi- to single- modality model small-shot auxiliary modality distillation network (AMD-S-Net)

- Among the first that only use a small amount of auxiliary modality data for training
- A specific architecture design to fully distill the information
 - consistency supervision for the pairwise data
 - distribution divergence supervision for the unpaired data.

Performance improvement

- Up to 12% compared to other AML methods
- Up to 18% compared to other knowledge distillation methods

Thank you!

