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APPENDIX

A. Supermodel Example

We first introduce the “supermodel” definition:
Definition 1.1: Given a model M (A)

θA
(IA) (weights θA and

input IA), and a model M
(B)
θB

(IB) (weights θB and input
IB), if for any θA, there is a θB , such that M

(A)
θA

(IA) =

M
(B)
θB

(IB) for any arbitrary valid input data IA and its
superset IB . We call model MB as a “supermodel” of MA.

We show a simple example of supermodel in Fig. 3. Net1
contains two blocks f1 and f2. Net2 contains the same
block f1 and f2, and another block h. If there is a set of
specific weights θ0 for h that can meet hθ0(x) = x for
any valid x, then Net2 is a supermodel of Net1, according
to Definition. 1.1. In this case, for any specific weights of
Net1, we can always construct a set of weights for Net2 that
has exactly the same performance of Net1, which means
the optimal solution for training Net2 will be no worse
than Net1. Furthermore, if these two models are training in
parallel, the supermodel can be “repositioned” to the same
status of the base model at any time by the construction
method above. This property can be used in knowledge
distillation to let the teacher get back to the student’s position
and help find a better way at any time the student is stuck.

Fig. 3. A simple example of supermodel. Net1 contains two blocks f1
and f2. Net2 contains the same block f1 and f2, and another block h
which is possible to be set as an identical function.

B. Implementation Details

Setting. All experiments are conducted using one Intel(R)
Xeon(TM) W-2123 CPU, two Nvidia GTX 1080 GPUs, and
32G RAM. We use the SGD optimizer with learning rate
0.001 and batch size 128 for training. The number of epochs
is 2,000. The loss correlations are α = 1, γ = 1, while β are
set with different values for different knowledge distillation
methods following [14] (See details in Appendix I), and λ =
β/10. We pick epoch number in each round k = 5 from
ablation study of k = 1, 2, 5, 20. We set the round number
n = 400 for Audi dataset and n = 40 for Honda dataset. In

the experiments, each training process is finished within 24
hours.
Evaluation metric. We use the same evaluation metric as
a lastest work [37], i.e., the accuracy w.r.t a threshold τ
as accτ = count(|vpredicted − vactual| < τ)/n, where n
denotes the number of test cases; vpredicted and vactual
indicate the predicted and ground-truth value, respectively.
We compute mean accuracy (mAcc) as

∑
τ accτ∈T /|T |,

where T = {1.5, 3.0, 7.5, 15, 30, 75} contains empirically
selected thresholds of steering angles.
Dataset. For the end-to-end steering task, we do experiments
on Audi and Honda datasets. The Audi dataset [38] is
the most recent (2020). We use the semantic segmentation
subset since it contains both steering angle from bus data
and semantic segmentation labels paired with RGB images,
which can be used as an additional modality in our method.
It contains 41,277 frames in total. The Honda dataset [33]
has 100+ long-time driving videos, which is one of the
largest autonomous driving datasets. We extract 110k images
with 1Hz from the original videos and split them into 100k
training images and 10k test images.
Backbone. We choose the Nvidia PilotNet described in [30]
as the main backbone. We select this model as it has been
used to steer an autonomous vehicle successfully in both the
real world [30] and virtual world [49], and also work for
the latest autonomous driving datasets [47]. In addition, four
other networks are tested to show generalizability.

As shown in Algorithm. 1, the training paradigm contains
t rounds. In each round, we first reset the teacher with the
student, then train the teacher independently while training
student with both the general label loss and knowledge
distillation loss for k epochs. k should not be too large
to avoid the teacher being far away from the student. The
training process stops when the student converges between
different rounds or until finishing t rounds.

C. Simple Experiment

We introduce a lemma on the optimal training loss of the
supermodel and its base model.

Lemma 1.1: Given a model M and its supermodel
M (s), the optimal training loss of M (s) (which
is argminθ(s) L(M

(s)

θ(s)(I
(s)), GT )) is less than or

equal to the optimal training loss of M (which is
argminθ L(Mθ(I), GT )). where L is the loss function and
GT is the ground truth.

Prove: Let θ∗ = argminθ L(Mθ(I), GT ) represent the
weights that lead to the best training performance for model
M , then according to the definition of supermodel, there
is a θ(s)∗ that meet Mθ∗(I) = M

(s)

θ(s)∗(I
(s)), equivalent

to L(Mθ∗(I), GT ) = L(M
(s)

θ(s)∗(I
(s)), GT ). That is, there’s

at least one solution for training M (s) can get the same
performance as training M . Furthermore, if θ∗ is the optimal
solution that achieves the minimal training loss of M (s), then
the equal condition in Lemma. 1.1 holds, if not, the less
condition holds.



Fig. 4. Simple experiment explanation. TOP: task definition, counting the number of red circles in an image of arbitrary shapes of varying colors, with
the images that only contain red circles as the auxiliary modality. BOTTOM: t-SNE visualization for the features generated from networks trained by our
methods. The base features are mixed together thus can not be well classified, while our features can be grouped better than the base ones (less mixing
points). The oracle features have almost no mixing up in each group because the model has sufficient training data (10x as the base and ours).

D. Simple Experiment

We consider a simple task of counting the number of red
circles in an image of arbitrary shapes of varying colors. In
this case, the main modality IM is the image containing a
random layout of arbitrary shapes. We create an auxiliary
modality IA as the images that only contain red circles,
as shown in Fig. 4. For the experiment, we generate 4000
image samples of the main modality with ground-truths
{iMn , yMn } ∈ IMtrain, and test on another 2000 randomly
generated layouts for IMtest. For the auxiliary modality IA

we generate 4000 samples {iAn } ∈ IA. To confirm the hy-
pothesis that the knowledge of IA can be distilled to improve
the task on IM , we design an ablation study comparing the
following baselines:

• Oracle IM : IMtrain is sufficient for θM ∗;
• Underfitted IM : IMtrain is not sufficient for θM ∗;
• Underfitted IM plus auxiliary IA: Add auxiliary

samples from IA to insufficient IM .
• Underfitted IM plus insufficient auxiliary IA: Add

auxiliary but a small number of samples from IA to
insufficient IM .

For the Oracle experiment, all 4,000 training samples are
used, the model is nearly perfect at inference, achieving
99.95% accuracy on IMtest. In an Underfitted situation, we
randomly sample 10% from IMtrain and have created an
insufficiently trained classifier with 46% accuracy. After that,
in addition to the Underfitted model we add 400 auxiliary
samples from IA, the accuracy improves to 75% (29 percent
improvement). Even without sufficient auxiliary samples,
when we select merely 80 samples from IA and use AMD-
S-Net, we still witness a plausible improvement to 64% (18
percent improvement). We generate the t-SNE visualizations
for the representations from each baseline in Fig. 4, and ob-
serve clearly enhanced clusters with the distilled knowledge
from auxiliary modality achieved by our methods.

E. Modifications on SOTA Frameworks

We compare our framework with 2 straightforward frame-
works and 2 modified frameworks based on SOTA modality
distillation methods. We use 100% RGB images and 20%
segmentation data in this experiment. Specifically, the one
stream (RGB only) method uses 100% RGB images only
with the student network. Two streams (shared regressor)
method contains RGB and segmentation pipelines with a
feature extractor for each pipeline and a shared regressor.
The total loss is the sum of RGB loss and segmentation loss.
During test, only the RGB pipeline is used. For the modified
[1] and modified DMCL [26], we keep the 20% paired RGB
and segmentation to go through the original pipeline with
backpropagation, and let the rest 80% RGB data go through
a single RGB pipeline with backpropagation. During test,
only the RGB pipeline is used.

F. Comparison with SOTA Knowledge Distillation Methods

We show the detailed comparison data our AMD-S-Net
in Table X. With our method, the performance improvement
can get up to 18.1%.

G. Multi-Modal End-to-End Waypoint Prediction

To show the generalizability of our method, we do ex-
periments on another end-to-end autonomous driving task,
way points prediction task. Following the setting of [50],
we consider the task of navigation along a set of predefined
routes in different areas, such as motorways, urban regions,
and residential districts. A sequence of sparse goal locations
in GPS coordinates provided by a global planner and the re-
lated discrete navigational commands, such as “follow lane”,
“turn left/right”, and “change lane”, constitute the routes.
Only the sparse GPS locations are used in our method. Each
route is constituted of several scenarios that are initialized
at predefined locations and test the agent’s ability to handle
various adversarial situations, such as obstacle avoidance,



unprotected turns at intersections, vehicles running red lights,
and pedestrians emerging from occluded areas crossing the
road at random locations. The agent needs to complete
the route within a certain amount of time, while following
traffic restrictions and dealing with large numbers of dynamic
agents. For dataset, we use the CARLA [51] simulator
for training and testing, specifically CARLA 0.9.10 which
consists of 8 publicly available towns. We use 7 towns for
training and hold out Town05 for evaluation as in [50]. See
Table. III.

Model DS↑ RC↑ IP↓ CP↓ CV↓ CL↓ RLI↓ SSI↓
RGB 21.0 60.5 0.49 0.01 0.15 0.08 0.14 0.04

RGB+PC 11.2 52.9 0.37 0.02 0.22 0.01 0.38 0.02
Ours 22.0 63.1 0.45 0.02 0.05 0.00 0.20 0.03

TABLE III
PERFORMANCE COMPARISON ON LONG ROUTES WAY POINTS

PREDICTION BETWEEN BASE (100% RGB), MULTI-MODALITY (28%
RGB + 28% POINT CLOUD), AND OUR METHOD (100% RBG + 28%

POINT CLOUD). DS: AVG. DRIVING SCORE, RC: AVG. ROUTE

COMPLETION, IP: AVG. INFRACTION PENALTY, CP: COLLISIONS WITH

PEDESTRIANS, CV: COLLISIONS WITH VEHICLES, CL: COLLISIONS

WITH LAYOUT, RLI: RED LIGHTS INFRACTIONS, SSI: STOP SIGN

INFRACTIONS.

H. Handwriting Classification

We also perform comparison on multi-feature handwritten
classification task [52] in Table. IV. The dataset [53], [54],
[55] consists of six features of handwritten numerals (‘0’–
‘9’) with 2000 samples in total. We regard the six feature sets
as six modalities, and treat each of them as target modality
in each experiment. Teacher network is able to get all 6
modalities (but only 20% amount of data). During test, only
one target modality is available. Our method outperforms
others with 5.1% in average.

Accuracy (%) on different modalities (ID:1∼6)

Method 1 2 3 4 5 6 mean

Other KD 84.92 62.98 68.75 61.10 70.35 43.17 65.2
Ours 87.42 62.29 70.86 66.34 71.97 49.49 68.1

TABLE IV
Performance comparison on handwritten classification task. OUR

METHOD OUTPERFORMS OTHER KD METHODS WITH 5.1% ON AVERAGE.

I. Knowledge Distillation Methods Settings

For different knowledge distillation methods, different
values of β (weight of the consistency loss) is used. We
use the same setting as [14]. Specifically:

• kd [4]: β = 0
• hint [11]: β = 100
• similarity [13]: β = 3000
• correlation [15]: β = 0.02
• rkd [16]: β = 1
• pkt [9]: β = 30000
• abound [10]: β = 1

• factor [8]: β = 200
• fsp [6]: β = 50
• attention [7]: β = 1000

J. Comparison on Different Datasets and Modalities

We also do comparison with other knowledge distillation
methods on different datasets (Audi [38], Honda [33], and
SullyChen [39]) and different modalities (RGB, segmenta-
tion, depth map, and edge map). Specifically, Audi dataset
contains ground truth segmentation, and other segmentation
is generated by Tao et al. [40], while the depth map is gener-
ated by [41] and the edge map is generated by DexiNet [42].
In Table. V, our method outperform others in all cases with
up to 11% accuracy improvement.

K. Comparison on different backbones.

Except for the Nvidia PilotNet [30], we change the back-
bone to four other backbones, ResNet [43], ShuffleV2 [44],
MobileNetV2 [45], and WRN [46], and do comparison in
Table. VI. Our method outperforms other methods in all the
cases with up to 18.1% accuracy improvement.

L. Comparison on different tasks.

M. Effectiveness on Different Modalities

We do comparison on different types of auxiliary modal-
ities on Audi dataset in Table. VII, with a basic L2-norm
feature loss for the knowledge distillation process. We show
that all the auxiliary modalities can perform better than the
base model by at least 2.8%. This shows our algorithm can
utilize different types of auxiliary modalities well, even with
a basic knowledge distillation loss.

N. Robustness

We test the robustness of our distilled model following
a SOTA work [47] on clean and perturbed Audi dataset
(generated with ImageNet-C effects [48]). Table. VIII shows
our method can also improve the robustness while not seen
any of the perturbed images.

O. Random auxiliary data

When use random noisy as auxiliary modality, our method
will not be affected, see Table. IX.



Accuracy (%) on different angle threshold τ (degree)

Dataset Train Mod Test Mod Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 mAcc

Audi RGB+seg RGB+seg Teacher 42.7 68.0 88.0 94.4 96.6 98.6 81.4

Audi RGB+seg RGB best others 30.3 51.0 78.2 88.4 94.4 98.2 73.4
RGB+seg RGB ours 52.6 72.7 91.3 95.0 97.0 98.3 84.5

Audi RSDE RSDE Teacher 49.9 72.1 89.5 94.9 97.1 98.6 83.7

Audi RSDE RGB best others 27.7 47.8 77.4 90.8 95.6 98.3 72.9
RSDE RGB ours 30.2 50.3 79.7 91.0 96.2 98.6 74.3

SullyChen RDE RDE Teacher 41.1 63.7 88.6 95.9 97.9 99.1 81.0

SullyChen RDE RGB best others 59.5 82.1 93.9 98.2 99.5 100.0 88.9
RDE RGB ours 63.4 83.0 94.3 98.2 99.5 100.0 89.7

Honda RSDE RSDE Teacher 41.3 61.1 83.9 94.0 98.3 99.9 79.8

Honda RSDE RGB best others 38.9 57.7 79.7 91.7 97.5 99.3 77.4
RSDE RGB ours 37.9 57.7 81.7 93.5 98.2 99.6 78.1

TABLE V
COMPARISON ON DIFFERENT DATASETS AND DIFFERENT MODALITIES. RSDE IS SHORT FOR RGB + SEGMENTATION + DEPTH MAP + EDGE MAP, AND

RDE IS SHORT FOR RGB + DEPTH MAP + EDGE MAP. OUR METHOD OUTPERFORMS OTHERS ON DIFFERENT DATASETS AND DIFFERENT ADDITIONAL

MODALITIES WITH UP TO 11% ACCURACY IMPROVEMENT.

Accuracy (%) on various angle threshold τ (degree)

Backbone Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

PilotNet SIM 20.6 38.9 66.7 81.5 66.4
PilotNet SIM+ours 52.6 72.7 91.3 95.0 84.5

ResNet34 SIM 30.1 54.4 85.5 94.1 76.6
ResNet34 SIM+ours 37.2 60.2 85.7 93.3 78.6

ShuffleV2 SIM 39.9 61.3 81.4 89.8 77.7
ShuffleV2 SIM+ours 47.0 71.2 90.1 94.9 83.0

MobileNetV2 SIM 31.1 51.4 78.2 89.4 73.9
MobileNetV2 SIM+ours 52.9 71.8 89.7 94.6 84.0

WRN SIM 22.8 42.9 76.9 92.2 71.7
WRN SIM+ours 37.7 64.7 89.8 94.6 80.3

TABLE VI
PERFORMANCE COMPARISON ON DIFFERENT BACKBONES. OUR METHOD OUTPERFORMS SIM [13] ON PILOTNET [30], RESNET34 [43],

SHUFFLEV2 [44], MOBILENETV2 [45], AND WRN [46] WITH UP TO 18.1% ACCURACY IMPROVEMENT.

Accuracy (%) on various angle threshold τ (degree)

Type of IA τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 mAcc

Base (No IA) 28.3 49.5 79.7 89.1 73.1

Depth map [41] 33.3 57.6 81.5 90.4 75.9
Edge map [42] 34.9 56.2 79.6 90.9 76.0

Segmentation [40] 35.2 58.3 83.3 91.6 77.1

TABLE VII
COMPARISON ON DIFFERENT TYPES OF AUXILIARY MODALITIES ON AUDI DATASET, WITH A BASIC L2-NORM FEATURE LOSS FOR THE KNOWLEDGE

DISTILLATION PROCESS. WE SHOW THAT ALL THE AUXILIARY MODALITIES CAN PERFORM BETTER THAN THE BASE MODEL BY AT LEAST 2.8%. THIS

SHOWS OUR ALGORITHM CAN UTILIZE DIFFERENT TYPES OF AUXILIARY MODALITIES WELL, EVEN WITH A BASIC KNOWLEDGE DISTILLATION LOSS.



Clean Blur Noise

Clean Defocus Glass Motion Zoom Gauss Shot Impulse

RGB only 73.1 72.7 71.8 69.8 72.3 67.9 66.9 67.0

20%IA 74.8 74.3 73.1 73.2 74.2 69.2 68.3 68.6
100%IA 77.1 75.5 75.2 73.1 76.3 71.4 70.1 70.3

Clean Weather Digital mAcc

Clean Snow Frost Fog Bright Contrast Pixel JPEG mAcc

RGB only 73.1 62.8 56.5 54.2 64.2 39.9 73.3 70.7 65

20%IA 74.8 68.1 65.4 63.8 67.6 65.4 74.8 71.8 69.8
100%IA 77.1 63.8 58.7 56.4 65.8 62.0 77.2 75.3 69.4

TABLE VIII
AVERAGE ACCURACY(%) OF OUR METHOD ON CLEAN AND PERTURBED DATA (GENERATED WITH IMAGENET-C EFFECTS [48]). THE LAST COLUMN

”MEAN” IS THE MEAN ACCURACY ON ALL PERTURBED DATA (BLUR, NOISE, WEATHER AND DIGITAL). WE SHOW THAT BOTH BASIC AND SMALL-SHOT

AUXILIARY MODALITY LEARNING CAN GET HIGHER ACCURACY THAN THE BASE METHOD (ABOUT 4.7% IN AVERAGE), I.E., HIGHER ROBUSTNESS.

Accuracy (%) on different threshold τ (degree)

Input τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean

RGB 32.4 53.2 78.7 87.7 94.1 97.8 74.0
RGB + 3 Rand 30.3 51.7 79.8 88.4 94.4 97.5 73.7

TABLE IX
RGB IMAGE PLUS 3 RANDOM CHANNELS AS INPUT CAN PERFORM NEARLY AS WELL AS ONLY RGB IMAGE AS INPUT, SHOWING ADDING USELESS

CHANNELS WILL NOT INFLUENCE THE PERFORMANCE TOO MUCH.

Accuracy on different threshold τ (%)

Method τ = 1.5 τ = 3.0 τ = 7.5 τ = 15 τ = 30 τ = 75 Mean Improvement

train vanilla
Teacher (img+seg) 40.8 64.1 84.7 92.7 95.8 98.2 79.4

Student (img) 27.3 49.0 77.4 90.2 95.4 98.1 72.9

existing distillation methods
kd [4] 23.4 41.2 68.9 83.7 92.1 97.2 67.7

hint [11] 28.3 47.6 77.8 89.2 95.0 98.4 72.7
similarity [13] 20.6 38.9 66.7 81.5 92.6 98.0 66.4
correlation [15] 21.7 39.5 70.0 86.8 94.6 98.2 68.5

rkd [16] 26.2 46.5 74.8 87.9 94.1 97.8 71.2
pkt [9] 30.3 51.0 78.2 88.4 94.4 98.2 73.4

abound [10] 24.8 45.2 74.9 87.3 93.7 97.7 70.6
factor [8] 26.8 47.8 76.9 88.8 94.7 98.0 72.2

fsp [6] 27.1 47.7 74.4 87.9 94.4 97.8 71.6
attention [7] 27.1 47.0 73.1 84.9 92.8 98.3 70.5

existing distillation methods with our training paradigm
kd [4] 30.4 53.7 78.5 88.3 94.8 97.8 73.9 6.2

hint [11] 52.7 71.2 88.8 93.6 95.5 97.1 83.1 10.4
similarity [13] 52.6 72.7 91.3 95.0 97.0 98.3 84.5 18.1
correlation [15] 21.7 39.7 71.2 87.0 94.4 98.2 68.7 0.2

rkd [16] 32.4 53.8 79.5 89.3 94.7 97.9 74.6 3.4
pkt [9] 54.2 72.5 90.0 94.8 96.7 98.3 84.4 11

abound [10] 24.9 45.3 75.1 87.1 93.5 97.7 70.6 0
factor [8] 54.3 72.3 90.1 94.8 96.7 98.3 84.4 12.2

fsp [6] 27.5 48.4 75.0 87.5 94.3 97.8 71.8 0.2
attention [7] 46.2 68.1 86.8 93.4 96.6 98.2 81.5 11

TABLE X
COMPARISON WITH KNOWLEDGE DISTILLATION METHODS ON AUDI DATASET (100% RGB IMAGE + 20% SEGMENTATION) WITH NVIDIA

PILOTNET [30]. FIRST SECTION IN THE TABLE SHOWS THE PERFORMANCE OF TEACHER AND STUDENT NETWORK TRAINED DIRECTLY. SECOND

SECTION SHOWS THE PERFORMANCE OF STUDENT WITH DIFFERENT KNOWLEDGE DISTILLATION METHODS (TRAIN STUDENT FROM START, USING

THE PRETRAINED TEACHER MODEL IN THE PREVIOUS SECTION). THIRD SECTION SHOWS THE PERFORMANCE OF STUDENT AFTER USING OUR

TECHNIQUE BASED ON OTHER METHODS (TAKE THE TEACHER AND STUDENT NETWORK IN THE SECOND SECTION OF THIS TABLE AS INIT MODEL,
AND RETRAIN THE MODEL WITH OUR METHOD). BY COMPARING BETWEEN THE SECOND AND THIRD SECTION, WE CAN SEE OUR METHOD INCREASE

THE PERFORMANCE OF MOST EXISTING METHODS WITH UP TO 18.1%.


