
Autonomous Driving Via 
Context-aware Multi-sensor Perception and 
Enhanced Inverse Reinforcement Learning

Yu Shen, Weizi Li, and Ming C. Lin

https://gamma.umd.edu/researchdirections/autonomousdriving/eirl/

1



Contents
● Motivation and Background
● State-of-Art Solutions
● Our Contributions
● Our Work

○ Overall Pipeline
○ Perception Pipeline
○ EIRL Pipeline
○ EIRL Algorithm
○ Platform

● Experiment Analysis
○ Perception Result Comparison
○ Perception Case Analysis
○ EIRL Test Scenes
○ EIRL Result Comparison
○ EIRL Feature Effectiveness
○ EIRL Case Analysis

● Video Demo
● Limitations and Future Work

2



Motivation and Background

Autonomous driving
● A technology that can make vehicles drive safely to the goal without human.
● Improve safety, efficiency, etc.
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Our Contributions
● A complete architecture, including context-aware multi-view, multi-sensor 

perception and enhanced inverse reinforcement learning (EIRL), that has both 
high compatibility and efficiency

● A context-aware perception algorithm based on AVOD to extract 
task-relevant information for multi-view, multi-sensor 3D perception 

● A enhanced IRL algorithm (EIRL) that can utilize non-uniform prior, reuse the 
model parameters for continuous training, and adapt the “learning from 
accidents” concept by using expert demonstration & additional simulation data

● An autonomous driving platform that encompasses realistic scenes in Unity, 
various functions like virtual sensors and data collectors, and various 
architectures such as end-to-end learning and perception-based planning
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Overall Pipeline
● At each time step, the simulator generates unstructured data, such as images 

and point clouds. These data are processed by the perception module to 
produce structured data, which are then used by the EIRL module to learn a 
control policy to control the vehicle.
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Perception Pipeline
● Extract the context-aware segmentation map, depth map and bird’s-eye-view image from the 

point cloud, pack RGB images with segmentation map & depth map as front-view information; 
● Extract features from both front view and bird’s-eye-view information (in blue);
● 3D objects are detected using Region Proposal Network (RPN) & detection network (in green).
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EIRL Pipeline
● Offline: Collect experts' trajectories, compute the feature expectation.
● Online: Compute the feature expectation of the current policy. If similar with 

the expert policy feature expectation then stop; or, else calculate a new 
reward and learn a new policy, iteratively.
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EIRL Algorithm
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Variable Description

Policy

Model parameters

Feature expectation

Manually set weights

Weights to be learnt

Features of a state

● Non-uniform prior
● Reused model parameters
● Learning from accidents



Autonomous Driving Platform
● Virtual Sensors: RGB camera, depth camera, Lidar, gyroscope, and GPS.
● Portable Architectures: End-to-end learning, perception plus motion planning, 

and perception plus learning-based planning.
● Collecting Module: Sensor data, calibration data and environment data, with 

different format, e.g., the KITTI dataset for the 3D object detection task.
● Others: Communication module, control module, etc.
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Perception Result Comparison
● Comparison of 3D Detection Models using mean Average Precision (mAP) as 

the metric. Our method achieves the highest scores across all difficulty levels 
of the detection task using KITTI. Overall, we can suppress up to 15% false 
positives compared with AVOD.
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Model Easy (mAP) Moderate (mAP) Hard (mAP)

MV3D 71.09 62.35 55.12

VoxelNet 77.47 65.11 57.73

F-PointNet 81.20 70.39 62.19

AVOD-FPN 81.94 71.88 66.38

Ours 82.16 73.22 67.38



Perception Case Analysis
● Detection results of (a) AVOD-FPN and (b) our method. The red bounding 

boxes denote ground truth while the green ones denote the detection results. 
Our method can suppress the false positives---case 1 and case 2---in (a) due 
to the use of the segmentation map and depth map.
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EIRL Test Scenes
● Scene 1: Open space with only moving vehicles;
● Scene 2: City street with only static obstacles;
● Scene 3: City street with static obstacles and moving vehicles.
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EIRL Result Comparison
●           shows safe trajectory length (in meters)
●            shows how many checkpoints the AV can achieve (number * 100)
● Our method not only achieves the highest scores but also enables the AV to 

drive safely 10x further than the other methods.
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Method

IM 105.6 77.4 53.7 60.1 44.7

RL 72.9 99.8 59.7 59.1 39.7

IRL 228.8 110.7 69.4 59.7 33.2

Ours 276.3 205.8 748.4 177.3 324.2



EIRL Feature Effectiveness
● Non-uniform prior can reduce the number of collision.

Number of collisions in three different scenes within 10,000 steps: IRL vs. EIRL 
(IRL+non-uniform prior). Our EIRL can reduce the number of collisions up to 41%.
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Model Scene 1 Scene 2 Scene 3

IRL 35 58 111

IRL+non-uniform prior 33 41 93



EIRL Feature Effectiveness
● “Reused model parameters” can improve the training efficiency.

By adding this feature, we can achieve the same score after 2 rounds of training -- 
otherwise achieved after 5 rounds of training -- resulting in 2.5x speedup
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EIRL Feature Effectiveness
● “Learning from accidents” can also improve the training efficiency.

Having additional training data from this feature, the learning algorithm achieves 
higher scores up to two orders of magnitude in near collision scenarios under the 
same number of epochs.
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EIRL Case Analysis 
● Static obstacle avoidance. Our method can cause the car to make a left turn 

for collision avoidance and resume safe driving.
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EIRL Case Analysis 
● Static and dynamic obstacle avoidance. Our car (denoted in green) can avoid 

another car (denoted in yellow) coming from the opposite direction while 
steering away from the static obstacles.

18



EIRL Case Analysis 
● Collision avoidance with multiple dynamic obstacles. Our method can direct 

the car (denoted in green) to avoid all nearby cars even when a narrow 
passage is presented.

19



Video Demo: Collision Avoidance in Open Space
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https://docs.google.com/file/d/1QiJkJkG-x2zBnqk2gYPhs8sXI-9Vryk8/preview


Video Demo: Collision Avoidance on City Streets
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https://docs.google.com/file/d/18S4mkbV7L7PGd8a9k5Fclivvr_FTaswP/preview


Video Demo: Collision Avoidance on City Streets 
with Other Cars
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https://docs.google.com/file/d/1fMXQSZgxKE80xmfYQXAag2dGLgAAVt3y/preview


Video Demo: Demo in Unity
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https://docs.google.com/file/d/1HqGgcgVUzD66Zkv1M6MfHbvgw-r1WETg/preview


Limitations and Future Work

● Perception: Although our perception module achieves high detection 
accuracy, the inference speed can be improved.

● Planning: Our approach inherits the limitations of IRL. One of them is 
encoding expert trajectories into one feature expectation. This process is 
subject to information loss.
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Thank you!
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