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Abstract

Given a set of request pairs in a network, the
problem of routing virtual circuits with low con-
gestion is to connect each pair by a path so
that few paths use the same link in the net-
work. We build on an earlier multicommodity
flow based approach of Leighton & Rao to show
that “short” flow-paths lead to path-selections
with “low” congestion. This shows that such
good path-selections exist for constant-degree ex-
panders with “strong” expansion, generalizing a
result of Broder, Frieze & Upfal. We also show,
for infinitely many n, n-vertex undirected graphs
Gn along with a set T of connection requests,
such that: (a) T is fractionally realizable using
flow-paths that impose a (fractional) congestion
of at most 1; but (b) any rounding of such a flow
to the given set of flow-paths, leads to a conges-
tion of Ω(log n/ log log n). This is progress on a
long-standing open problem.

1 Introduction

Due to the rapid growth of high-speed integrated
networks that provide vast bandwidth and sup-
port heterogeneous applications, considerable at-
tention has been paid recently to edge-disjoint
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paths, bandwidth allocation, and related algo-
rithmic problems on networks. We consider the
problem of setting up low congestion “circuits”
(paths) in a network. That is, given a set of re-
quests pairs in a network, we wish to determine
whether a set of paths can be routed between
each request pair such that very few paths use
the same wire. The natural linear relaxation of
the circuit switching problem is a multicommod-
ity flow problem. In this paper, we study the use
of this relaxation to produce a solution to the
circuit switching problem.

Suppose we are given a graph G and a (set or
multiset) T = {(si, ti) : 1 ≤ i ≤ k} of pairs of
vertices of G. A sub-(multi-)set T ′ of T is termed
realizable if the pairs of vertices in T ′ can be
connected in G by mutually edge-disjoint paths.
The classical maximum disjoint paths problem is
to find a realizable sub-(multi-)set of T of max-
imum cardinality. This is one of Karp’s origi-
nal NP-hard problems, and has resisted attempts
at showing good approximability; the problem
is NP-hard even when restricted to cubic planar
graphs. Also, much of the difficulty in admission
control and virtual-circuit routing in communica-
tion networks stems from the lack of good heuris-
tics for the disjoint paths problem [9].

Raghavan and Thompson obtained nearly op-
timal results on the related problem where each
edge can support a logarithmic number of paths
rather than a constant number of paths: their
idea is to solve the fractional version of the prob-
lem and then probabilistically “round” the solu-
tion to an integral solution [16]. We follow this
outline in this paper.

An alternative method is based on using ran-
dom walks in a graph to select candidate paths,
and then to probabilistically select from this set.
This method has been used by Broder, Frieze



and Upfal [6] in the setting of expander graphs.
They give a polynomial time algorithm that finds
disjoint paths between any O(n/ logc n) pairs of
nodes in a sufficiently strong expander. Recently,
they have used similar ideas to prove a better ex-
istential result [7]: the result is that any set of
c′n/ log2 n disjoint requests can be routed using
edge-disjoint paths, where c′ > 0 is a constant
that depends only on the expansion properties of
the graph. This technique has also been used by
Broder, Frieze, Suen, and Upfal [4, 5] to give re-
sults that are constant factor of optimal for both
node-disjoint and edge-disjoint paths on a certain
set of random graphs (with nonconstant degree).

1.1 Our Results

Our work belongs to the more general area of
rounding fractional flows to integral flows; by ap-
plying these results with the methods developed
earlier in [6, 12], we get our results for expanders.
So, we present our general rounding results first.

Suppose we are given a (directed or undi-
rected) graph G = (V,E) and a (set or multiset)
T = {(si, ti) : 1 ≤ i ≤ k} of pairs of vertices
of G. Let |V | = n and |E| = m. We are re-
quired to connect each (si, ti) pair by one path
in G, so that the congestion—the maximum num-
ber of paths using any given edge of G—is min-
imized. This is a well-known NP-hard problem
with applications in routing and VLSI design. A
well-known approach is to start with its multi-
commodity flow relaxation: finding the smallest
positive real ν∗(T ) such that we can ship one
unit of flow from each si to ti subject to no edge
having to carry a total of more than ν∗(T ) flow.
That is, we relax the “integrality” constraint of
either choosing one path or none at all for each
(si, ti), to its fractional counterpart. This re-
laxation is a linear program and hence can be
solved/approximated efficiently, and its optimum
ν∗(T ) is clearly a lower bound on the integral
congestion ν(T ).

How may we “round” a given fractional flow to
a good integral flow, i.e., an integral flow of low
congestion? In the positive direction, the follow-
ing randomized rounding approach is well-known
[16]. Given a fractional flow F of congestion (i.e.,

maximum total flow using any given edge) C, we
may first decompose it into a set of at most m
flow paths, by standard “flow decomposition” [1].
In other words, we can efficiently construct, for
each i, at most m paths Pi,1, Pi,2, . . ., each con-
necting si to ti and with path Pi,j carrying a flow
zi,j ≥ 0. The “unit flow” condition implies that
∀i,
∑
j zi,j = 1; the congestion constraint implies

that
∀f ∈ E,

∑
(i,j):f∈Pi,j

zi,j ≤ C. (1)

The standard randomized rounding approach is
to pick, for each i, precisely one path Pi,j : path
Pi,j is chosen with probability zi,j , and the ran-
dom choices for different i are independent. By
an application of the Chernoff bound, it can be
seen that if, e.g., C = 1, then the congestion
resulting from randomized rounding is at most
O(log n/ log log n), with high probability; this
can also be derandomized.

It is a major open question if such a conges-
tion bound can be improved. Parameterizing the
problem appropriately can help bring improve-
ments. One such useful parametrization is that
of the dilation D of the fractional flow F , defined
to be the maximum length of any of the paths
Pi,j . Improvements on the above Chernoff-based
congestion bound when D is no(1), have been pre-
sented in [19]; these results work best when the
fractional congestion C is Ω(1). We complement
this by working with the case where C = o(1),
which is the case, for instance, for routing with
very low congestion on graphs. Our parameter-
ization is also based on D, and our first main
result is as follows, where e denotes the base of
the natural logarithm:

Theorem 1: Let G be an arbitrary directed or
undirected graph. Given a fractional flow F of con-
gestion C and dilation D, let B be any positive
integer such that 3(B+1)DCB ≤ B!. Then, there
exists a way of rounding F wherein we choose one
of the flow paths Pi,j for each pair (si, ti), such
that the maximum number of paths using any edge
of the graph is at most B.

This theorem improves upon all similar theo-
rems shown in [12]. It is also existentially op-
timal to within a constant factor for B = 1: it



is not hard to construct instances of graphs and
fractional flows wherein C = Θ(1/D), such that
there is no way of choosing one flow path for
each (si, ti) with all the chosen paths being edge-
disjoint. Note that 3(B + 1)DCB ≤ B! holds
if C ≤ c0B/D

1/B , where c0 > 0 is an absolute
constant. Thus, we get

Corollary 2: There is a constant c0 > 0 such
that the following holds. Let G be any directed
or undirected graph. Given a fractional flow F of
congestion C and dilation D, let B be any positive
integer such that C ≤ c0B/D

1/B . Then, there
exists a way of rounding F wherein we choose one
of the flow paths Pi,j for each pair (si, ti), such
that the maximum number of paths using any edge
of the graph is at most B.

Theorem 6 uses this corollary along with the
work of Leighton & Rao [12] to yield our im-
proved routing results for expanders. Theorem 6
shows that for any constant-degree n-vertex ex-
pander G with suitably strong expansion proper-
ties, there is a constant c1 > 0 that depends only
on the expansion ofG such that any set of at most
c1n/ log1+1/B n disjoint requests can be routed in
G with congestion at most B. This generalizes a
corresponding result from [7] that works for the
case of B = 1: it was shown in [7] that such ex-
panders G can support edge-disjoint paths for up
to c′n/ log2 n disjoint requests, where c′ > 0 is a
constant that depends only on the expansion of
G.

Our second family of results are on the negative
side. Recall from above that if ν∗(T ) ≤ 1, then
ν(T ) = O(log n/ log log n). It is a longstand-
ing open question if this is tight; the only result
known is that there exist families of instances for
which ν∗(T ) ≤ 1 and ν(T ) ≥ 2. See [18, 13, 14]
for issues related to this question. It is very much
an open question whether ν∗(T ) ≤ 1 implies that
ν(T ) ≤ 3. We make progress on this question,
by showing that for directed graphs, the gap of
O(log n/ log log n) is indeed tight. For undirected
graphs, we show that this gap is tight for algo-
rithms that round the fractional flow to the flow
paths: i.e., algorithms that choose one of the flow
paths Pi,j for each (si, ti). This shows that for
undirected graphs, the multicommodity flow has

to be rerouted in some way, in order (if possible
at all) to improve on the O(log n/ log log n) gap,
thus showing the problem of approximately mini-
mizing congestion to be non-trivial in a technical
sense:

Theorem 3: For each n and any constant c > 0,
there exists a directed graph Gn and an undirected
graph Hn with nΘ(1) vertices each, such that the
following holds. (a) There exist routing instances
T on each of Gn and Hn such that there is a frac-
tional flow of congestion at most 1/ logc n, and (b)
any integral flow on Gn for T has a congestion of
Ω(log n/ log log n); any integral flow on Hn where
for each (si, ti), one of the paths Pi,j is chosen,
leads to a congestion of Ω(log n/ log log n).

The proofs of these rounding results are shown
in Section 2; the application to low-congestion
routing on expanders is discussed in Section 3.

2 Proofs of Theorems

We first recall the classical Lovász Local Lemma
[8]:

Lemma 4 : (Lovász Local Lemma) Let
A1, A2, A3, ..., At be events in an arbitrary probabil-
ity space. Suppose that Ai is mutually independent
of all but b other events Aj for each i ∈ {1, . . . , k}.
Then if ep(b+ 1) ≤ 1, we have Pr[

∧
iAi] > 0.

Proof of Theorem 1: Fix F , B etc. Since
3(B + 1)DCB ≤ B!, there is a sufficiently small
but positive ε such that

e(B + 1)DCB ≤ (1− ε)B+1B!. (2)

Fix such an ε > 0.
Recall that flow path Pi,j is an (si, ti) path

that carries a flow of value zi,j ≥ 0. For each
(i, j), we shall do the following. Let z′i,j be the
largest multiple of ε/m that is no larger than zi,j ;
replace Pi,j by z′i,jm/ε copies of itself, each of the
copies carrying a flow of precisely ε/m. Since this
process cannot increase any flow, it is clear that
the fractional congestion on any edge is still at
most C. How many flow paths do we have for
each (si, ti) pair now? Recall, for each i, that



∑
j zi,j = 1, and that there are at most m paths

Pi,j . Now, since z′i,j ≥ zi,j − ε/m, we see by
summing that

∑
j z
′
i,j ≥ 1−mε/m = 1−ε. Thus,

since each of the new flow-paths carries a flow of
exactly ε/m, we have at least m(1 − ε)/ε flow
paths for each i. In the rest of this proof, “flow
paths” shall refer to these newly constructed flow
paths P ′i,j .

Our randomized rounding process is now sim-
ple: independently for each (si, ti) pair, pick one
of its flow paths uniformly at random. We now
use the Lovász Local Lemma to show that with
positive probability, the congestion on any edge
f ∈ E is at most B. The crucial idea here is
the right choice of “bad” events. For each edge
f ∈ E and every set of B + 1 flow paths that
use it, associate one bad event that says that all
these B+ 1 paths get chosen by our random pro-
cess. It clearly suffices to show that with positive
probability, we avoid all of these bad events.

To use Lemma 4, we need to bound the proba-
bility of any given bad event, and bound the “de-
pendence” b in our system of bad events. Given
a bad event, if two of the paths in it are for the
same (si, ti) pair, the probability of the event
is clearly 0. Otherwise, since there are at least
m(1 − ε)/ε flow paths for each (si, ti) pair, the
probability of the event is at most

p
.= (ε/(m(1− ε)))B+1. (3)

What about the “dependence” b in the sense
of Lemma 4? Recall that each bad event
for us is a set of paths. Consider the bad
event E corresponding to the set of paths
{P ′i1,j1 , P

′
i2,j2

, . . . , P ′iB+1,jB+1
}. Since the random

choices for different (si, ti) pairs are done in-
dependently, it is easy to see that E is inde-
pendent of any combination of events of the
form E ′ = {P ′r1,s1 , P

′
r2,s2 , . . . , P

′
rB+1,sB+1

}, if
{i1, i2, . . . , iB+1} ∩ {r1, r2, . . . , rB+1} = φ. So,
suppose r1 ∈ {i1, i2, . . . , iB+1}, say r1 = i1.
For how many choices of r2, r3, . . . , rB+1 and
s1, s2, . . . , sB+1 do we have a bad event of the
form E ′? Now, there are at most m/ε choices for
s1; fix any such choice. The path P ′r1,s1 passes
through at most D edges, and each edge has at
most mC/ε flow paths using it. Thus, the num-

ber of bad events of the form E ′ is at most

(m/ε) ·D ·
(
mC/ε

B

)
≤ (m/ε)B+1DCB/B!.

Similarly, for each ` such that
r` ∈ {i1, i2, . . . , iB+1}, the dependency is at most
(m/ε)B+1DCB/B!. Thus, the total dependency
is at most

b
.= (B + 1)(m/ε)B+1DCB/B!− 1. (4)

(The “−1” comes up since the event E would have
been counted at least once in the above counting
process.) Thus, by Lemma 4, (2), (3) and (4),
we see that we avoid all the bad events with pos-
itive probability, i.e., there exists a rounding that
makes the congestion at most B.

2

Proof of Theorem 3: We show the construc-
tion for Gn, and then sketch how to modify it for
Hn. Let k ≤ n be a positive integer that divides
n (without loss of generality). Given a directed
path (v0, v1, . . . , vn) where there is an arc from
each vi to vi+1, we recursively construct Gn as
follows. Construct a new source vertex and a new
sink vertex. Add arcs from the source vertex to
the vertices {vin/k : 0 ≤ i ≤ k − 1}, and add
arcs from the vertices {vin/k : 1 ≤ i ≤ k} to the
sink vertex. The source and sink form a new de-
mand pair. Now recurse separately on each of the
k directed paths {(vin/k, vin/k+1, . . . , v(i+1)n/k) :
0 ≤ i ≤ k − 1}. (The value of k remains
the same throughout, though the lengths of the
chains change as we recurse.) We take k to be
logc

′
1 n, for some suitably large constant c′1 >

0. Thus, the depth of the recursion is d =
Θ(logn/ log k) = Θ(logn/ log log n).

A fractional flow with low congestion is as fol-
lows. Let s and t denote the source and sink
vertices respectively at the top level of the con-
struction. Send 1/k flow on each of the k paths
(s, vin/k, vin/k+1, . . . , v(i+1)n/k, t), for 0 ≤ i ≤
k − 1; the lower levels of the recursion can be
handled the same way. Thus, since the conges-
tion on any edge from each level of the recursion
is at most 1/k, the maximum fractional conges-
tion is at most d/k, which can be made smaller
than 1/ logc n by taking c′1 suitably large.



What about integral flows? Let s and t
be the source and sink vertices respectively at
the top level of the construction. Note that
any directed (s, t)-path must use all of the ver-
tices in (vin/k, vin/k+1, . . . , v(i+1)n/k), for some
i. The idea now is to recurse on the path
(vin/k, vin/k+1, . . . , v(i+1)n/k). Continuing this
way, we see that some edge must have conges-
tion equaling the depth of the construction, i.e.,
congestion d = Θ(log n/ log log n).

Finally, the construction for Hn is very simi-
lar, except that all the arcs above become undi-
rected edges, and that all the directed fractional
flow paths constructed above become undirected
fractional flow paths.

2

3 Results for Constant De-
gree Expanders

We start with some definitions.

Definition 1:
A graph G = (V,E) is a β-expander graph if for

any subset S of V where |S| < |V |/|β| then size of
N(S)− S is at least min(β|S|, |V |/|β|).

Definition 2:
A graph G = (V,E) is a triple expander graph

if the edges E can be partitioned into three sets
E1,E2, and E3 where G1 = (V,E1) and G2 =
(V2, E2) and G3 = (V,E3) are expanders.

The above definitions are simplified for our
convenience. Given a more general definition of
expander one can show that any sufficiently good
expander is a triple expander [6].

We now summarize some of the results of [12]
as a theorem relevant for us:

Theorem 5 : ([12]) Suppose we are given a
routing problem with any set T of k disjoint pairs
of requests on a triple expander G = (V,E); let
|V | = n. Suppose, for some integer B ≥ 1 and
any routing request T ′ on G, that a fractional flow
for T ′ with congestion c2k(log n)/n and dilation
c3 log n can be converted into an integral flow for

T ′, with congestion at most B (c2, c3 > 0 are con-
stants that depend only on the expansion of G, and
not on n). Then, T can be routed on G with con-
gestion at most B.

Substituting C = c2k(log n)/n and D =
c3 log n in the statement of Corollary 2, we get
our main result for expanders:

Theorem 6: Given any triple expander G =
(V,E), let |V | = n. There is a constant c1 > 0
that depends only on the expansion of G and not
on n, such that any set of at most c1n/ log1+1/B n
disjoint requests can be routed with congestion at
most B.

As mentioned before, the case B = 1 matches
a result from [7], but our results for B > 1 are
new, and thus generalize the result of [7]. (It is
shown in [7] that any set of up to c′n/ log2 n dis-
joint requests can be routed in an edge-disjoint
fashion–i.e., with congestion 1—in G.) Moreover,
we can make the above routing result construc-
tive via the approach of [3, 2] by a losing a bit
in the congestion bound; we shall present these
results in the full version.

4 Conclusions and Open
Questions

In this work, we have shown further progress on
the routing capacity of suitably strong expander
graphs under limited edge-capacity. A very inter-
esting question is to study is the tightness of these
results. It is not hard to check that any bounded-
degree n-vertex graph can support edge-disjoint
paths only for up to O(n/ log n) pairs of connec-
tion requests. The results of [7] as well as ours,
proven using very different means, give the lower
bound of Ω(n/ log2 n). Is this tight?

Another open question in the case of expanders
is to come up with good constructive results for
these problems, particularly for the case of edge-
disjoint paths. As mentioned above, application
of the Beck-Alon framework [3, 2] makes us lose
a bit in the congestion bound; in particular, the
case of congestion 1 (edge-disjoint paths) seems
hard to handle by using this approach directly. In



ongoing work, the authors are working on these
issues and have made progress. It will also be of
interest to develop good codes for these problems.

A tantalizing open question is the long-
standing one of fractional vs. integral conges-
tion. Our work shows that re-routing of frac-
tional flows is necessary to improve on the worst-
case relationship between fractional and integral
congestion. Any progress on these questions
should be of interest.
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