
A Probabilistic Model for Learning
Concatenative Morphology

Matthew G. Snover
Department of Computer Science

Washington University
St Louis, MO, USA, 63130-4809

ms9@cs.wustl.edu

Michael R. Brent
Department of Computer Science

Washington University
St Louis, MO, USA, 63130-4809

brent@cs.wustl.edu

Abstract

This paper describes a system for the unsupervised learning of morpho-
logical suffixes and stems from word lists. The system is composed of a
generative probability model and hill-climbing and directed search algo-
rithms. By extracting and examining morphologically rich subsets of an
input lexicon, the directed search identifies highly productive paradigms.
The hill-climbing algorithm then further maximizes the probability of the
hypothesis. Quantitative results are shown by measuring the accuracy of
the morphological relations identified. Experiments in English and Pol-
ish, as well as comparisons with another recent unsupervised morphol-
ogy learning algorithm demonstrate the effectiveness of this technique.

1 Introduction

One of the fundamental problems in computational linguistics is adaptation of language
processing systems to new languages with minimal reliance on human expertise. A ubiq-
uitous component of language processing systems is the morphological analyzer, which
determines the properties of morphologically complex words like watches and gladly by
inferring their derivation as watch+s and glad+ly. The derivation reveals much about the
word, such as the fact that glad+ly share syntactic properties with quick+ly and semantic
properties with its stem glad. While morphological processes can take many forms, the
most common are suffixation and prefixation (collectively, concatenative morphology).

In this paper, we present a system for unsupervised inference of morphological derivations
of written words, with no prior knowledge of the language in question. Specifically, neither
the stems nor the suffixes of the language are given in advance. This system is designed
for concatenative morphology, and the experiments presented focus on suffixation. It is
applicable to any language for written words lists are available. In languages that have
been a focus of research in computational linguistics the practical applications are limited,
but in languages like Polish, automated analysis of unannotated text corpora has potential
applications for information retrieval and other language processing systems. In addition,
automated analysis might find application as a hypothesis-generating tool for linguists or as
a cognitive model of language acquisition. In this paper, however, we focus on the problem
of unsupervised morphological inference for its inherent interest.

During the last decade several minimally supervised and unsupervised algorithms have
been developed. Gaussier[1] describes an explicitly probabilistic system that is based pri-
marily on spellings. It is an unsupervised algorithm, but requires the tweaking of param-
eters to tune it to the target language. Brent [2] and Brent et al. [3] describe Minimum
Description Length, (MDL), systems. Goldsmith [4] describes a similar MDL approach.
Our motivation in developing a new system was to improve performance and to have a
model cast in an explicitly probabilistic framework. We are particularly interested in devel-
oping automated morphological analysis as a first stage of a larger grammatical inference
system, and hence we favor a conservative analysis that identifies primarily productive
morphological processes (those that can be applied to new words).

In this paper, we present a probabilistic model and search algorithm for automated analysis
of suffixation, along with experiments comparing our system to that of Goldsmith [4]. This
system, which extends the system of Snover and Brent [5], is designed to detect the final
stem and suffix break of each word given a list of words. It does not distinguish between
derivational and inflectional suffixation or between the notion of a stem and a root. Further,
it does not currently have a mechanism to deal with multiple interpretations of a word, or
to deal with morphological ambiguity. Within it’s design limitations, however, it is both
mathematically clean and effective.

2 Probability Model

This section introduces a prior probability distribution over the space of all hypotheses,
where a hypothesis is a set of words, each with morphological split separating the stem and
suffix. The distribution is based on a seven-step model for the generation of hypotheses,
which is heavily based upon the probability model presented in [5]. The hypothesis is
generated by choosing the number of stems and suffixes, the spellings of those stems and
suffixes and then the combination of the stems and suffixes.

The seven steps are presented below, along with their probability distributions and a running
example of how a hypothesis could be generated by this process. By taking the product over
the distributions from all of the steps of the generative process, one can calculate the prior
probability for any given hypothesis. What is described in this section is a mathematical
model and not an algorithm intended to be run.

1. Choose the number of stems,
�

, according to the distribution:����������	�
�� ������ (1)

The
�� � term normalizes the inverse-squared distribution on the positive inte-
gers. The number of suffixes, � is chosen according to the same probability
distribution. The symbols M for steMs and X for suffiXes are used throughout
this paper.
Example:

�
= 5. � = 3.

2. For each stem � , choose its length in letters ���� , according to the inverse squared
distribution. Assuming that the lengths are chosen independently and multiplying
together their probabilities we have:����� � ��� ����	 �
�� �! "�$#&%

� �� �� � (2)

The distribution for the lengths of the suffixes, ��' , is similar to (2), differing only
in that suffixes of length 0 are allowed, by offsetting the length by one.
Example: �(� = 4, 4, 4, 3, 3. ��' = 2, 0, 1.

3. Let) be the alphabet, and let *,+ %.-/-�- +&0 12043 be a probability distribution on) . For
each � from 1 to

�
, generate stem � by choosing �5�� letters at random, according

to the probabilities *6+ % -/-�- +.0 1.0$3 . Call the resulting stem set STEM. The suffix set
SUFF is generated in the same manner. The probability of any character, 7 , being
chosen is obtained from a maximum likelihood estimate: 8+:9 	<;>=? where @A9 is the
count of 7 among all the hypothesized stems and suffixes and B 	�C 9 @ 9 .
The joint probability of the hypothesized stem and suffix sets is defined by the
distribution: �����

STEM D SUFF � � D,� � D,�ED,� ' ��	F�HG � G "9JI 1LK @A9BNM
; =

(3)

The factorial terms reflect the fact that the stems and suffixes could be generated
in any order.
Example: STEM = * walk, look, door, far, cat 3 . SUFF = * ed, O , s 3 .

4. We now choose the number of paradigms, P . A paradigm is a set of suffixes and
the stems that attach to those suffixes and no others. Each stem is in exactly one
paradigm, and each paradigm has at least one stem., thus P can range from 1 to�

. We pick P according to the following uniform distribution:����� P � ����	Q��R %
(4)

Example: P = 3.
5. We choose the number of suffixes in the paradigms, S , according to a uniform

distribution. The distribution for picking S � , suffixes for paradigm � is:����� S � � �TP �U	 ��
The joint probability over all paradigms, S is therefore:����� S � �TP �U	WV"�X#.% � R % 	

� �� � V (5)

Example: S = * 2, 1, 2 3 .
6. For each paradigm � , choose the set of S � suffixes, PARA '� that the paradigm will

represent. The number of subsets of a given size is finite so we can again use the
uniform distribution. This implies that the probability of each individual subset
of size S � , is the inverse of the total number of such subsets. Assuming that the
choices for each paradigm are independent:�����

PARA ' � �TPYS �U	 V"�X#.%
� �S � �

R % 	 � �S � �
R V

(6)

Example: PARA ' % = *ZO , s, ed 3 . PARA ' = *�O�3 . PARA '[= *�O , s 3 .
7. For each stem choose the paradigm that the stem will belong in, according to a

distribution that favors paradigms with more stems. The probability of choosing a
paradigm � , for a stem is calculated using a maximum likelihood estimate:� PARA �� ��
where PARA �� is the set of stems in paradigm � . Assuming that all these choices
are made independently yields the following:�����

PARA � � � �TP �U	 V"�X#.%
� � PARA �� �� � � PARA \] �

(7)

Example: PARA � % = * walk, look 3 . PARA � = * far 3 . PARA �[= * door, cat 3 .

Combining the results of stages 6 and 7, one can see that the running example would yield
the hypothesis consisting of the set of words with suffix breaks, * walk+ O , walk+s, walk+ed,
look+ O , look+s, look+ed, far+ O , door+ O , door+s, cat+ O , cat+s 3 . Removing the breaks in the
words results in the set of input words. To find the probability for this hypothesis just take
of the product of the probabilities from equations (1) to (7).

Using this generative model, we can assign a probability to any hypothesis. Typically one
wishes to know the probability of the hypothesis given the data, however in our case such a
distribution is not required. Equation (8) shows how the probability of the hypothesis given
the data could be derived from Bayes law.�����

Hyp � Data
��	 �����

Hyp
�^���Z�

Data � Hyp
������

Data
� (8)

Our search only considers hypotheses consistent with the data. The probability of the data
given the hypothesis,

�����
Data �Hyp

�
, is always

�
, since if you remove the breaks from any

hypothesis, the input data is produced. This would not be the case if our search considered
inconsistent hypotheses. The prior probability of the data is constant over all hypothe-
ses, thus the probability of the hypothesis given the data reduces to

�����
Hyp

� �_@ . The prior
probability of the hypothesis is given by the above generative process and, among all con-
sistent hypotheses, the one with the greatest prior probability also has the greatest posterior
probability.

3 Search

This section details a novel search algorithm which is used to find a high probability seg-
mentation of the all the words in the input lexicon, � . The input lexicon is a list of words
extracted from a corpus. The output of the search is a segmentation of each of the input
words into a stem and suffix.

The search algorithm has two phases, which we call the directed search and the hill-
climbing search. The directed search builds up a consistent hypothesis about the segmen-
tation of all words in the input out of consistent hypothesis about subsets of the words.
The hill-climbing search further tunes the result of the directed search by trying out nearby
hypotheses over all the input words.

3.1 Directed Search

The directed search is accomplished in two steps. First, sub-hypotheses, each of which
is a hypothesis about a subset of the lexicon, are examined and ranked. The ` best sub-
hypotheses are then incrementally combined until a single sub-hypothesis remains. The
remainder of the input lexicon is added to this sub-hypothesis at which point it becomes
the final hypothesis.

We define the set of possible suffixes to be the set of terminal substrings, including the
empty string O , of the words in � . For each subset of the possible suffixes � , there is a
maximal set of possible stems (initial substrings)

�ba
, such that for each cedE� and eachf d � a , f c is a word in � . We define g � � � to be the sub-hypothesis in which each input

word f c that can be analyzed as consisting of a stem in
� a

and a suffix in � is analyzed
that way. This subhypothesis consists of all pairings of the stems in

�ha
and the suffixes in� with the corresponding morphological breaks. One can think of each sub-hypothesis as

initially corresponding to a maximally filled paradigm. We only consider sub-hypotheses
which have at least two stems and two suffixes.

For each sub-hypothesis, g , there is a corresponding null hypothesis, ig , which has the
same set of words as g , but in which all the words are hypothesized to consist of the

word as the stem and O as the suffix. We give each sub-hypothesis a score as follows:
score

� g �j	k����� g � � ����� ig � . This reflects how much more probable g is for those words,
than the null hypothesis.

One can view all sub-hypotheses as nodes in a directed graph. Each node, l � , is connected
to another node, l:m if and only if lnm represents a superset of the suffixes that l � represents,
which is exactly one suffix greater in size than the set that l � represents. By beginning at
the node representing no suffixes, one can apply standard graph search techniques, such as a
beam search or a best first search to find the ` best scoring nodes without visiting all nodes.
While one cannot guarantee that such approaches perform exactly the same as examining
all sub-hypotheses, initial experiments using a beam search with a beam size equal to ` ,
with a ` of 100, show that the ` best sub-hypotheses are found with a significant decrease
in the number of nodes visited. The experiments presented in this paper do not use these
pruning methods.

The ` highest scoring sub-hypotheses are incrementally combined in order to create a
hypothesis over the complete set of input words. Changing the value of ` does not dra-
matically alter the results of the algorithm, though higher values of ` give slightly better
results. We let ` be 100 in the experiments reported here.

Let B be the ` highest scoring sub-hypotheses. We iteratively remove the highest scoring
hypothesis o�p from B . The words in oZp are added to each of the remaining sub-hypotheses
in B , and their null hypotheses, with their morphological breaks from o p . If a word in o p
was already in o the morphological break from o p overrides the one from o . All of the
sub-hypotheses are now rescored, as the words in them have changed. If, after rescoring,
none of the sub-hypotheses have likelihood ratios greater than one, then we use o p as our
final hypothesis. Otherwise we, iterate until either there is only one sub-hypotheses left or
all subhypotheses have scores no greater than one.

The final sub-hypothesis, o p , is now converted into a full hypothesis over all the words. All
words in � that are not in o p are added to o p with suffix O .
3.2 Hill Climbing Search

The hill climbing search further optimizes the probability of the hypothesis by moving
stems to new nodes. For each possible suffix c , and each node l , the search attempts to
add c to l . This means that all stems in l that can take the suffix c are moved to a new
node, l�p , which represents all the suffixes of l and c . This is analogous to pushing stems
to adjacent nodes in a directed graph. A stem f , can only be moved into a node with the
suffix c , if the new word, f c is an observed word in the input lexicon. The move is only
done if it increases the probability of the hypothesis.

There is an analogous suffix removal step which attempts to remove suffixes from nodes.
The hill climbing search continues to add and remove suffixes to nodes until the probability
of the hypothesis cannot be increased. A more detailed description of this portion of the
search and its algorithmic invariants is given in [5].

4 Experiment and Evaluation

4.1 Experiment

We tested our unsupervised morphology learning system, which we refer to as Paramorph,
and Goldsmith’s MDL system, otherwise known as Linguistica1, on various sized word lists

1A demo version available on the web, http://humanities.uchicago.edu/faculty/goldsmith/, was
used for these experiments. Word-list corpus mode and the method A suffix detection were used. All

from English and Polish corpora. For English we used set A of the Hansard corpus, which is
a parallel English and French corpus of proceedings of the Canadian Parliament. We were
unable to find a standard corpus for Polish and developed one from online sources. The
sources for the Polish corpus were older texts and thus our results correspond to a slightly
antiquated form of the language. The results were evaluated by measuring the accuracy of
the stem relations identified.

We extracted input lexicons from each corpus, excluding words containing non-alphabetic
characters. The 100 most common words in each corpus were also excluded, since these
words tend to be function words and are not very informative for morphology. The systems
were run on the 500, 1,000, 2,000, 4,000, and 8,000 most common remaining words. The
experiments in English were also conducted on the 16,000 most common words from the
Hansard corpus.

4.1.1 Stem Relation

Ideally, we would like to be able to specify the correct morphological break for each of
the words in the input, however morphology is laced with ambiguity, and we believe this
to be an inappropriate method for this task. For example it is unclear where the break in
the word, “location” should be placed. It seems that the stem “locate” is combined with
the suffix “tion”, but in terms of simple concatenation it is unclear if the break should be
placed before or after the “t”.

In an attempt to solve this problem we have developed a new measure of performance,
which does not specify the exact morphological split of a word. We measure the accuracy
of the stems predicted by examining whether two words which are morphologically related
are predicted as having the same stem. The actual break point for the stems is not evaluated,
only whether the words are predicted as having the same stem. We are working on a similar
measure for suffix identification.

Two words are related if they share the same immediate stem. For example the words
“building”, “build”, and “builds” are related since they all have “build” as a stem, just as
“building” and “buildings” are related as they both have “building” as a stem. The two
words, “buildings” and “build” are not directly related since the former has “building”
as a stem, while “build” is its own stem. Irregular forms of words are also considered
to be related even though such relations would be very difficult to detect with a simple
concatenation model.

The stem relation precision measures how many of the relations predicted by the system
were correct, while the recall measures how many of the relations present in the data were
found. Stem relation fscore is an unbiased combination of precision and recall that favors
equal scores.

4.2 Results

The results from the experiments are shown in Figures 1 and 2. All graphs are shown using
a log scale for the corpus size. Due to software difficulties we were unable to get Linguistica
to run on 500, 1000, and 2000 words in English. The software ran without difficulties on
the larger English datasets and on the Polish data. As an additional note, Linguistica was
dramatically faster than Paramorph, which is a development oriented software package and
not as optimized for efficient runtime as Linguistica appears to be.

Figure 1 shows the number of different suffixes predicted by each of the algorithms in
both English and Polish. Our Paramorph system found a relatively constant number of

other parameters were left at their default values.

0

100

200

300

400

500

600

700

800

500 1000 2k 4k 8k 16k

E
ng

lis
h

N
um

be
r o

f S
uf

fi
xe

s

Lexicon Size

0

20

40

60

80

100

120

140

160

500 1000 2k 4k 8k

Po
lis

h
N

um
be

r o
f S

uf
fi

xe
s

Lexicon Size

ParaMorph
Linguistica

Figure 1: Number of Suffixes Predicted

0

0.2

0.4

0.6

0.8

1

500 1000 2k 4k 8k 16k

E
ng

lis
h

St
em

 R
el

at
io

n
Fs

co
re

Lexicon Size

0

0.2

0.4

0.6

0.8

1

500 1000 2k 4k 8k

Po
lis

h
St

em
 R

el
at

io
n

Fs
co

re

Lexicon Size

ParaMorph
Linguistica

Figure 2: Stem Relation Fscores

suffixes across lexicon sizes and Linguistica found an increasingly large number of suffixes,
predicting over 700 different suffixes in the 16,000 word English lexicon.

Figure 2 shows the fscores using the stem relation metric for various sizes of English and
Polish input lexicons. Paramorph maintains a very high precision across lexicon sizes
in both languages, whereas the precision of Linguistica decreases considerably at larger
lexicon sizes. However Linguistica shows an increasing recall as the lexicon size increases,
with Paramorph having a decreasing recall as lexicon size increases, though the recall of
Linguistica in Polish is consistently lower than the Paramorph’s recall. The fscores for
Paramorph and Linguistica in English are very close, and Paramorph appears to clearly
outperform Linguistica in Polish.

Suffixes Stems
-a -e -ego -ej -ie -o -y dziwnO -a -ami -y -ȩ chmur siekierO -cie -li -m -ć gada odda sprzeda

Table 1: Sample Paradigms in Polish

Table 1 shows several of the larger paradigms found by Paramorph when run on 8000 words
of Polish. The first paradigm shown is for the single adjective stem meaning “strange” with
numerous inflections for gender, number and case, as well as one derivational suffix, “-
ie” which changes it into an adverb, “strangely”. The second paradigm is for the nouns,
“cloud” and “ax”, with various case inflections and the third paradigm paradigm contains
the verbs, “talk”, “return”, and “sell”. All suffixes in the third paradigm are inflectional
indicating tense and agreement.

The differences between the performance of Linguistica and Paramorph can most easily
be seen in the number of suffixes predicted by each algorithm. The number of suffixes
predicted by Linguistica grows linearly with the number of words, in general causing his
algorithm to get much higher recall at the expense of precision. Paramorph maintains
a fairly constant number of suffixes, causing it to generally have higher precision at the
expense of recall. This is consistent with our goals to create a conservative system for
morphological analysis, where the number of false positives is minimized.

The Polish language presents special difficulties for both Linguistica and Paramorph, due
to the highly complex nature of its morphology. There are far fewer spelling change rules
and a much higher frequency of suffixes in Polish than in English. In addition phonology
plays a much stronger role in Polish morphology, causing alterations in stems, which are
difficult to detect using a concatenative framework.

5 Discussion

Many of the stem relations predicted by Paramorph result from postulating stem and suffix
breaks in words that are actually morphologically simple. This occurs when the endings
of these words resemble other, correct, suffixes. In an attempt to deal with this problem
we have investigated incorporating semantic information into the probability model since
morphologically related words also tend to be semantically related. A successful imple-
mentation of such information should eliminate errors such as capable breaking down as
cap+able since capable is not semantically related to cape or cap.

The goal of the Paramorph system was to produce a preliminary description, with very
low false positives, of the final suffixation, both inflectional and derivational, in a language
independent manner. Paramorph performed better for the most part with respect to Fscore
than Linguistica, but more importantly, the precision of Linguistica does not approach the
precision of our algorithm, particularly on the larger corpus sizes. In summary, we feel our
Paramorph system has attained the goal of producing an initial estimate of suffixation that
could serve as a front end to aid other models in discovering higher level structure.

References

[1] Éric. Gaussier. 1999. Unsupervised learning of derivational morphology from inflectional lexi-
cons. In ACL ’99 Workshop Proceedings: Unsupervised Learning in Natural Language Processing.
ACL.

[2] Michael R. Brent. 1993. Minimal generative models: A middle ground between neurons and
triggers. In Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics,
Ft. Laudersdale, FL.

[3] Michael R. Brent, Sreerama K. Murthy, and Andrew Lundberg. 1995. Discovering morphemic
suffixes: A case study in minimum description length induction. In Proceedings of the 15th Annual
Conference of the Cognitive Science Society, pages 28-36, Hillsdale, NJ. Erlbaum.

[4] John Goldsmith. 2001. Unsupervised learning of the morphology of a natural language. Compu-
tational Linguistics, 27:153-198.

[5] Matthew G. Snover and Michael R. Brent. 2001. A Bayesian Model for Morpheme and Paradigm
Identification. In Proceedings of the 39th Annual Meeting of the ACL, pages 482-490. ACL.

