
CMSC 414 S11 (shankar) Homework 4 Page 1 of 3

Note

• This homework is more like a take-home exam.
Your solution should meet the requirements of exam 1 solution.
It will be graded in the same way.
It will have much higher weight than other homeworks.

• You cannot ask questions about how to proceed, whether you are on the right track, etc.
You can “translate” such questions to exam 1 solution, and we will answer those.

• You can do this homework individually or with one partner. It’s entirely up to you.
Can’t find a partner? Not happy with your partner? Want to leave your partner? Not my concern.

• Your solution should be neat and readable.



CMSC 414 S11 (shankar) Homework 4 Page 2 of 3

Problem 1 [30 points]

This program below is a variation of the Otway-Reese protocol. It has an attacker, kdc Z, client A and server B. The
attacker can read-write the channel and get A’s old password (only when A is between sessions).

Protocol(Z, A, B) { // kdc, client, server
chan ← [];
hst ← []; // connect history
kAZ ← random(); // initial A-Z key
kBZ ← random(); // initial B-Z key
startSystem(Attacker());
startSystem(Kdc(Z,A,B,kAZ,kBZ));
startSystem(Client(A,Z,B,kAZ));
startSystem(Server(B,Z,A,kBZ));

}

Attacker() {
α; // initially has A, B, Z, all programs

// functions executable by attacker
function rChan {α ← chan;} // read chan

function wChan(x) {chan ← x;} // write chan

function getPwdA() { // get A.key iff A.t at 1
if (A.t at 1) {

α.append(A.key);
A.key ← Z.keyA ← random();

} } }

Kdc(Z, A, B, kAZ, kBZ) { // atomicity points: 1
keyA ← kAZ;
keyB ← kBZ;
t ← startThread(client());
return;

function kdc() {
while (true) {

1: msg ← rx([B,Z,.]);
x ← dec(keyB, msg[2]);
if (x.size = 4 and x[0,1] = [A,B]) {

nB ← x[2];
y ← dec(keyA, x[3]);
if (y.size = 3 and y[0,1] = [A,B]) {

nA ← y[2];
kAB ← random();
rA ← enc(keyA, [nA,kAB]);
rB ← enc(keyB, [nB,kAB]);
tx([Z,B,rA,rB]);

} } } }

Client(A, Z, B, kAZ) { // atomicity points: 1, 2
key ← kAZ;
t ← startThread(client());
return;

function client() {
while (true) {

1: nL ← random();
tx([A,B,1, enc(key, [A,B,nL])]);

2: msg ← rx([B,A,.]);
x ← dec(key, msg[2]);
if (x.size = 2) and x[0] = nL) {

kAB ← x[1];
hst.append([A,kAB]);
tx([A,B,2, enc(kAB,’HELLO’)]);

} } } }

Server(B, Z, A, kBZ) { // atomicity points: 1,2,3
key ← kBZ;
t ← startThread(server());
return;

function server() {
while (true) {

1: msg ← rx([A,B,1,.]);
nL ← random();
tx([B,Z, enc(key,[A,B,nL,msg[3]])];

2: msg ← rx([Z,B,.,.]);
x ← dec(key,msg[3]);
if (x.size = 2 and x[0] = nL) {

kAB ← x[1];
hst.append([B,1,kAB]);
tx([B,A,msg[2]]);

3: msg ← rx([A,B,2,.]);
if (dec(kAB,msg[3]) = ’HELLO’)

hst.append([B,2,kAB]);

} } } }



CMSC 414 S11 (shankar) Homework 4 Page 3 of 3

Problem 1 (cont)

Part a.

Does Inv A1 hold, where

A1 : ((j in hst.keys) and j > 0 and hst[j] = [A,p]) ⇒ hst[j−1] = [B,1,p]

If yes, assume that A appends [A,p] to hst at time t0 and prove that [B,1,p] is the last entry in hst just before t0.

If no, come up with a counter-example evolution, i.e., ending in a state where A1 does not hold.

Part b.

Does Inv A2 hold, where

A2 : ((j in hst.keys) and j > 0 and hst[j] = [B,2,p]) ⇒ hst[j−1] = [A,p]

If yes, assume that B appends [B,2,p] to hst at time t0 and prove that [A,p] is the last entry in hst just before t0.

If no, come up with a counter-example evolution, i.e., ending in a state where A1 does not hold.

(Hint: Inv ψ(A.key) may hold. Inv ψ(B.key) may not hold.)

Problem 2 [30 points]

Repeat problem 1 after changing the kdc-to-server message to include the response to A inside the response to B.

The change can be made as follows:

• In function kdc
...
rA ← enc(keyA, [nA,kAB]);
rB ← enc(keyB, [nB,kAB]);
tx([Z,B,rA,rB]);
...

becomes

...
rA ← enc(keyA, [nA,kAB]);
rB ← enc(keyB, [nB,kAB,rA]);
tx([Z,B,rB]);
...

• In function server
...

2: msg ← rx([Z,B,.,.]);
x ← dec(key,msg[3]);
if (x.size = 2 and x[0] = nL) {
...
tx([B,A,msg[2]]);
...

becomes

...
2: msg ← rx([Z,B,.]);

x ← dec(key,msg[2]);
if (x.size = 3 and x[0] = nL) {
...
tx([B,A,x[2]]);
...


