
 

 

 

 

 

Abstract 

The primary source for random number 

generation on Linux devices is the Linux Random 

Number Generator (LRNG). The LRNG collects 

unpredictable events, such as keypresses or mouse 

movements, and mixes these events together in a 

pool. When random values are requested, they are 

then pulled from this pool. 

Even though every Linux machine relies on 

the LRNG, research on its effectiveness has been 

almost exclusively theoretical. This can be attributed 

to the difficulty of profiling and auditing the LRNG, 

as interfering during its execution can result in 

mixing additional values into the pool. In an effort to 

enable and encourage the research community to 

conduct practical experiments on the LRNG's 

effectiveness, we have modified the Linux source 

code to safely produce relevant logs, and send these 

logs to a remote machine running an application we 

have created to parse and store these logs for future 

analysis. Finally, we have used these tools in several 

experiments to analyze the entropy addition habits 

during average computer use, and the randomness 

extraction habits of several security minded and non-

security minded applications. 

 

1. Introduction 

 

Random numbers are necessary everywhere 

in computing. Applications that use cryptography are 

perhaps the most obvious consumers of random 

numbers. Any time an encrypted communication 

channel is utilized by two parties, random numbers 

must be generated to ensure that their communication  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stays private and unalterable to malicious adversaries. 

Likewise, random numbers must be generated to 

encrypt files onto a hard drive, and ensure that the 

only person who can access those files is their owner, 

even if their computer falls into the wrong hands. 
However, there are many non-cryptographic 

uses of random numbers in computing as well. 

Randomized algorithms have been developed to sort 

or process large amounts of data. These algorithms 

rely on the generation of random values to ensure that 

the route of execution is chosen with equal 

probability from the set of possible routes. Any 

unencrypted communication between two computers, 

such as connecting through an internet browser to a 

website’s server, generates a random value to be used 

as an initial sequence number. In fact, every single 

time a program executes on a computer, the operating 

system must generate a random value. This value is 

used when determining where to put the program on 

the execution stack; by placing the program at a 

random offset, certain application attacks are 

mitigated. If the application were in fact malicious, 

knowledge of location on the stack could aid in 

attacks used to compromise the machine. 
Software applications thus require random 

numbers to be generated for multiple purposes. They 

must obtain these random numbers from somewhere; 

they are unable to generate random numbers 

themselves, as they are inherently deterministic 

processes. As John von Neumann said, “Anyone who 

considers arithmetical methods of producing random 

digits is, of course, in a state of sin,” and software 

applications are arithmetical methods at their core. 

Even if one writes their own random number 

generator in software, they still must obtain some 
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random value to use as a seed to initialize their 

generator. The solution: applications ask the 

operating system to provide random numbers for 

them. However, operating systems are just software 

as well and run into the same issues with generating 

unpredictable random values. The operating system 

too must look somewhere else. 
The operating system could use a seemingly 

random process. Hardware random number 

generators exist that take unpredictable processes, 

such as radioactive decay, and use those processes to 

create random values. One could purchase one of 

these machines and connect it to their computer, thus 

giving the operating system a source to collect 

random values. If this is outside of a user’s price 

range, they could turn to Lavarand. Lavarand is a 

random number generator that generates its values by 

taking a picture of a lava lamp and converting the 

image of the lamp’s internal state into a random 

number. In addition to issues of performance, both of 

these solutions require the addition of specialized 

hardware to function. A solution for random number 

generation must exist for general purpose computers, 

such as laptops and desktops, that does not rely the 

addition of additional hardware. 

 

2. Technical Background 

 

 The Linux Random Number Generator, the 

random number generator distributed with the Linux 

kernel, gathers events from its environment. The 

events are converted to numerical values and mixed 

into several pools of bytes, from which random 

numbers are extracted. The amount of entropy, or 

unpredictableness contributed to the internal pools, is 

estimated with each event that occurs. 

 

2.1 Events 

 

 Entropy is harvested from events that 

happen in the machine’s environment. The following 

list represents the types of events that the LRNG uses 

to add entropy to its internal state. 

 

Input: Methods of user input, such as typing 

on keys or moving a mouse, contributes to the 

internal pool. While these events are not necessarily 

uniform and may be somewhat predictable, it is 

assumed that a reasonable attacker is unable to 

sufficiently predict these events. Key presses are 

converted to numerical codes based on the key, and 

mouse movements are converted to a vector given the 

size and direction of the movement. The timing of the 

event is also included, to add additional entropy. 

 

Disk: Every time the disk is accessed, 

whether reading or saving files, the timing of the 

access is mixed into the internal state. 

 

Interrupt: Whenever an interrupt is issued 

from the kernel, its timing is mixed into a small, 

temporary pool called the “fast pool.” Given the 

frequency of interrupts, it is a poor performance 

decision to mix the pool every time an interrupt 

occurs. Instead, at longer regular intervals, the fast 

pool is mixed with the other pools. 

 

Device: Device adds a string of character 

bytes to the pools. However, these strings are usually 

hard-coded values (such as a computer’s MAC 

address), and if an attacker determines these values 

once, they are able to predict what they will be the 

next time the computer turns on. Device will 

therefore not actually contribute to the entropy 

estimation of the system, but the bytes will still be 

mixed with the pools. This is to ensure that the pool 

is properly initialized on startup, and prevent 

practical attacks seen in [3]. 

 

2.2 Entropy Estimation 

 

Unpredictable events add entropy to the 

system, which in this case can be a measure of how 

unpredictable the internal state of the random number 

generator is. The amount of entropy contributed by 

an individual event is determined by the timing of the 

event in comparison to the timing of previous events; 

if a similar event occurs multiple times in rapid 

succession it is deemed predictable, and will 

contribute a lower value to the estimated entropy 

available. For an event occurring at time ti (measured 

in jiffies, the number of cycles that have elapsed 

since the computer booted) we calculate first 



calculate the delta between this event and its previous 

event: 

 

The LRNG then calculates the delta between this 

delta and the previous delta: 

 

One final level of deltas is computed: 

 

 

The value Δi is set to be the delta with the lowest 

magnitude. Finally, we use Δi to estimate how much 

entropy was added by this event. If Δi < 2, we add 0 

to the estimated entropy counter.  If Δi > 2^12, we 

add 11. Finally, for all other values of Δi, we add 

⌊log2(Δi)⌋. 

 

2.3 Random Number Output 

 

 Random numbers can be requested from one 

of three interfaces. When a random string of bytes is 

requested, the LRNG will pull from its internal state 

and apply a cryptographic hash to the value.  A 

portion of the result will be mixed back into the 

internal state, and the rest will be folded together and 

output (in blocks of 10 bytes, that can later be 

truncated when filling the caller’s buffer). The 

following describe these interfaces. 

 

 /dev/random: A special character device 

visible to userspace processes. /dev/random will 

determine if the request being made is for a number 

of bytes larger than the current count of estimating 

entropy, and if so, will block the user process until 

enough entropy is available to fulfil their request. 

 

 /dev/urandom: Another special character 

device visible to userspace processes. Instead of 

blocking if not enough entropy is available, 

/dev/urandom will extract values from the internal 

state anyway and return them. The maintainers of the 

LRNG claim that /dev/urandom should not be used 

when cryptographically secure random values are 

needed. 

 

 get_random_bytes(): A kernel-internal 

function that operates along the same principles as 

/dev/urandom 

 

.2.4 Theoretical Vulnerabilities 

 

 There is much tension over whether or not 

the Linux Random Number Generator can offer 

sufficient security guarantees. Academics have 

discussed theoretical flaws in the design of the Linux 

Random Number Generator that may lead to a 

malicious adversary corrupting the internal state such 

that its output can become biased. One issue 

frequently discussed is the method of entropy 

estimation; the estimator described in section 2.2 has 

no theoretical backing, and parameters seem to have 

been chosen arbitrarily. The developers of the LRNG 

are reluctant to change the overall design as that 

would take a significant amount of resources, and 

these theoretical vulnerabilities have yet to be shown 

as feasible in practice. 
 In 2012, “Mining your Ps and Qs…” [3] 

demonstrated a practical attack on the LRNG was 

demonstrated in special circumstances. It was shown 

that during startup, the LRNG is “entropy starved,” 

that is, not enough events have been collected to 

ensure that the internal state is unpredictable. This led 

to a catastrophic attack where the researchers were 

able to predict the values of keys that were generated 

soon after the boot process was complete. The LRNG 

was updated in the next version of the kernel that was 

released (v. 3.6) such that the device events described 

above were added. While this is seen to have fixed 

the issue of low entropy on startup, the overall design 

of the LRNG has not been altered, and thus it still 

retains the theoretical vulnerabilities described in [1]. 

 

.3. System 
 

 The Linux Random Number Generator is 

implemented in the Linux Kernel. We feel that the 

inherent complexity of dealing with the Linux source 

code may result in researchers neglecting practical 

analysis of the Linux Random Number Generator in 



favor of working on theoretical vulnerabilities. We 

have created a testing framework that will allow the 

community to profile entropy collection and random 

value generation in the LRNG without having to 

heavily modify kernel code. To do so, we have 

modified the Linux kernel to send logs to a machine 

that parses and collects the results.  

 

.3.1 Kernel Modifications 

 

 The source code for the LRNG is located 

almost entirely in the kernel source file 

drivers/char/random.c. We have made alterations to 

this file such that, after recompiling the kernel and 

installing the updated version, we are able to log 

when useful events occur. Such events include what 

functions are adding entropy, when and how many 

random bytes are being requested, what the running 

totals are for entropy addition since the computer 

begin its boot process, and what the state of the 

internal pools is at a particular moment in time. To 

determine which logs get sent, we created a struct 

that stores booleans representing whether or not 

certain information should be logged. Before sending 

a particular log, we check to see if it is enabled by 

this struct, and if not, discard the log. This allows 

users to enable or disable particular logs by editing 

out log_option struct, instead of searching through 

the code to determine where each type of log is 

actually sent. 
 We wish to send many types of logs when 

their respective event occurs. There are some logs, 

such as running totals, that we would like to control 

manually. Since keyboard key presses add entropy 

and every key has a unique combination of values 

passed to its entropy addition function, we are able to 

designate certain keys as “triggers” for sending logs. 

When pressed, these keys will send their designated 

logs without adding any additional entropy. For our 

experiments, we used number pad keys, as they were 

never used in any of our scenarios. If one wishes to 

designate other keys as trigger keys, they may do so 

provided they know the appropriate values to 

represent that key (values can be determined by 

enabling all logging when keys are pressed, pressing 

the desired key, and manually inspecting the log). We 

note that pressing a key down, holding a key, and 

releasing a key are all separate events; we have 

enabled our trigger keys to send logs when the key is 

considered held. 

 

.3.2 Sending Logs 

 

 Our ultimate goal is to generate logs that can 

be stored persistently for future analysis; in order to 

gain meaningful results, one may need to process a 

large number of logs at the same time, or one may 

wish to inspect logs over a long period of time. One 

might first imagine a scenario where the machine 

running the modified kernel saved its logs to a special 

file located on disk, that could then be read later. 

However, we have already established that the LRNG 

considers disk access an unpredictable event. Writing 

logs to disk would result in the generation of more 

logs, that would then generate more logs themselves. 

This is undesirable. 
 Instead, we send logs from the modified 

machine to a client machine running custom software 

described in section 4. Using the kernel’s netpoll 

interface, we are able to send logs over ethernet 

without adding additional entropy to the system. This 

has the downside that the source and destination ip 

addresses and ports must be known at compile time; 

changing addresses requires recompilation and 

installation of the kernel. Logs can be sent out over 

the internet, or by using an ethernet crossover cable, 

we can connect machines directly to one another 
.  

4. Client 

 

Given that we cannot store logs to disk on 

the modified machine and must now send them to a 

secondary computer for collection and storage, we 

needed to create a schema that represented the 

structure of the logs and a client program that would 

parse and store them.  

 

4.1 Schema 

 

In order for the storage machine to receive 

and store the logs, a system needed to be developed. 

With XML, a schema would be developed that would 

allow a script to parse the logs one section at a time. 

The XML schema contains a name for each section 

of the log, which would be used later to store the log 



in a database. The XML schema also contains 

branching paths, that determine different paths of 

logging that the log has followed. An example of this 

would be branching to Read, Write, or State. In 

addition, the XML schema contains sections where 

data could be present, and a type that allows for easy 

entry of the logs into a database. 

 

 

 

 

 

 

 

Above is an example of one such schema. 

An example of a simple log being sent is shown. The 

bytes that constitute the log are ‘C0001RBrj\0’. 

Following the schema, we recurse through the list of 

requirements. The first byte relates to the 

continuation of the log. This section will determine if 

the given log is part of a greater whole log, or is 

meant to be taken alone. There is only one child of 

the <children> tag, meaning that this log can only 

follow one path at this point. In order to follow the 

one path provided to it, the log must meet the next 

requirement. The requirement is given by ‘trigger’, 

and in this case the trigger is ‘C’. The log meets this 

requirement, since its first byte is ‘C’. If this byte was 

different, the log would be malformed, since there are 

no other paths to take. Finally, we see that the size of 

this block is 4, which means that the Continuation of 

this log is comprised of the next 4 bytes. The 

Continuation of this log is ‘0001’. 
Next, this schema requests the function of 

the log. In this case, due to the next byte being ‘R’, 

the function is ‘Read’. No data is given, and therefore 

size is 0. The Read path continues on, whereas in this 

schema (but not any real schema) the Write function 

would be the last part of the log. 
Next, the Data is requested. ‘B’ is the 

‘trigger’ and the log fulfills this requirement. The size 

dictates that 3 bytes must be read from this section. 

However, with only 2 real bytes to give, the log 

leaves the last byte as the null byte. This is important, 

as the logger expects exactly the number of bytes 

requested in ‘size’. With all of this processing done, 

the logger would print as below. 

 

 

 

Furthermore, these sections are easily placed 

into the SQLite Database, as the columns and values 

required are certain to be present. The described 

system can be expanded and manipulated so long as 

the database is changed alongside it, to support the 

changes and remain current with the latest columns 

and values that need to be stored. 

 

4.2 Python Listener/Recursive Handler 

 

 The previous example of a log being 

processed and recorded has given a general overview 

of the program that handled the logs. However, in 

order to receive them a small listener was created. 



The logger was a python script, which looped 

constantly, listening on a created socket. Whenever 

packets would be received, whether the packet’s data 

read only ‘end’ was checked. In this case the server 

ceases to loop.  

 Otherwise, the data is given to the recursive 

function, which operates as described above. The 

function returns a dictionary, which should be 

populated with the results of the recursive calls. In 

the event that a log could not be parsed, an empty 

dictionary is returned. This allows the main loop to 

recognize easily that the log was of an incorrect 

format. No proper XML schema should permit this 

function to return an empty dictionary as a legitimate 

result. With this result in place, mapping the 

dictionary output to a SQLite schema is the next step, 

which is relatively simple given that the database 

schema will be custom modeled to the XML schema. 

With the data logged in this way, further analysis can 

take place through queries to the database. 

 

5. Analytical Results 

 

We ran several experiments to ensure that 

our framework was practical and straightforward to 

use. Unless noted otherwise, these experiments were 

executed on version 4.2 of the Linux kernel. 

 

5.1 One-hour Usage Experiment 

 

Our first experiment was to gather data over 

the course of one hour. During this hour, we engaged 

in what we deemed to be typical desktop-user 

activities: web browsing, opening and saving local 

files, and running local desktop applications. We 

collected how much entropy was added and how 

many random bytes were requested from each input 

and output channel, both immediately after the boot 

processes (when a user is first prompted to log in) 

and one hour from that point. 

 

 

 

 

 

 

 

 

The red bars in the graphs represent events 

that occurred during the boot process, and the blue 

bars represent events that occurred during the hour of 

typical usage. Note that the second column represents 

entropy added from the timing of events, which 

includes both input and disk events; timer is the sum 

of the input and disk columns. Thus, the only events 

that add entropy during boot are from adding devices 

(which mixes values into the pool but does not 

increase the estimated entropy total) and 

reading/writing to the disk. Most entropy during 

typical usage comes from user input; in a remote 

server or workstation scenario where one is not using 

a keyboard or mouse connected to the machine, the 

entropy pool is likely to fill at a significantly slower 

rate. 

[2] is the only study we found that provided 

experimental figures for entropy collection. During 

their experiments, no entropy was added from 

interrupts, possibly due to the fact that their 

experiment operated on a virtual machine. Our data 

shows that interrupts do contribute to the estimated 

entropy count by mixing bytes, although the 

contributions from interrupts are overshadowed by 

those from input and disk events. 



  

 

Two interesting conclusions can be drawn 

from the number of random bytes during this 

scenario. First, across both get_random_bytes() and 

/dev/urandom, approximately the same number of 

bytes were requested during both startup and the hour 

of usage. Second, /dev/random was never called once 

throughout the entire experiment. We reflect on this 

in section 5.2. 

 

5.2 Application Experiments 

 

During our second set of experiments, we 

took snapshots before and after using particular 

applications, and gauged their consumption of 

random value consumption on the difference. One 

such experiment involved operating the same 

workflow (opening a browser, navigating to 

www.facebook.com, and logging in to an account) on 

both the Firefox browser and the Tor browser. We 

assumed that Tor, being privacy minded, would 

consume a significantly larger number of bytes, while 

Firefox would act as a control that represented an 

average user’s browser. During the process, Firefox 

requested approximately 1500 bytes from 

/dev/urandom, and Tor requested approximately 

1600. This difference was significantly smaller than 

expected. Upon inspection of Tor source code, we 

learned that Tor only uses /dev/random to seed its 

own pseudorandom number generator, which then 

becomes the browser’s primary method of random 

number generation. 

Out of all the applications we tested, the 

only one to ever make a call to /dev/random that was 

not initiated explicitly by the user was key generation 

through GPG. Even ssh-keygen will default to 

/dev/urandom unless told otherwise. We can see that 

application developers are hesitant to use 

/dev/random due to its tendency to block frequently 

when entropy is low. GPG key generation took on the 

order of tens of minutes to generate a 4096-bit key, as 

it needed to collect 1024 bytes from /dev/random. 

Poor performance may be tolerable when generating 

a long-term key, but is unacceptable for encryption of 

live communications such as encrypted web 

browsing. Ssh-keygen’s defaulting to /dev/urandom 

shows that even developers of security-minded 

applications eschew the supposedly stronger security 

guarantees. 

 

5.3 Version Experiments 

 

Since all of our changes to the kernel lie in 

random.c, in order to test different versions of the 

kernel, we only need to port our changes to the 

appropriate locations in the other versions random.c 

file. This makes porting to older or newer versions of 

the kernel simple, so long as these versions keep the 

same high level design of the version we tested on. 

Since the overall design of the LRNG has not 

changed significantly since its inception, we were 

able to test older versions with ease. 

Two notable versions were version 3.5 and 

version 3.6. [3] was published between these two 

versions, and by running our framework, we can see 

how the developers responded to the paper. 3.5 did 

not include entropy from devices; the only entropy 

available at startup came from disk accesses (which, 

as mentioned in the paper, was predictable to a 

reasonable degree). Version 3.6 corrected this by 

including device entropy during boot, which resulted 

in a graph similar to the red bars from section 5.1.  

 

5. Future Work 

 

 The scope of this project was to create a 

framework and demonstrate its feasibility. In sections 

3 and 4, we describe how our framework operates, 

and demonstrate it in section 5. In the future, we plan 

to use the framework to demonstrate a practical 



attack on the LRNG, such as the theoretical attacks 

described in [1]. To mount such an attack, we plan on 

providing a large number of predictable events 

(keypresses) in an attempt to bring the internal state 

of the LRNG to a predictable point that may bias its 

outputs.  

 We also plan on open sourcing our 

framework to the research and development 

community. Our goal is to enable researchers to 

conduct analysis on the LRNG in practice, analysis 

that has largely been absent from the community 

until now. In addition to releasing documentation and 

our client code, we plan on releasing modified copies 

of the random.c files from popular versions of the 

Linux kernel, as many Linux machines are running 

older versions of the kernel that may be more 

susceptible to practical attacks. We hope that if such 

practical attacks on the LRNG are feasible, then the 

research community will be the first to know, and 

that the maintainers of the LRNG will move forward 

with a new, more secure design before such attacks 

are seen in the wild. 
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