

Abstract

The primary source for random number

generation on Linux devices is the Linux Random

Number Generator (LRNG). The LRNG collects

unpredictable events, such as keypresses or mouse

movements, and mixes these events together in a

pool. When random values are requested, they are

then pulled from this pool.

Even though every Linux machine relies on

the LRNG, research on its effectiveness has been

almost exclusively theoretical. This can be attributed

to the difficulty of profiling and auditing the LRNG,

as interfering during its execution can result in

mixing additional values into the pool. In an effort to

enable and encourage the research community to

conduct practical experiments on the LRNG's

effectiveness, we have modified the Linux source

code to safely produce relevant logs, and send these

logs to a remote machine running an application we

have created to parse and store these logs for future

analysis. Finally, we have used these tools in several

experiments to analyze the entropy addition habits

during average computer use, and the randomness

extraction habits of several security minded and non-

security minded applications.

1. Introduction

Random numbers are necessary everywhere

in computing. Applications that use cryptography are

perhaps the most obvious consumers of random

numbers. Any time an encrypted communication

channel is utilized by two parties, random numbers

must be generated to ensure that their communication

stays private and unalterable to malicious adversaries.

Likewise, random numbers must be generated to

encrypt files onto a hard drive, and ensure that the

only person who can access those files is their owner,

even if their computer falls into the wrong hands.
However, there are many non-cryptographic

uses of random numbers in computing as well.

Randomized algorithms have been developed to sort

or process large amounts of data. These algorithms

rely on the generation of random values to ensure that

the route of execution is chosen with equal

probability from the set of possible routes. Any

unencrypted communication between two computers,

such as connecting through an internet browser to a

website’s server, generates a random value to be used

as an initial sequence number. In fact, every single

time a program executes on a computer, the operating

system must generate a random value. This value is

used when determining where to put the program on

the execution stack; by placing the program at a

random offset, certain application attacks are

mitigated. If the application were in fact malicious,

knowledge of location on the stack could aid in

attacks used to compromise the machine.
Software applications thus require random

numbers to be generated for multiple purposes. They

must obtain these random numbers from somewhere;

they are unable to generate random numbers

themselves, as they are inherently deterministic

processes. As John von Neumann said, “Anyone who

considers arithmetical methods of producing random

digits is, of course, in a state of sin,” and software

applications are arithmetical methods at their core.

Even if one writes their own random number

generator in software, they still must obtain some

/dev/!random: Profiling Entropy Collection in the Linux Random

Number Generator

Dept. of CIS – Senior Design 2015-2016

Richard Roberts
ricro@seas.upenn.edu
Univ. of Pennsylvania

Philadelphia, PA

Justin MacIntosh
jmacin@seas.upenn.edu

Univ. of Pennsylvania
Philadelphia, PA

random value to use as a seed to initialize their

generator. The solution: applications ask the

operating system to provide random numbers for

them. However, operating systems are just software

as well and run into the same issues with generating

unpredictable random values. The operating system

too must look somewhere else.
The operating system could use a seemingly

random process. Hardware random number

generators exist that take unpredictable processes,

such as radioactive decay, and use those processes to

create random values. One could purchase one of

these machines and connect it to their computer, thus

giving the operating system a source to collect

random values. If this is outside of a user’s price

range, they could turn to Lavarand. Lavarand is a

random number generator that generates its values by

taking a picture of a lava lamp and converting the

image of the lamp’s internal state into a random

number. In addition to issues of performance, both of

these solutions require the addition of specialized

hardware to function. A solution for random number

generation must exist for general purpose computers,

such as laptops and desktops, that does not rely the

addition of additional hardware.

2. Technical Background

 The Linux Random Number Generator, the

random number generator distributed with the Linux

kernel, gathers events from its environment. The

events are converted to numerical values and mixed

into several pools of bytes, from which random

numbers are extracted. The amount of entropy, or

unpredictableness contributed to the internal pools, is

estimated with each event that occurs.

2.1 Events

 Entropy is harvested from events that

happen in the machine’s environment. The following

list represents the types of events that the LRNG uses

to add entropy to its internal state.

Input: Methods of user input, such as typing

on keys or moving a mouse, contributes to the

internal pool. While these events are not necessarily

uniform and may be somewhat predictable, it is

assumed that a reasonable attacker is unable to

sufficiently predict these events. Key presses are

converted to numerical codes based on the key, and

mouse movements are converted to a vector given the

size and direction of the movement. The timing of the

event is also included, to add additional entropy.

Disk: Every time the disk is accessed,

whether reading or saving files, the timing of the

access is mixed into the internal state.

Interrupt: Whenever an interrupt is issued

from the kernel, its timing is mixed into a small,

temporary pool called the “fast pool.” Given the

frequency of interrupts, it is a poor performance

decision to mix the pool every time an interrupt

occurs. Instead, at longer regular intervals, the fast

pool is mixed with the other pools.

Device: Device adds a string of character

bytes to the pools. However, these strings are usually

hard-coded values (such as a computer’s MAC

address), and if an attacker determines these values

once, they are able to predict what they will be the

next time the computer turns on. Device will

therefore not actually contribute to the entropy

estimation of the system, but the bytes will still be

mixed with the pools. This is to ensure that the pool

is properly initialized on startup, and prevent

practical attacks seen in [3].

2.2 Entropy Estimation

Unpredictable events add entropy to the

system, which in this case can be a measure of how

unpredictable the internal state of the random number

generator is. The amount of entropy contributed by

an individual event is determined by the timing of the

event in comparison to the timing of previous events;

if a similar event occurs multiple times in rapid

succession it is deemed predictable, and will

contribute a lower value to the estimated entropy

available. For an event occurring at time ti (measured

in jiffies, the number of cycles that have elapsed

since the computer booted) we calculate first

calculate the delta between this event and its previous

event:

The LRNG then calculates the delta between this

delta and the previous delta:

One final level of deltas is computed:

The value Δi is set to be the delta with the lowest

magnitude. Finally, we use Δi to estimate how much

entropy was added by this event. If Δi < 2, we add 0

to the estimated entropy counter. If Δi > 2^12, we

add 11. Finally, for all other values of Δi, we add

⌊log2(Δi)⌋.

2.3 Random Number Output

 Random numbers can be requested from one

of three interfaces. When a random string of bytes is

requested, the LRNG will pull from its internal state

and apply a cryptographic hash to the value. A

portion of the result will be mixed back into the

internal state, and the rest will be folded together and

output (in blocks of 10 bytes, that can later be

truncated when filling the caller’s buffer). The

following describe these interfaces.

 /dev/random: A special character device

visible to userspace processes. /dev/random will

determine if the request being made is for a number

of bytes larger than the current count of estimating

entropy, and if so, will block the user process until

enough entropy is available to fulfil their request.

 /dev/urandom: Another special character

device visible to userspace processes. Instead of

blocking if not enough entropy is available,

/dev/urandom will extract values from the internal

state anyway and return them. The maintainers of the

LRNG claim that /dev/urandom should not be used

when cryptographically secure random values are

needed.

 get_random_bytes(): A kernel-internal

function that operates along the same principles as

/dev/urandom

.2.4 Theoretical Vulnerabilities

 There is much tension over whether or not

the Linux Random Number Generator can offer

sufficient security guarantees. Academics have

discussed theoretical flaws in the design of the Linux

Random Number Generator that may lead to a

malicious adversary corrupting the internal state such

that its output can become biased. One issue

frequently discussed is the method of entropy

estimation; the estimator described in section 2.2 has

no theoretical backing, and parameters seem to have

been chosen arbitrarily. The developers of the LRNG

are reluctant to change the overall design as that

would take a significant amount of resources, and

these theoretical vulnerabilities have yet to be shown

as feasible in practice.
 In 2012, “Mining your Ps and Qs…” [3]

demonstrated a practical attack on the LRNG was

demonstrated in special circumstances. It was shown

that during startup, the LRNG is “entropy starved,”

that is, not enough events have been collected to

ensure that the internal state is unpredictable. This led

to a catastrophic attack where the researchers were

able to predict the values of keys that were generated

soon after the boot process was complete. The LRNG

was updated in the next version of the kernel that was

released (v. 3.6) such that the device events described

above were added. While this is seen to have fixed

the issue of low entropy on startup, the overall design

of the LRNG has not been altered, and thus it still

retains the theoretical vulnerabilities described in [1].

.3. System

 The Linux Random Number Generator is

implemented in the Linux Kernel. We feel that the

inherent complexity of dealing with the Linux source

code may result in researchers neglecting practical

analysis of the Linux Random Number Generator in

favor of working on theoretical vulnerabilities. We

have created a testing framework that will allow the

community to profile entropy collection and random

value generation in the LRNG without having to

heavily modify kernel code. To do so, we have

modified the Linux kernel to send logs to a machine

that parses and collects the results.

.3.1 Kernel Modifications

 The source code for the LRNG is located

almost entirely in the kernel source file

drivers/char/random.c. We have made alterations to

this file such that, after recompiling the kernel and

installing the updated version, we are able to log

when useful events occur. Such events include what

functions are adding entropy, when and how many

random bytes are being requested, what the running

totals are for entropy addition since the computer

begin its boot process, and what the state of the

internal pools is at a particular moment in time. To

determine which logs get sent, we created a struct

that stores booleans representing whether or not

certain information should be logged. Before sending

a particular log, we check to see if it is enabled by

this struct, and if not, discard the log. This allows

users to enable or disable particular logs by editing

out log_option struct, instead of searching through

the code to determine where each type of log is

actually sent.
 We wish to send many types of logs when

their respective event occurs. There are some logs,

such as running totals, that we would like to control

manually. Since keyboard key presses add entropy

and every key has a unique combination of values

passed to its entropy addition function, we are able to

designate certain keys as “triggers” for sending logs.

When pressed, these keys will send their designated

logs without adding any additional entropy. For our

experiments, we used number pad keys, as they were

never used in any of our scenarios. If one wishes to

designate other keys as trigger keys, they may do so

provided they know the appropriate values to

represent that key (values can be determined by

enabling all logging when keys are pressed, pressing

the desired key, and manually inspecting the log). We

note that pressing a key down, holding a key, and

releasing a key are all separate events; we have

enabled our trigger keys to send logs when the key is

considered held.

.3.2 Sending Logs

 Our ultimate goal is to generate logs that can

be stored persistently for future analysis; in order to

gain meaningful results, one may need to process a

large number of logs at the same time, or one may

wish to inspect logs over a long period of time. One

might first imagine a scenario where the machine

running the modified kernel saved its logs to a special

file located on disk, that could then be read later.

However, we have already established that the LRNG

considers disk access an unpredictable event. Writing

logs to disk would result in the generation of more

logs, that would then generate more logs themselves.

This is undesirable.
 Instead, we send logs from the modified

machine to a client machine running custom software

described in section 4. Using the kernel’s netpoll

interface, we are able to send logs over ethernet

without adding additional entropy to the system. This

has the downside that the source and destination ip

addresses and ports must be known at compile time;

changing addresses requires recompilation and

installation of the kernel. Logs can be sent out over

the internet, or by using an ethernet crossover cable,

we can connect machines directly to one another
.

4. Client

Given that we cannot store logs to disk on

the modified machine and must now send them to a

secondary computer for collection and storage, we

needed to create a schema that represented the

structure of the logs and a client program that would

parse and store them.

4.1 Schema

In order for the storage machine to receive

and store the logs, a system needed to be developed.

With XML, a schema would be developed that would

allow a script to parse the logs one section at a time.

The XML schema contains a name for each section

of the log, which would be used later to store the log

in a database. The XML schema also contains

branching paths, that determine different paths of

logging that the log has followed. An example of this

would be branching to Read, Write, or State. In

addition, the XML schema contains sections where

data could be present, and a type that allows for easy

entry of the logs into a database.

Above is an example of one such schema.

An example of a simple log being sent is shown. The

bytes that constitute the log are ‘C0001RBrj\0’.

Following the schema, we recurse through the list of

requirements. The first byte relates to the

continuation of the log. This section will determine if

the given log is part of a greater whole log, or is

meant to be taken alone. There is only one child of

the <children> tag, meaning that this log can only

follow one path at this point. In order to follow the

one path provided to it, the log must meet the next

requirement. The requirement is given by ‘trigger’,

and in this case the trigger is ‘C’. The log meets this

requirement, since its first byte is ‘C’. If this byte was

different, the log would be malformed, since there are

no other paths to take. Finally, we see that the size of

this block is 4, which means that the Continuation of

this log is comprised of the next 4 bytes. The

Continuation of this log is ‘0001’.
Next, this schema requests the function of

the log. In this case, due to the next byte being ‘R’,

the function is ‘Read’. No data is given, and therefore

size is 0. The Read path continues on, whereas in this

schema (but not any real schema) the Write function

would be the last part of the log.
Next, the Data is requested. ‘B’ is the

‘trigger’ and the log fulfills this requirement. The size

dictates that 3 bytes must be read from this section.

However, with only 2 real bytes to give, the log

leaves the last byte as the null byte. This is important,

as the logger expects exactly the number of bytes

requested in ‘size’. With all of this processing done,

the logger would print as below.

Furthermore, these sections are easily placed

into the SQLite Database, as the columns and values

required are certain to be present. The described

system can be expanded and manipulated so long as

the database is changed alongside it, to support the

changes and remain current with the latest columns

and values that need to be stored.

4.2 Python Listener/Recursive Handler

 The previous example of a log being

processed and recorded has given a general overview

of the program that handled the logs. However, in

order to receive them a small listener was created.

The logger was a python script, which looped

constantly, listening on a created socket. Whenever

packets would be received, whether the packet’s data

read only ‘end’ was checked. In this case the server

ceases to loop.

 Otherwise, the data is given to the recursive

function, which operates as described above. The

function returns a dictionary, which should be

populated with the results of the recursive calls. In

the event that a log could not be parsed, an empty

dictionary is returned. This allows the main loop to

recognize easily that the log was of an incorrect

format. No proper XML schema should permit this

function to return an empty dictionary as a legitimate

result. With this result in place, mapping the

dictionary output to a SQLite schema is the next step,

which is relatively simple given that the database

schema will be custom modeled to the XML schema.

With the data logged in this way, further analysis can

take place through queries to the database.

5. Analytical Results

We ran several experiments to ensure that

our framework was practical and straightforward to

use. Unless noted otherwise, these experiments were

executed on version 4.2 of the Linux kernel.

5.1 One-hour Usage Experiment

Our first experiment was to gather data over

the course of one hour. During this hour, we engaged

in what we deemed to be typical desktop-user

activities: web browsing, opening and saving local

files, and running local desktop applications. We

collected how much entropy was added and how

many random bytes were requested from each input

and output channel, both immediately after the boot

processes (when a user is first prompted to log in)

and one hour from that point.

The red bars in the graphs represent events

that occurred during the boot process, and the blue

bars represent events that occurred during the hour of

typical usage. Note that the second column represents

entropy added from the timing of events, which

includes both input and disk events; timer is the sum

of the input and disk columns. Thus, the only events

that add entropy during boot are from adding devices

(which mixes values into the pool but does not

increase the estimated entropy total) and

reading/writing to the disk. Most entropy during

typical usage comes from user input; in a remote

server or workstation scenario where one is not using

a keyboard or mouse connected to the machine, the

entropy pool is likely to fill at a significantly slower

rate.

[2] is the only study we found that provided

experimental figures for entropy collection. During

their experiments, no entropy was added from

interrupts, possibly due to the fact that their

experiment operated on a virtual machine. Our data

shows that interrupts do contribute to the estimated

entropy count by mixing bytes, although the

contributions from interrupts are overshadowed by

those from input and disk events.

Two interesting conclusions can be drawn

from the number of random bytes during this

scenario. First, across both get_random_bytes() and

/dev/urandom, approximately the same number of

bytes were requested during both startup and the hour

of usage. Second, /dev/random was never called once

throughout the entire experiment. We reflect on this

in section 5.2.

5.2 Application Experiments

During our second set of experiments, we

took snapshots before and after using particular

applications, and gauged their consumption of

random value consumption on the difference. One

such experiment involved operating the same

workflow (opening a browser, navigating to

www.facebook.com, and logging in to an account) on

both the Firefox browser and the Tor browser. We

assumed that Tor, being privacy minded, would

consume a significantly larger number of bytes, while

Firefox would act as a control that represented an

average user’s browser. During the process, Firefox

requested approximately 1500 bytes from

/dev/urandom, and Tor requested approximately

1600. This difference was significantly smaller than

expected. Upon inspection of Tor source code, we

learned that Tor only uses /dev/random to seed its

own pseudorandom number generator, which then

becomes the browser’s primary method of random

number generation.

Out of all the applications we tested, the

only one to ever make a call to /dev/random that was

not initiated explicitly by the user was key generation

through GPG. Even ssh-keygen will default to

/dev/urandom unless told otherwise. We can see that

application developers are hesitant to use

/dev/random due to its tendency to block frequently

when entropy is low. GPG key generation took on the

order of tens of minutes to generate a 4096-bit key, as

it needed to collect 1024 bytes from /dev/random.

Poor performance may be tolerable when generating

a long-term key, but is unacceptable for encryption of

live communications such as encrypted web

browsing. Ssh-keygen’s defaulting to /dev/urandom

shows that even developers of security-minded

applications eschew the supposedly stronger security

guarantees.

5.3 Version Experiments

Since all of our changes to the kernel lie in

random.c, in order to test different versions of the

kernel, we only need to port our changes to the

appropriate locations in the other versions random.c

file. This makes porting to older or newer versions of

the kernel simple, so long as these versions keep the

same high level design of the version we tested on.

Since the overall design of the LRNG has not

changed significantly since its inception, we were

able to test older versions with ease.

Two notable versions were version 3.5 and

version 3.6. [3] was published between these two

versions, and by running our framework, we can see

how the developers responded to the paper. 3.5 did

not include entropy from devices; the only entropy

available at startup came from disk accesses (which,

as mentioned in the paper, was predictable to a

reasonable degree). Version 3.6 corrected this by

including device entropy during boot, which resulted

in a graph similar to the red bars from section 5.1.

5. Future Work

 The scope of this project was to create a

framework and demonstrate its feasibility. In sections

3 and 4, we describe how our framework operates,

and demonstrate it in section 5. In the future, we plan

to use the framework to demonstrate a practical

attack on the LRNG, such as the theoretical attacks

described in [1]. To mount such an attack, we plan on

providing a large number of predictable events

(keypresses) in an attempt to bring the internal state

of the LRNG to a predictable point that may bias its

outputs.

 We also plan on open sourcing our

framework to the research and development

community. Our goal is to enable researchers to

conduct analysis on the LRNG in practice, analysis

that has largely been absent from the community

until now. In addition to releasing documentation and

our client code, we plan on releasing modified copies

of the random.c files from popular versions of the

Linux kernel, as many Linux machines are running

older versions of the kernel that may be more

susceptible to practical attacks. We hope that if such

practical attacks on the LRNG are feasible, then the

research community will be the first to know, and

that the maintainers of the LRNG will move forward

with a new, more secure design before such attacks

are seen in the wild.

6. Acknowledgements

 We would like to thank the lead research

advisor for this project, Dr. Nadia Heninger, for her

continuous advice and support. We thank the

members of the University of Pennsylvania’s

SECLAB for their assistance, both conceptual and in

providing a workspace and hardware to experiment

with. We thank Senior Design advisors Dr. Ani

Nenkova and Dr. Jonathan Smith for providing

direction in how to effectively present and

communicate our research to audiences of multiple

levels of technical understanding. Finally, we would

like to thank the University of Pennsylvania’s School

of Engineering and Applied Science and the

Department of Computer and Information Science for

providing a curriculum that enables us to perform

novel research while pursuing our undergraduate

education.

7. Citations

[1] Y. Dodis, D. Pointcheval, S. Ruhault, D.

Vergniaud, D. Wichs.. Security analysis of pseudo-

random number generators with input: /dev/random

is not robust. In Proceedings of the 2013 ACM

SIGSAC Conference on Computer Communications

Security, CCS 2013, November 2013.

[2] F. Goichon, C. Lauradoux, G. Salagnac, T.

Vuillemin. Entropy transfers in the Linux Random

Number Generator. In HAL Archives, October 2012.

[3] N. Heninger, Z. Durumeric, E. Wustrow, and J.

A. Halderman. Mining your Ps and Qs: Detection of

widespread weak keys in network devices. In

Proceedings of the 21st USENIX Security

Symposium, August 2012.

[4] Z. Gutterman, B. Pinkas, T. Reinman. Analysis of

the Linux Random Number Generator. In

Proceedings of the 2006 Symposium on Security and

Privacy, May 2006.

[5] P. Lacharme, A. Rӧck, V. Strubel, M. Videau.

The Linux Pseudorandom Number Generator

Revisited. In Cryptology ePrint Archive, May 2012.

