Polygon mesh shapes examples

Using two basic methods: extrusion and rotation

Fixed: cube, tetrahedron, barn

Extruded: prism. Start with points in x,z plane, and extrude up.

 Given: polyline $p[i] = <x_i, 0, z_i>$ for i in 0 to n-1 (n points)
 Create: polyline $p[i] = <x_i, h, z_i>$ for i in n to 2n-1 (n points)

Discrete surface of revolution: Start with polyline in x,y plane, sweep around y-axis

 Given: polyline $p[i] = <x_i, y_i, 0>$
 Create: grid $g[i,t] = <x_i \cos t, y_i, x_i \sin t>$ for t in range $[0,2\pi)$ with dt

Parametric surface of revolution: Start with parametric curve in x,y plane, sweep!

 Given: curve $p(u) = <px(u), py(u), 0>$ for s in $[0,2\pi)$
 Create: surface $p(u,v) = <px(u) \cos(v), py(u), px(u) \sin(v)>$ for t in $[0,2\pi)$

Sphere: Start with parametric circle in x,y plane, sweep around y-axis

 Given: curve $p(u) = < R \cos(u), R \sin(u), 0>$
 Create: surface $p(u,v) = < R \cos(u) \cos(v), R \sin(u), R \cos(u) \sin(v)>$

Cylinder: Start with parametric line in x,y plane, sweep around y-axis

 Given: curve $p(u) = < W, uH, 0 >$ u in $[0,1]$
 Create: surface $p(u,v) = < W \cos(v), uH, W \sin(v)>$

Cone: Start with tilted parametric line in x,y plane, sweep around y-axis

 Given: curve $p(u) = < (1-u)W, uH, 0 >$ u in $[0,1]$
 Create: surface $p(u,v) = < W(1-u)\cos(v), uH, W(1-u)\sin(v)>$

Bilinear patch: Start with line in 3D space, sweep along a second line

 Given: four points in 3D, $p0, p1, p2, p3$
 Create: $P1(t) = (1-t)p0+t p1$ and $P2(t) = (1-t)p3+t p2$
 Blend: $P(s,t) = (1-s)P1(t) + sP2(t)$

Parametric patch: Start with two parametric curves in 3D space, sweep along line

 Given: two curves in 3D, $P1(t)$ and $P2(t)$, blend them
 Create: $P(s,t) = (1-s)P1(t) + sP2(t)$