CMSC427
Parametric surfaces
(and alternatives)
Generating surfaces

- From equations
- From data
- From curves
 - Extrusion
 - Straight
 - Along path
 - Lathing (rotation)
 - Lofting
Constructive Solid Geometry (CSG)

• Alternative/supplement to parametric shapes

• Vocabulary:
 • Basic set of shapes (sphere, box, cylinder, etc)
 • Set operations on shapes
 • Union
 • Intersection
 • Difference

• Demo
 • Tinkercad
Constructive Solid Geometry (CSG)

- Computer Aided Design (CAD)
 - Precise 3D modeling for industrial design
 - Less freeform, more control and feedback on shapes
 - Often compiled (openScad.org)

```plaintext
cube([2,3,4]);
translate([3,0,0])
{
  cube([2,3,4]);
}

color([1,0,0]) cube([2,3,4]);
translate([3,0,0])
  color([0,1,0]) cube([2,3,4]);
translate([6,0,0])
  color([0,0,1]) cube([2,3,4]);
```
• Stale but interesting ray tracing software
• Scene description language (SDL)
• Pixar’s Renderman

#include "colors.inc"
background { color Cyan }
camera {
 location <0, 2, -3>
 look_at <0, 1, 2>
}
sphere {
 <0, 1, 2>, 2
 texture {
 pigment { color Yellow }
 }
}
light_source {
 <2, 4, -3>
 color White
}
• Support CSG operations

union {
 box { <1, 1, 1>, <2, 2, 2> }
 sphere{ <1.5, 1.5, 1.5>, 1 }
}
• Each segment spans four control points
• Each segment contains four Bernstein polynomials
• Each control point belongs to one Bernstein polynomial
Curved surfaces

Curves
• Described by a 1D series of control points
• A function $x(t)$
• Segments joined together to form a longer curve

Surfaces
• Described by a 2D mesh of control points
• Parameters have two dimensions (two dimensional parameter domain)
• A function $x(u,v)$
• Patches joined together to form a bigger surface
Parametric surface patch

• $\mathbf{x}(u,v)$ describes a point in space for any given (u,v) pair
 • u,v each range from 0 to 1

2D parameter domain
Parametric surface patch

- \(x(u,v) \) describes a point in space for any given \((u,v)\) pair
 - \(u, v\) each range from 0 to 1

- Parametric curves
 - For fixed \(u_0 \), have a \(v \) curve \(x(u_0, v) \)
 - For fixed \(v_0 \), have a \(u \) curve \(x(u, v_0) \)
 - For any point on the surface, there is one pair of parametric curves that go through point
• The tangent to a parametric curve is also tangent to the surface
• For any point on the surface, there are a pair of (parametric) tangent vectors
• Note: not necessarily perpendicular to each other
Tangents

Notation

- Tangent along u direction
 \[
 \frac{\partial \mathbf{x}}{\partial u}(u, v) \quad \text{or} \quad \frac{\partial}{\partial u} \mathbf{x}(u, v) \quad \text{or} \quad \mathbf{x}_u(u, v)
 \]

- Tangent along v direction
 \[
 \frac{\partial \mathbf{x}}{\partial v}(u, v) \quad \text{or} \quad \frac{\partial}{\partial v} \mathbf{x}(u, v) \quad \text{or} \quad \mathbf{x}_v(u, v)
 \]

- Tangents are vector valued functions, i.e., vectors!
Surface normal

- Cross product of the two tangent vectors
 \[\mathbf{x}_u(u, v) \times \mathbf{x}_v(u, v) \]
- Order matters (determines normal orientation)
- Usually, want unit normal
 - Need to normalize by dividing through length
Bilinear patch

- Control mesh with four points p_0, p_1, p_2, p_3
- Compute $x(u, v)$ using a two-step construction
Bilinear patch (step 1)

• For a given value of u, evaluate the linear curves on the two u-direction edges

• Use the same value u for both:

\[\mathbf{q}_1 = \text{Lerp}(u, \mathbf{p}_2, \mathbf{p}_3) \]

\[\mathbf{q}_0 = \text{Lerp}(u, \mathbf{p}_0, \mathbf{p}_1) \]
Bilinear patch (step 2)

- Consider that q_0, q_1 define a line segment
- Evaluate it using v to get x

$$x = \text{Lerp}(v, q_0, q_1)$$
Bilinear patch

• Combining the steps, we get the full formula

\[x(u,v) = \text{Lerp}(v, \text{Lerp}(u, p_0, p_1), \text{Lerp}(u, p_2, p_3)) \]
Bilinear patch

• Try the other order
• Evaluate first in the v direction

\[r_0 = \text{Lerp}(v, p_0, p_2) \quad r_1 = \text{Lerp}(v, p_1, p_3) \]
Bilinear patch

- Consider that $\mathbf{r}_0, \mathbf{r}_1$ define a line segment
- Evaluate it using u to get \mathbf{x}

$$\mathbf{x} = \text{Lerp}(u, \mathbf{r}_0, \mathbf{r}_1)$$
• The full formula for the v direction first:

$$\mathbf{x}(u,v) = \text{Lerp}(u, \text{Lerp}(v, \mathbf{p}_0, \mathbf{p}_2), \text{Lerp}(v, \mathbf{p}_1, \mathbf{p}_3))$$
Bilinear patch

• It works out the same either way!

\[x(u,v) = \text{Lerp}(v, \text{Lerp}(u,p_0,p_1), \text{Lerp}(u,p_2,p_3)) \]

\[x(u,v) = \text{Lerp}(u, \text{Lerp}(v,p_0,p_2), \text{Lerp}(v,p_1,p_3)) \]
Bilinear patch

• Visualization
Bilinear patches

- Weighted sum of control points
 \[x(u, v) = (1-u)(1-v)p_0 + u(1-v)p_1 + (1-u)v p_2 + uv p_3 \]

- Bilinear polynomial
 \[x(u, v) = (p_0 - p_1 - p_2 + p_3)uv + (p_1 - p_0)u + (p_2 - p_0)v + p_0 \]

- Matrix form exists, too
Properties

- Interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not coplanar, get a curved surface
 - saddle shape, AKA hyperbolic paraboloid
- The parametric curves are all straight line segments!
 - a (doubly) ruled surface: has (two) straight lines through every point
Bicubic Bézier patch

• Grid of 4x4 control points, p_0 through p_{15}
• Four rows of control points define Bézier curves along u
 $p_0, p_1, p_2, p_3; p_4, p_5, p_6, p_7; p_8, p_9, p_{10}, p_{11}; p_{12}, p_{13}, p_{14}, p_{15}$
• Four columns define Bézier curves along v
 $p_0, p_4, p_8, p_{12}; p_1, p_6, p_9, p_{13}; p_2, p_6, p_{10}, p_{14}; p_3, p_7, p_{11}, p_{15}$
Bicubic Bézier patch (step 1)

- Evaluate four u-direction Bézier curves at u
- Get intermediate points $q_0 \ldots q_3$

$q_0 = \text{Bez}(u, p_0, p_1, p_2, p_3)$
$q_1 = \text{Bez}(u, p_4, p_5, p_6, p_7)$
$q_2 = \text{Bez}(u, p_8, p_9, p_{10}, p_{11})$
$q_3 = \text{Bez}(u, p_{12}, p_{13}, p_{14}, p_{15})$
Bicubic Bézier patch (step 2)

- Points \(q_0 \ldots q_3 \) define a Bézier curve
- Evaluate it at \(v \)

\[
x(u, v) = Bez(v, q_0, q_1, q_2, q_3)
\]
Bicubic Bézier patch

• Same result in either order (evaluate u before v or vice versa)

\[
\begin{align*}
q_0 &= \text{Bez}(u, p_0, p_1, p_2, p_3) \\
q_1 &= \text{Bez}(u, p_4, p_5, p_6, p_7) \\
q_2 &= \text{Bez}(u, p_8, p_9, p_{10}, p_{11}) \\
q_3 &= \text{Bez}(u, p_{12}, p_{13}, p_{14}, p_{15}) \\
x(u, v) &= \text{Bez}(v, q_0, q_1, q_2, q_3)
\end{align*}
\]

\[
\begin{align*}
r_0 &= \text{Bez}(v, p_0, p_4, p_8, p_{12}) \\
r_1 &= \text{Bez}(v, p_1, p_5, p_9, p_{13}) \\
r_2 &= \text{Bez}(v, p_2, p_6, p_{10}, p_{14}) \\
r_3 &= \text{Bez}(v, p_3, p_7, p_{11}, p_{15}) \\
x(u, v) &= \text{Bez}(u, r_0, r_1, r_2, r_3)
\end{align*}
\]
Tensor product formulation

• Corresponds to **weighted average** formulation

• Construct two-dimensional weighting function as product of two one-dimensional functions
 • Bernstein polynomials B_i, B_j as for curves

• Same **tensor product** construction applies to higher order Bézier and NURBS surfaces

\[\mathbf{x}(u, v) = \sum_i \sum_j p_{i,j} B_i(u) B_j(v) \]
Bicubic Bézier patch: properties

• Convex hull: any point on the surface will fall within the convex hull of the control points
• Interpolates 4 corner points
• Approximates other 12 points, which act as “handles”
• The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
• The parametric curves are all Bézier curves
Tangents of Bézier patch

- Remember parametric curves \(\mathbf{x}(u, v_0), \mathbf{x}(u_0, v) \) where \(v_0, u_0 \) is fixed
- Tangents to surface = tangents to parametric curves
- Tangents are partial derivatives of \(\mathbf{x}(u, v) \)
- Normal is cross product of the tangents
Tangents of Bézier patch

\[q_0 = \text{Bez}(u, p_0, p_1, p_2, p_3) \]
\[q_1 = \text{Bez}(u, p_4, p_5, p_6, p_7) \]
\[q_2 = \text{Bez}(u, p_8, p_9, p_{10}, p_{11}) \]
\[q_3 = \text{Bez}(u, p_{12}, p_{13}, p_{14}, p_{15}) \]

\[\frac{\partial x}{\partial v}(u, v) = \text{Bez}'(v, q_0, q_1, q_2, q_3) \]

\[r_0 = \text{Bez}(v, p_0, p_4, p_8, p_{12}) \]
\[r_1 = \text{Bez}(v, p_1, p_5, p_9, p_{13}) \]
\[r_2 = \text{Bez}(v, p_2, p_6, p_{10}, p_{14}) \]
\[r_3 = \text{Bez}(v, p_3, p_7, p_{11}, p_{15}) \]

\[\frac{\partial x}{\partial u}(u, v) = \text{Bez}'(u, r_0, r_1, r_2, r_3) \]
Tessellating a Bézier patch

- **Uniform tessellation** is most straightforward
 - Evaluate points on uniform grid of u, v coordinates
 - Compute tangents at each point, take cross product to get per-vertex normal
 - Draw triangle strips (several choices of direction)

- **Adaptive tessellation/recursive subdivision**
 - Potential for “cracks” if patches on opposite sides of an edge divide differently
 - Tricky to get right, but can be done
Piecewise Bézier surface

- Lay out grid of adjacent meshes of control points
- For C^0 continuity, must share points on the edge
 - Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
 - So if adjacent meshes share edge points, the patches will line up exactly
- But we have a crease…
\(C^1 \) continuity

- Want parametric curves that cross each edge to have \(C^1 \) continuity
 - Handles must be equal-and-opposite across edge

[http://www.spiritone.com/~english/cyclopedia/patches.html]
Modeling with Bézier patches

- Original Utah teapot specified as Bézier Patches
Subdivision surfaces

• Goal
 • Create smooth surfaces from small number of control points, like splines
 • More flexibility for the topology of the control points (not restricted to quadrilateral grid)

• Idea
 • Start with initial coarse polygon mesh
 • Create smooth surface recursively by
 1. Splitting (subdividing) mesh into finer polygons
 2. Smoothing the vertices of the polygons
 3. Repeat from 1.
Subdivision surfaces

http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface

Input mesh → Subdivision & smoothing → Subdivision & smoothing → Subdivision & smoothing

Limit surface
Loop subdivision

- Subdivision
 - Split each triangle into four

- Smoothing
 - New vertex positions as weighted average of neighbors
 - Different cases

Cases for β:

$$\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases}$$

Number of neighbors n

http://en.wikipedia.org/wiki/Loop_subdivision_surface

http://graphics.stanford.edu/~mdfisher/subdivision.html
Subdividing sphere

- Divide triangle ABC into four new triangles
- Extend rays to sphere surface to compute new vertices
Subdivision surfaces

• Arbitrary mesh of control points
• Arbitrary topology or connectivity
 • Not restricted to quadrilateral topology
 • No global u, v parameters
• Work by recursively subdividing mesh faces
• Used in particular for character animation
 • One surface rather than collection of patches
 • Can deform geometry without creating cracks