1. Warm up. Is the angle between <2,3,2> and <-3,1,2> obtuse or acute?

2. For what values of \(\alpha \) is \(\mathbf{a} \) orthogonal to \(\mathbf{b} - \alpha \mathbf{a} \)? What about the special case where \(\|\mathbf{a}\| = 1 \)? The case where \(\|\mathbf{a}\| = 0 \)?

3. Given a helix curve in parametric vector form as \(\mathbf{P}(t) = < r\cos(t), h*t, r\sin(t)> \), what is the tangent vector \(\mathbf{T} \) to the curve? What is the normal vector \(\mathbf{N} \) (which is \(\mathbf{T}' \))? And what is the binormal vector \(\mathbf{B} \) (which is \(\mathbf{T} \times \mathbf{N} \))?

4. For the previous problem the appropriate range of \(t \) isn’t important – for actually drawing a helix, picking the range of \(t \) to appropriate scale \(h \) and the number of twists is important. Redo the helix equation so as \(t \) goes from 0 to 1, the helix makes \(N \) full turns and rises to a height \(h \).

5. For the lecture example for the midpoint of a triangle, calculated by first blending the line segment between two points \(P_0 \) and \(P_1 \), and then blending that equation with the third point \(P_2 \), show that (a) if you hold \(s \) constant then varying \(t \) sweeps out a line, and (b) those lines of constant \(s \) are parallel to the line from \(P_0 \) to \(P_1 \).

6. If you have \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \), what does it mean for the relationship of the three vectors?

7. Find the normal vector to the triplets below, if it exists:
 a) \(P_1=(1,1,1), P_2=(1,2,1), P_3=(3,0,4) \)
 b) \(P_1=(8,16,2), P_2=(-8,-16,-2), P_3=(4,8,1) \)