
William Pugh
Univ. of Maryland, College Park

Hot linked PDF version available at:
http://www.cs.umd.edu/~pugh/java/crashCourse

http://www.cs.umd.edu/~pugh
http://www.cs.umd.edu/~pugh/java/crashCourse
http://www.cs.umd.edu/~pugh/java/crashCourse

Crash Course in Java

Roadmap

• Day 1
• What makes Java different (11-noon)

• Basics (12:30 - 1:20)

• Object Oriented Programming in Java (1:30 - 2:30)

• Applications, Applets and Graphics (3-3:50)

• Java Programming environments (4 - 5)

2

• Day 2
• Exceptions and inner classes (11-noon)

• Multithreading and synchronization (12:30 - 1:20)

• GUI events and the Abstract Windowing Toolkit (1:30 - 2:30)

• Libraries (3-3:50)

• Advanced capabilities and libraries (4 - 5)

3

Some notes about these slides/handouts

• Some pages are left blank intentionally

• so that the first slide for each session starts at the
top of a page of handouts

• In some PDF versions of these slides and handouts
• printing is disabled

• People taking the course from me can get a version
of the handouts that can be printed

• password protected

4

5

6

http://www.cs.umd.edu/~pugh/java/crashCourse

What Makes Java Different

Day 1, Session 1

http://www.cs.umd.edu/~pugh/java/crashCourse

What makes Java Different

• Java is specified

8

• KISS principle applied

• Semantics are architecture insensitive

• Safe/Secure

• A modern programming language

• Fewer bugs?

• Libraries Galore!

• Speed

• Versions

• The Hype

• Microsoft’s J++ vs. Java

Java is specified

• Pascal/C/C++ isn’t
• 1000*1000

• (-5)/10

• int a[10]; for(int i=0;i<=10;i++) a[i] = 0;

• delete p; q = new foo(); x = p->key; p->key = 0;

• *(int *)(random()) = 0

9

• The Java specification (is intended) to completely
specify the behavior of all programs

• Not just “correct” programs

• Caveat - multi-threading, random numbers, ...

• specified but has multiple valid implementations

• All run-time errors must be caught

• Can make promises about what might happen

KISS principle applied

• Many useful features were removed from C++
• Makes language easier to learn and implement

• operator overloading

• user-definable coercions

• templates

• multiple inheritance

• multiple supertypes still allowed

• structs/unions

• unsigned integers

• stand-alone functions

10

• Not essential

Semantics are architecture insensitive

• Not sensitive to:
• size of machine word

• floating point format (must use IEEE 754)

• Big-endian/little-endian

11

• Compiled to machine-independent byte-code

• Many C/C++ programs break
• when moved to machine with

• different word size

• different endian

Safe/Secure

• Can strictly limit access of a chunk of code (relies on
language being specified, even for buggy programs)

• Default behavior for untrusted code:

• Can’t access files

• Network connections are restricted

12

• Can verify compiled codes!

• Denial of service attacks possible
• and hard to prevent

• Security bugs possible

• Java is one of the smaller security risks on the net
• Downloadable executables

• Security Risks

Security Risks

• If you run an program in an insecure mode
• It can do anything you can do

• It can set up a spy to watch what you do

13

• This includes
• Erase your hard disk

• Shut down your computer

• Infect you with a virus

• Make your Internet connection dial long distance

• Add some Quicken wire transfers

• All C/C++ programs run in an insecure mode

• Signed code -- A solution?

http://www.nytimes.com/library/cyber/week/022097scam.html
http://www.nytimes.com/library/cyber/week/021397activex.html
http://www.nytimes.com/library/cyber/week/022097scam.html
http://www.nytimes.com/library/cyber/week/021397activex.html
http://www.nytimes.com/library/cyber/week/022097scam.html
http://www.nytimes.com/library/cyber/week/021397activex.html
http://www.nytimes.com/library/cyber/week/022097scam.html
http://www.nytimes.com/library/cyber/week/021397activex.html

Signed code -- A solution?

• Provides "proof" of who wrote the code
• You might trust big companies

• Allow you to track down perpetrators

14

• Can be signed by third parties

• If a web page erases your hard disk
• allows you to easily determine who did it

• but subtle attacks might be hard to catch

• No protection against bugs
• or malicious exploitation of bugs

• Active-X and Java code can be signed

• Privileges bestowed to signed code

Privileges bestowed to signed code

• You can set policies about which signatures give
what privileges

15

• In Active-X, all or nothing

• In Java
• version 1.1 - applet sandbox or full power

• version 1.2 - finer control

A modern programming language

• Includes many features that PL researchers have
been advocating for years (but never caught on in
mass-market)

• strong type system

• multi-threading and synchronization

• garbage collection

• exceptions

• class Class

• class Object

16

• Not an embarrassment to academic CS

• Adapts ideas from: C++, Smalltalk, Lisp, Modula-3,
Objective-C

Fewer bugs?

• Many bugs are memory management bugs

17

• Pointers also cause problems

• No guarantee that shipping Java programs won’t hit
Exceptions/Errors

• But the bugs won’t propagate far

Libraries Galore!

• Java has a huge collection of libraries
• Utilities (collection classes, Zip files, Internationalization)

• Graphics/Media (2D/3D, Sound, Video)

• Graphical User Interfaces

• Networking (sockets, URL’s, RMI, CORBA)

• Threads

• Databases

• Cryptography/Security

18

• Increasing in each version (1.0 → 1.1 → 1.2)

• No other programming environments
• with libraries this complete

• cross-platform

• Huge improvement in programmer productivity

19

Speed

• Many JVM’s are slow, but situation improving

• JVM’s that do Just-in-time compilation

• Native code compilers
• need to allow for dynamically loaded code

• Byte code optimizers, shrinkers and obsfucators

• Sun’s Hotspot JVM

• How bad is it really?

How bad is it really?

• Prime number sieve - primes less than 100,000
• Sun Solaris JDK 1.1.6 70 seconds

• Sun Solaris JDK 1.2beta3/JIT 27 seconds

• Sun Solaris gcc -O4 21 seconds

20

• Developers use a different coding style for Java
• Lots of little methods/objects, run-time type dependent stuff

• This is a good thing; better programmer productivity?

• But makes it hard to generate efficient code

Versions

• Version 1.0.2 - First stable version
• Implemented in 3.x and 4.0 Netscape and IE

21

• Version 1.1.x - Java 97
• Significant changes to GUI event model

• Lots of new features

• Available in updates to Netscape and IE

• This talk assumes using at least Java 1.1

• Java Plug-in

• Version 1.2
• 1.2β4 released early July, 1998

• 1.2.0 official release scheduled Sept 21st, 1998

• Version 1.2 / Hotspot JVM
• Beta 3Q 1998

• Official release end of 1998

The Hype

• Cover of Businessweek !?!?

• Incredibly important to where Java is today

22

• good tools

• wide availability of tools and support

• lots of libraries

• excessive hype

• overhype backlash

• C++ was born in the early 80’s
• took a decade to mature

• The downside
• Hasty decisions have been cast in stone

• A number of poor designs exist in the libraries

• difficult to fix without breaking code

• Religion, heat and flames

Microsoft’s J++ vs. Java

• Bad blood between Sun and Microsoft over Java

23

• Microsoft’s viewpoint

• Microsoft’s changes to core Java functionality

Bad blood between Sun and Microsoft over Java

• Sun’s idea is that Java allows you to write software
not dependent on a particular operating system or
processor

24

• Obviously not in Microsoft’s interest

• There is a lawsuit/countersuit between Sun and
Microsoft over Java

• From NY Times article, May 25, 1998
• “necessary to fundamentally blunt Java momentum” in order

“to protect our core asset, Windows” - Paul Maritz, a Microsoft
group vice president

• “Strategic Objective: kill cross-platform Java by growing the
polluted Java market.” - internal Microsoft planning document

http://www.nytimes.com/library/tech/98/05/biztech/articles/25microsoft-java.html
http://www.nytimes.com/library/tech/98/05/biztech/articles/25microsoft-java.html
http://www.nytimes.com/library/tech/98/05/biztech/articles/25microsoft-java.html
http://www.nytimes.com/library/tech/98/05/biztech/articles/25microsoft-java.html

Microsoft’s viewpoint

• Java is a good programming language

25

• Our implementation is the fastest

• Our implementation is more compatible than
Netscape’s

• J++ allows/encourages you write Java programs
exploit Windows-only features for better
performance

• fairly clear about when you use Windows-specific features

• (but see next slide)

• Microsoft doesn’t promise to track all of Sun’s
changes to Java

• Java 1.2 changes (New security model, Swing, collections, ...)

• Remote Method Invocation

Microsoft’s changes to core Java functionality

• Microsoft has made minor changes to core
packages such as java.lang

• Some changes are not documented

• Some changes expose private variables or Windows-specific
features

• Bad API/Programming style

• Understandable - allows more efficient interfaces

• Some changes are incomprehensible

• e.g., leaving off a 3 line method

• Either sloppy or malicious

26

• Unlikely to surprise developers

27

28

29

30

http://www.cs.umd.edu/~pugh/java/crashCourse

Basics

Day 1, session 2

http://www.cs.umd.edu/~pugh/java/crashCourse

Basics

• Mostly C/C++ syntax: statements

32

• Mostly C/C++ syntax: expressions

• Hello World example

• Naming conventions

• Values

• Object operations

• Special Objects

• Object/memory allocation

• Garbage Collection

• Other notes

• What is missing?

Mostly C/C++ syntax: statements

• Empty statement, expression statement

33

• blocks { ... }

• if, switch, while, do-while, for

• break, continue, return
• any statement can be labeled

• break and continue can specify a label

• continue must specify a loop label

• throw and try-catch-finally

• synchronized

• No goto

Mostly C/C++ syntax: expressions

• Standard math operators: +, -, *, /, %

34

• Bit operations: &, |, ^, ~, <<,>>, >>>

• Update operators: =, +=, -=, *=, /=, %=, ...

• Relational operations: <, <=, ==,>=,>, !=

• Boolean operations: &&, ||, !

• Conditional expressions: b ? e1 : e2

• Select methods/variables/class/subpackage: .

• Class operators: new, instanceof, (Class)

• No pointer operations: *, &, ->

Hello World example

public class HelloWorldApplication {
public static void main(String [] args) {

if (args.length == 1)
 System.out.println("Hello " + args[0]);

else System.out.println("Hello World");
}

}

35

Naming conventions

• Classes/Interfaces start with a capital letter

36

• packages/methods/variables start with a lowercase
letter

• ForMultipleWords, capitalizeTheFirstLetterOfEachWord

• Underscores_discouraged

• CONSTANTS are in all uppercase

Values

• Object reference: null or a reference to an object

37

• boolean (Not a number or pointer/reference)

• char (UNICODE; 16 bits, almost a unsigned int)

• byte (8 bits signed)

• short (16 bits signed)

• int (32 bits signed)

• long (64 bits signed)

• float (32 bits IEEE 754)

• double (64 bits IEEE 754)

• Objects and References

Objects and References

• All objects are allocated on the heap

38

• No object can contain another object

• All class variables/fields are references to an object
• A reference is almost like a C/C++ pointer, except

• Can only point to start of heap allocated object

• No pointer arithmetic

• Use . rather than -> to access fields/methods

• String Example

String Example

39

String a = " π!=pie";
String b = a.substring(2,4);

String

count

offset

value

6

0

String

count

offset

value

2

2

a

b
char []

6length

0

1

2

3

4

5

π

!

=

p

i

e

Object operations

• = assignment
• For object references: copies reference, not object

40

• == equality test
• For object references: true if references to same object

• foo.equals(bar)
• By default, same as ==, but can/should be overridden

• foo.toString()
• Returns String representation, can/should be overridden

• More Object operations

More Object operations

• foo.clone()

• Returns a shallow copy of foo (not supported on all Objects)

41

• foo.getClass()

• Returns class of foo (result is of type Class)

• foo instanceof Bar

• true if objected referenced by foo is a subtype of class Bar

• (Bar) foo

• Run-time exception if the object referenced by foo is not a
member of a subclass of Bar

• Compile-time error if Bar is not a subtype of foo (i.e., if it
always throws an exception)

• Doesn’t transform anything just lets us treat the result as if it
were of type Bar

Special Objects

• Arrays

42

• String

Arrays

• Are a special kind of object (with lots of syntactic
sugar)

43

• Can declare arrays of any type

• Arrays have one instance variable: length

• they also have contents indexed with a subscript of 0
... length-1

• Can be initialized using {val
0
, val

1
, ..., val

n
} notation

• Initializing huge arrays this way is inefficient

• Array declarations

Array declarations

44

• A little surprising for C/C++ programmers

• int[] A and int A[] have identical semantics
• declares A to be a variable that contains a reference to an array

of int’s

• int[] A[], B;

• A is a ref to an array of ref’s array of int’s

• B is a ref to an array of int’s

• None of these allocate an array

• A = new int [10] allocates an array of 10 int’s
and makes A be a reference to it

• Array example

int[] array1 = {1,3,5};
int[][] a = new int[10][3];
// a.length == 10
// a[7].length == 3

a[5][2] = 42;
a[9] = array1;
// a[9][2] == 5

// Use of array initializers
int[][] twoD = {{1,2,3},{4,5},{6}};
Object [] args = {"one", "two", a };
main(new String [] {"a", "b", "c"});

45

Array example

String

• A class for representing non-mutable strings

public static void printArray(Object [] a) {
for(int i=0; i < a.length; i++)

System.out.println("a[" + i + "] = " + a[i]);
}

46

• “string constants” in program are converted into a
String

• + does string concatenation

• In some contexts, objects are automatically
converted to String type

• More about strings later...

Object/memory allocation

• The only way/time an object gets allocated is:
• by executing new

• One object per invocation of new

• by having a array constant (e.g., {5, -5, 42})

• having a string constant (e.g., "Hello World!")

• Declaring a reference variable doesn’t allocate an object

• Allocating an array doesn’t automatically allocate the contents
of the array

• multi-array creation int [][] a = new int[10][10];

• Equivalent to (but faster than):
int [][]a = new int[10];
for(int i = 0; i < 10; i++) a[i] = new int[10];

47

• No explicit deallocate is required/allowed

Garbage Collection

• Java uses garbage collection to find objects that
cannot be referenced

• (e.g., do not have any pointers to them)

48

• Garbage collection not currently a major bottleneck
• Not as fast as it should be

• Faster Garbage Collectors coming

Other notes

• Forward references resolved automatically
• Can refer to method/variable defined later in class

49

• All integer math performed using int’s or longs
• Problems for unsigned shifts of shorts/bytes

• Integer division by zero raises an exception

• Integer overflow is handled by dropping extra bits

• Floating point errors create special values (NaN,
POSITIVE_INFINITY, ...)

• Separate name spaces for methods, classes,
variables, ...

• Can produce confusing error messages

What is missing?

• No preprocessor (#include, #define, #ifdef, ...)

50

• No struct’s or union’s

• No enumerated types

• No bit-fields

• No variable-length argument lists

• Multiple inheritance

• Operator overloading

• Templates /

• 3 papers at OOPSLA98, some with Sun co-authors

• Likely to require no changes to VM

Parameterized types
• Maybe in 1.3 / 2.0

51

52

53

54

http://www.cs.umd.edu/~pugh/java/crashCourse

Object Oriented
Programming

Day 1, session 3

http://www.cs.umd.edu/~pugh/java/crashCourse

Objects, Classes and Interfaces

• Java Objects, constructors, instance variables and
methods

56

• Superclasses and Interfaces

• public/protected/private methods

• class methods and variables

• final methods

Classes

• Each object is an instance of a class
• An array is an object

57

• Each class is represented by a class object
• (of type Class)

• Each class extends one superclass
• (Object if not specified)

• except class Object, which has no superclass

More about Classes

• Each class has an associated set of methods and
fields/variables

• Variables hold primitive values or object references

58

• Use ‘.’ to access object fields
• variables and methods

• e.g., x.y(a.b)

• Most methods are invoked using C++ virtual method
semantics

• except static, private and final methods

Class Modifiers

• public - class is visible outside package

59

• final - No other class can extend this class

• abstract - no instances of this class can be created
• instances of extensions of it can

class Complex - a toy example
public class Complex {
 double r,i;
 Complex (double r, double i) {

this.r = r;
this.i = i;
}

 Complex plus(Complex that) {
return new Complex(

r + that.r,
i + that.i);

}
 public String toString() {

return “(“ + r
 + “,” + i + “)”;
}

public static void main(String [] args)
 Complex a = new Complex (5.5,9.2);
 Complex b = new Complex (2.3,-5.1);
 Complex c;
 c = a.plus(b);
 System.out.println(“a = “ + a);
 System.out.println(“b = “ + b);
 System.out.println(“c = “ + c);
 }
}

a = (5.5,9.2)
b = (2.3,-5.1)
c = (7.8,4.1)

60

Details

• You can overload method names
• The method invoked is determined by both the name of the

method

• and the types of the parameters

• resolved at compile time, based on compile-time types

61

• You can override methods: define method that is also
defined by a superclass

• arguments and result types must be identical

• resolved at run-time, based on object method is invoked on

• this refers to the object method is invoked on

• super refers to same object as this
• but used to access method/variables for superclass

Methods

• Methods are operations supported by an object/class

62

• Can be declared in both classes and interfaces

• Can only be implemented in classes

• All methods must have a return type
• except constructors

• void can be used only as a return type

• references to arrays or objects can be returned

• Method declaration syntax:

 modifiers returnType methodName (params) {
 [methodBody]
 }

Instance-Variable and Method Modifiers

• Visibility:
• public - visible everywhere

• protected - visible within same package or in subclasses

• default (package) - visible within same package

63

• private - visible only within this class

• static - a class method or variable

Instance Variable Modifiers

• transient - not stored when serialized

64

• volatile - never assume that the variable hasn’t
changed since the last time you looked at it

• might be modified by another thread that doesn’t have a lock
on the object

• final - can’t be changed, must be initialized in
definition or in constructor

Method Modifiers

• abstract - no implementation provided
• class must be abstract

65

• final - this method cannot be overridden
• useful for security

• allows compiler to inline class

• native - implemented in some other language

• synchronized

• locks object before method is executed

• lock released after method finishes

Method Arguments

• Only pass-by-value
• But object parameters are references to heap objects that can

be changed

66

String print_sum (int x, int y) {

return (“Result is: “ + (x+y));

}

• Only arguments are used to distinguish methods

• Syntax same as C/C++:

Overriding

• Methods with same name and argument types in a
child class override the method in the parent class

class Parent {
int cost;
void add (int x) {

cost += x;
}

}
class Child extends Parent {

void add (int x) {
if (x > 0) cost += x;
}

}

67

• You can override/hide variables
• Both variables will exist

• You don’t want to do this

Overloading

• Methods with the same name, but different
parameters, either count or type are overloaded:

class Parent {
int cost;
void add (int x) {

cost += x;
}

}
class Child extends Parent {

void add (String s) throws NumberFormatException {
cost += Integer.parseInt(s);

 }
}

68

Dynamic method dispatch

• If you have a ref a of type A to an object that is
actually of type B (a subclass of A)

• instance methods invoked on a will get the methods for class
B (i.e., C++ virtual functions)

• class methods invoked on a will get the methods for class A

• invoking class methods on objects discouraged

69

• Simple Dynamic Dispatch example

• Detailed Example

Simple Dynamic Dispatch example

70

class A {
String f() {return "A.f() "; }
static String g() {return "A.g() "; }
}

public class B extends A {
String f() {return "B.f() "; }
static String g() { return "B.g() "; }
public static void main(String args[]) {

A a = new B();
B b = new B();
System.out.println(a.f() + a.g()
 + b.f() + b.g());
}

}

java B generates:
B.f() A.g() B.f() B.g()

Detailed Example

• Shows
• polymorphism for both method receiver and arguments

• static vs instance methods

• overriding instance variables

71

• Source

• Invocation and results

• What to notice

72

class A {
 String f(A x) { return "A.f(A) "; }
 String f(B x) { return "A.f(B) "; }
 static String g(A x) { return "A.g(A) "; }
 static String g(B x) { return "A.g(B) "; }
 String h = "A.h";
 String getH() { return "A.getH():" + h; }
 }

class B extends A {
 String f(A x) { return "B.f(A)/" + super.f(x); }
 String f(B x) { return "B.f(B)/" + super.f(x); }
 static String g(A x) { return "B.g(A) "; }
 static String g(B x) { return "B.g(B) "; }
 String h = "B.h";
 String getH() { return "B.getH():"
 + h + "/" + super.h; }
 }

Source

73

A a = new A(); A ab = new B(); B b = new B();

System.out.println(a.f(a) + a.f(ab) + a.f(b));
System.out.println(ab.f(a) + ab.f(ab) + ab.f(b));
System.out.println(b.f(a) + b.f(ab) + b.f(b));
System.out.println();
//
// A.f(A) A.f(A) A.f(B)
// B.f(A)/A.f(A) B.f(A)/A.f(A) B.f(B)/A.f(B)
// B.f(A)/A.f(A) B.f(A)/A.f(A) B.f(B)/A.f(B)

System.out.println(a.g(a) + a.g(ab) + a.g(b));
System.out.println(ab.g(a) + ab.g(ab) + ab.g(b));
System.out.println(b.g(a) + b.g(ab) + b.g(b));
System.out.println();
//
// A.g(A) A.g(A) A.g(B)
// A.g(A) A.g(A) A.g(B)
// B.g(A) B.g(A) B.g(B)

System.out.println(a.h + " " + a.getH());
System.out.println(ab.h + " " + ab.getH());
System.out.println(b.h + " " + b.getH());
//
// A.h A.getH():A.h
// A.h B.getH():B.h/A.h
// B.h B.getH():B.h/A.h

Invocation
and results

What to notice

• Invoking ab.f(ab) invokes B.f(A)
• Run-time type of object method is invoked on

• Compile-time type of arguments

• ab.h gives the A version of h

74

• ab.getH()

• B.getH() method invoked

• In B.getH(), h gives B version of h

• Use of super in class B to reach A version of
methods/variables

• super not allowed in static methods

Constructors

• Declaration syntax a little strange (but same as C++):
• No return type specified

• “method” name same as class

75

• A class can have several Constructors
• with different arguments

• The first statement can/should be this(args) or
super(args)

• If omitted, super() is used

• Must be the very first thing, even before variable declarations

• not used for type conversions or assignments
• as in C++

• void constructor generated if no constructors
supplied

Static components of a class

• Static components belong to the class
• Static variables are allocated once (regardless of the number of

instances)

• Static methods are not specific to any instance of a class and
may not refer to this or super

76

• You can reference class variables and methods
through either the class name or an object reference

• I strongly discourage referencing them via object references;

• There are big differences between instance and class
variables/methods

Interfaces

• An interface is just an object type; no associated
code or instance variables

• describes methods supported by interface

77

• A class can “implement” (be a subtype of) any
number of Interfaces

• May have final static variables
• Way to define a set of constants

Interface example

public interface Comparable {
 public int compareTo(Object o)
}
public class Util {
 public static void sort(Comparable []) {...}
}
public class Choices implements Comparable {

public int compareTo(Object o) {
return ...;
}

}
...
 Choices [] options = ...;
 Util.sort(options);
...

78

No multiple inheritance

• A class type can be a subtype of many other types
(implements)

79

• Can only inherit method implementations from one
superclass (extends)

• Not a significant omission (in my opinion)

• multiple inheritance is rarely or never necessary or
well-used

• “The Case against Multiple Inheritance in C++”, T.A. Cargil, The
Evolution of C++

• Substantially complicates implementation

http://www.amazon.com/exec/obidos/ASIN/026273107X/002-4893348-4455216
http://www.amazon.com/exec/obidos/ASIN/026273107X/002-4893348-4455216
http://www.amazon.com/exec/obidos/ASIN/026273107X/002-4893348-4455216
http://www.amazon.com/exec/obidos/ASIN/026273107X/002-4893348-4455216
http://www.amazon.com/exec/obidos/ASIN/026273107X/002-4893348-4455216

Garbage Collection

• Objects that are no longer accessible can be garbage
collected

80

• Sun’s Java implements a background GC thread
• needs an idle period to work

• System.getRuntime.gc() forces a GC

• method void finalize() is called when an object is
unreachable

• Garbage collection is not a major bottleneck
• but isn’t as fast as it could/should be

• malloc/free isn’t fast either

• Faster garbage collectors are coming

Class Objects

• For each class, there is an object of type Class

81

• Describes the class as a whole
• used extensively in Reflection package

• Class.forName("MyClass")

• returns the class object for MyClass

• will load MyClass if needed

• Class.forName("MyClass").newInstance()

• will create a new instance of MyClass

• MyClass.class will also give the Class object for
MyClass

Types

• A type describes a set of values that can be:
• Held in a variable

• Returned by an expression

82

• Types include:
• Primitive types: boolean, char, short, int, ...

• Reference types:

• Class types

• Array types

• Interface types

Class types

• Using the name of a class as a type means a
reference to instance of that class or a subclass is a
permitted value

• A subclass has all the fields of its superclass

• A subclass has all the methods of its superclass

83

• Might also be null

Array types

• If S is a subtype of T
• S[] is a subtype of T[]

• should you be surprised?

84

• Object[] is a supertype of all arrays of reference
types

• A store into an array generates a run-time check that
the type being stored is a subtype of the actual type
of the array elements

• Performance penalty?

• Similar (and much worse) problems in C++

public class TestArrayTypes {
public static void reverseArray(Object [] A) {

for(int i=0,j=A.length-1; i<j; i++,j--) {
Object tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}

}
public static void main(String [] args) {

reverseArray(args);
 for(int i=0; i < A.length; i++)

System.out.println(args[i]);
 }

 }

Object []

85

Interface types

• Using the name of an interface as a type means
• a reference to any instance of a class which implements that

interface is a permitted value

• might also be null

86

• Object referenced is guaranteed to support all the
methods of the interface

• invoking a method on an interface might be a little less efficient

Object Obligations

87

public boolean equals(Object that) { ... }
 // default is return this == that
public String toString() { ... }
 // returns print representation
public int hashKey() { ... }
 // key for object
 // important that a.equals(b)
 // implies a.hashKey() == b.hashKey()
public void finalize() { ... }
 // called before Object is garbage collected
 // default is {}
public void clone() { ... }
 // default is shallow bit-copy if implements Cloneable
 // throw CloneNotSupportedException otherwise

• These operations have default implementations
• which may not be the one you want

88

Poor man's polymorphism

• Every object is an Object

Hashtable h;

h.put("Key","Value");

String v = (String) h.get("Key");

• An Object[] can hold references to any objects

• If we have a data structure Set that holds a set of
Object

• Can use it for a set of String

• or a set of images

• or a set of anything

• Java’s container classes are all containers of Object
• When you get a value out, have to downcast it

89

90

http://www.cs.umd.edu/~pugh/java/crashCourse

Applications, Applets and
Graphics

Day 1, session 4

http://www.cs.umd.edu/~pugh/java/crashCourse

Applications, Applets and Graphics

• applications methods

92

• applet methods

• embedding applets in HTML

• making applets available over the web

• minimal Graphics

Applications

• External interface is a public class

93

• with public static void main(String []args)

• args[0] is first argument (unlike C/C++)

• System.out and System.err are PrintStream’s
• Should be PrintWriter’s, but would break 1.0 code

• System.out.print(...) prints a string

• System.out.println(...) prints a string and adds a newline

• System.in is an InputStream
• Not quite as easy to use

Reading text input in (JDK 1.1) applications

94

• Wrap System.in in a InputStreamReader
• converts from bytes to characters

• Wrap it in a BufferedReader
• makes it efficient (buffered)

• supports readLine()

• readLine() returns a String
• returns null if at EOF

Example Echo Application

95

import java.io.*;
public class Echo {

public static void main(String [] args) {
String s;
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));
int i = 1;
try {

while((s = in.readLine()) != null)
 System.out.println((i++) + “: “ + s);
}

catch(IOException e) {
System.out.println(e);
}

}
}

Hello World as an applet

• In the file HelloWorldApplet.html:

<applet code=HelloWorldApplet width=300 height=40>
Your browser can’t handle Java

</applet>

96

• In the file HelloWorldApplet.java:

public class HelloWorldApplet extends java.applet.Applet
public void paint(java.awt.Graphics g) {
// display "Hello World",

 // with start of baseline at 20,20
g.drawString("Hello, World", 20, 20);
}

}

HellowWorldApplet.html
HellowWorldApplet.html
HellowWorldApplet.html

class Applet

• For programs that are downloaded and run within a
WWW browser

97

• Minimal applet functions:

 public void init() // initialization code
 public void paint(Graphics g) // draws applet window
 public void destroy() // called when applet is purged

Applet/Embed tag

<applet code=className
 [codebase = URL]

[archive = comma-seperated-list-of-jar-files]
 width=pixels height=pixels
 [alt="alternative test"]
 [name=appletInstanceName]
 [align=alignment]
 [hspace=pixels] [vspace=pixels]
 >
<param name=attributeName1 value=attributeValue1>
<param name=attributeName2 value=attributeValue2>
[HTML displayed if applet/embed not understood>]
</applet>

98

Example Applet HTML code

<applet code=DisplayTextApplet width=300 height=50>
<param name=message value="Crash Course">
<param name=fontName value=Dialog>
<param name=fontSize value=24>
</applet>

99

Try it

100

• Hello world applet is at
• http://www.cs.umd.edu/~pugh/crashCourse/HelloWorldApplet.html

http://www.cs.umd.edu/~pugh/crashCourse/HelloWorldApplet.html

Making applets available over the web

• Put class files in a directory on web server

101

• Put applet/embed code in HTML file
• Point codebase to that directory

• Specify class file containing applet class

Graphics: A device-independent interface to
graphics

setColor(Color c)

102

drawLine(int x1, int y1, int x2, int y2)

drawRect(int x, int y, int width, int height)

draw3DRect(int x, int y, int width, int height,

 boolean raised)

drawOval(int x, int y, int width, int height)

fillRect(int x, int y, int width, int height)

fillOval(int x, int y, int width, int height)

setFont(Font f)

drawString(String s, int x, int y)

java.awt.Font

• Cross-platform fonts:
• SansSerif, Serif, Monospaced, Dialog, DialogInput

103

• Font styles:
• Font.PLAIN, Font.ITALIC, Font.BOLD,

Font.ITALIC+Font.BOLD

• Font sizes: any point size allowed

• Constructor: Font(String name, int style, int size)

• Also: Font.decode(String description)

java.awt.FontMetrics

• Must get from a Graphics or Container object
• FontMetrics fm = g.getFontMetrics(f)

104

• int stringWidth(String str)

• int getAscent()

• int getDescent()

• DisplayTextApplet -- Source

DisplayTextApplet.html
DisplayTextApplet.java
DisplayTextApplet.html
DisplayTextApplet.java
DisplayTextApplet.html
DisplayTextApplet.java
DisplayTextApplet.html
DisplayTextApplet.java
DisplayTextApplet.html
DisplayTextApplet.java

java.awt.Color

• Predefined colors: Color.white, Color.red,

105

• Constructors using RGB colors:
• Color(int r, int g, int b) // 0 .. 255

• Color(float r, float g, float b) // 0.0 .. 1.0

Applet/Component Drawing Cycle

• update(Graphics g)

• must put up the appropriate display on g

• don’t assume anything about what is up there already

• might be what was draw by previous update()

• applet might have been resized, iconized or obscured

• Default behavior is to erase component, call paint

106

• paint(Graphics g)

• must put up appropriate display on g

• should assume blank canvas

• called by default update() and print()

• repaint() queues an update event
• updates events are combined when handled

• No 1-1 correspondence between calls to repaint and update

More applet methods

• Applet methods:
• void init() // called once when initializing

• void start() // called when applet becomes visible

• void stop() // called when applet becomes invisible

• void destroy() // called once when closing

107

• methods inherited from Panel/Container:
• add(Component)

• methods inherited from Component:
• get/set Foreground/Background/Font/Name/Size/Enabled

• add/remove event listeners

• Why do Applet’s have an init() method?

• Why do applets have a destroy() method?

Why do Applet’s have an init() method?

• Couldn’t I just use the constructor instead?

108

• Good question!
• init() is very similar to constructor

• Answer:
• But some context isn’t set up until after applet is constructed

• setStub(AppletStub) is called after construction

• Questionable design, but makes it easier to write applets

• Could figure out what is safe to do in constructor

• but safer to just do it in init()

109

Why do applets have a destroy() method?

• Couldn’t I just use finalize() instead?

• Good question!
• Serve same purpose

• Answer:
• Yes

• But destroy() will be called sooner

• need to depend on GC for finalize()

Some bigger applets

• Clock
• Example:

http://www.cs.umd.edu/~pugh/java/crashCourse/Clock.html

• Source:
http://www.cs.umd.edu/~pugh/java/crashCourse/Clock.java

110

• Graph Layout
• Example:

http://www.cs.umd.edu/~pugh/java/crashCourse/Graph.html

• Source:
http://www.cs.umd.edu/~pugh/java/crashCourse/Graph.java

• Tic-Tac-Toe
• Example:

http://www.cs.umd.edu/~pugh/java/crashCourse/TicTacToe.html

• Source:
http://www.cs.umd.edu/~pugh/java/crashCourse/TicTacToe.java

Clock.html
Clock.java
Graph.html
Graph.java
TicTacToe.html
TicTacToe.java
Clock.html
Clock.java
Graph.html
Graph.java
TicTacToe.html
TicTacToe.java
Clock.html
Clock.java
Graph.html
Graph.java
TicTacToe.html
TicTacToe.java

111

112

113

114

http://www.cs.umd.edu/~pugh/java/crashCourse

Java programming
environments

Day 1, session 5

http://www.cs.umd.edu/~pugh/java/crashCourse

Java programming environments

• Situation constantly changing

116

• Sun’s JDK freely available for most platforms

• GUI-creation tools that generate Java are here
• Useful

• Improving

Classes are grouped into packages

• For example, java.awt.image
• avoids problems such as multiple LinkedList classes

117

• No semantics to having a common prefix
• e.g., between java.awt and java.awt.image

• but use them logically

• Package names are an implicit or explicit part of a
class name

• e.g., java.awt.image.ColorModel

Imports make a package name implicit

• If you import a class or package, you can use just the
last name

118

• allow use of ColorModel rather than java.awt.image.ColorModel
 import java.awt.image.ColorModel;

• For each class C in java.awt.image, allow use of C rather than
java.awt.image.C
 import java.awt.image.*;

• implicit at the beginning of every java file
 import java.lang.*;

• import never required, just allows shorter names

Running Sun’s JDK

• javac - java compiler

119

• java - java intepreter

• javap - java class disassembler

• jar - Java archive tool

• appletviewer - Applet tester

• javadoc - java documentation tool

javac - java compiler

• javac filenames

120

• e.g., javac Test.java

• javac -depend Test.java

• Recompile Test.java and any out-of-date classes Test depends
on

• javac -d ~/java/classes Test.java

• Treat ~/java/classes as the location on the classpath where
files should go

• If Test.java is in package edu.umd.cs.pugh

• It will go in
~/java/classes/edu/umd/cs/pugh/Test.class

• javac -deprecation Test.java

• Give me detailed information about depreciated classed and
methods

java - java intepreter

• java Classname arguments

• e.g., java Test myInput

• e.g., java edu.umd.edu.pugh.Test myInput

121

javap - java class disassembler

• javap Classname

• show fields and methods

122

• javap -c Classname

• Show bytecodes for methods

• javap -p Classname

• Show private methods/fields

jar - Java archive tool

• First letter of first argument is action:
create/list/extract

123

• other letters are options:
• f - get jar file name from next argument

• m - when creating jar file, read manifest from file given as
argument

• v - verbose

• Examples
• jar cvf test.jar *.class data

• jar tvf test.jar

• jar xf test.jar

• jar xf test.jar Test.class

appletviewer - Applet tester

• appletviewer files

124

• One window per applet

• Other HTML ignored

• Can also supply URL’s

javadoc - java documentation tool

• javadoc packagename
• e.g., javadoc edu.umd.cs.pugh

125

• Looks for packagename on classpath

• Builds HTML documentation for package

• Special comments in java source files put into HTML

What goes where

• Each public class C must be in a file C.java

126

• If a class C is part of a package P
• package P; must be the first statement in C.java

• which must be in a directory P

• Treats . in package name as sub-directories

• Reverse of domain name is reserved package name
• edu.umd.cs is reserved for the Univ. Maryland CS department

• Classpath gives list of places to look for class files
• both directories and jar/zip files

• As of 1.1, you shouldn't set classpath to tell it where to find
system files

• You only need to set it for your own files

• If there are part of a package

• If they aren’t in the current directory

JAR files

127

• Downloading 50 class files and 10 images over http is
very expensive

• JAR files are compressed archives
• extension of zip format

• Can hold class files, images, other files

• Java knows how to load JAR files over the net

• Java knows how to extract files from a JAR

• JAR can be signed

java.lang

• Wrapper classes

128

• class String

• class StringBuffer

Wrapper classes

• Allow you to create an Integer, Boolean, Double, ...
• that is a subclass of Object

• Useful/required for fully polymorphic methods

• HashTable, ...

• Used in reflection classes

129

• Including many utility functions
• conversion to/from string

• allows radix conversion (e.g., hexadecimal)

• Many are static, don’t involve creation of Wrapper object

• Number: superclass of Byte, Short, Integer, Long,
Float and Double

• allows conversion to any other numeric primitive type

class String

• Cannot be changed/updated

130

• String objects automatically created for string
constants in program

• + is used for concatenation (arguments converted to
String)

• lots of methods, including...
• int length()

• char charAt(int pos)

• int compare(String anotherString)

• void getChars(int begin, int end, char[] dst, int
dstBegin)

• int indexOf(int ch) // why doesn’t this take a char??

• String toUpperCase()

class StringBuffer

• Can be changed

131

String s = "(X,Y) = (" + x + "," + y + ")"

// is compiled to:
String s = new StringBuffer("(X,Y) = (")
 .append(x).append(",").append(y).append(")").toString()

• Constructors
• StringBuffer()

• StringBuffer(String s)

• StringBuffer(int initialBufferSize)

• lots of methods, including...
• StringBuffer append(anything)

• insert(int offset, String str)

• Used to implement String concatenation

Cloneable

• class Object supports method Object clone()
• but throws exception CloneNotSupported

• unless you implement Cloneable

• a hack

132

• Default implementation does a shallow/bitwise copy

• Sometimes you need to do something different

• standard version is protected
• You can declare a public version

• result is of type Object
• You’ll probably have to downcast it

Java Surprises

• You don’t ever need to use import

133

• Declaring a variable of class Foo doesn’t allocate an
object of class Foo

• All variables are references to heap allocated objects

• packages, classes, methods, fields and labels are
separate name spaces

• you can label any statement and break out of it

• Hard to unload/update a class

• You need to give the full package and class name to
java interpreter

• but give the file name to the compiler

More surprises

• Internationalization makes things harder
• Many things take more steps than they would in an English/US

only system

134

• Threads may or may not be preemptive

• You can pass an String[] to a method that wants an
Object[]

• When you store into an array a type check is made

• You will write methods you never call
• e.g., method paint(Graphics g) of an Applet

• And call methods you never wrote
• e.g., method repaint() of an Applet

Still More Surprises

• Override update to eliminate animation flashing

135

• Beware of RuntimeExceptions
• Watch out for broken sound

• Exceptions in a thread just kill thread

• Watch for misspelling or using wrong types when
overriding

136

137

138

http://www.cs.umd.edu/~pugh/java/crashCourse

Exceptions and Inner
classes

Day 2, session 1

http://www.cs.umd.edu/~pugh/java/crashCourse

Exceptions and Inner Classes

• Exceptions
• declaring exceptions

• catching and throwing exceptions

• Using finally

140

• Inner classes
• introduced in Java 1.1

• allows classes to be defined inside other classes

• inner classes have access to variables of outer class

• designed for creating helper objects

• Listeners, Adaptors, ...

• Fairly important for Java 1.1 GUI event model

class Throwable

• Just another class of objects

141

• Can be thrown

• Two subtypes
• Exception

• Error -- can be thrown without being declared

Exception

• Reasonable to catch and ignore exceptions

142

• IOException

• AWTException

• InterruptedException

• RuntimeException -- can be thrown without being
declared

• NullPointerException

• IndexOutOfBoundsException

• NegativeArraySizeException

Error -- can be thrown without being declared

• Generally unreasonable to catch and ignore an error

143

• VirtualMachineError
• OutOfMemoryError

• StackOverflowError

• LinkageError

• VerifyError

• NoClassDefFoundError

method throws declarations

• A method can declare the exceptions it might throw

144

public void openNext() throws

UnknownHostException,EmptyStackException { ... }

• Must declare any exception you might throw
• unless you catch them

• includes exceptions thrown by methods you call

• C++ has run-time check that you don’t throw any
unexpected exceptions

• better for backward compatibility

• Java uses a compile-time check
• forces you to sometimes deal with exceptions that you know

can’t occur

Creating New Exceptions

• A user defined exception is just a class that is a
subclass of Exception

145

class MyVeryOwnException extends Exception { }
class MyClass{

void oops() throws MyVeryOwnException {
if (some_error_occurred){

throw new MyVeryOwnException();
 }
 }
}

Throwing an Exception/Error

• Just create a new object of the appropriate
Exception/Error type

146

• and throw it

• Unless a subtype of Error or RuntimeException
• must declare that the method throws the exception

• Exceptions thrown are part of the return-type
• when overriding a method in a superclass

• can’t throw anything that would surprise a superclass

Exception/Error Handling

• Exceptions eventually get caught

147

• First catch with supertype of the exception catches it

• Don’t catch errors/throwable

• finally is always executed
try { if (i == 0) return; myMethod(a[i]);
} catch (ArrayIndexOutOfBounds e){

}

 System.out.println("a[] out of bounds");
} catch (MyVeryOwnException e){
 System.out.println("Caught my error");
} catch (Exception e){
 System.out.println ("Caught" + e.toString());
 throw e;
} finally {
 /* stuff to do regardless of whether an */
 /* exception was thrown or return taken */

java.lang.Throwable

• Many objects of class Throwable have a message
• specified when constructed

• String getMessage() // returns msg

148

• String toString()

• void printStackTrace()

• void printStackTrace(PrintWriter s)

Inner Classes

• Allow a class to be defined within a class or method

149

• new class has access to all variables in scope

• classes can be anonymous

• 4 Kinds of Inner Classes

• Lots of important details

4 Kinds of Inner Classes

• nested classes/interfaces

150

• Standard inner classes

• method classes and anonymous classes

nested classes/interfaces

151

• Not really an inner class
• Not associated with an instance of the outer class

• Defined like a static class method/variable

• Can refer to all static methods/variables of
outerclass

• transparently

• Used to localize/encapsulate classes only used by
this class

• information hiding/packaging

• Used to package helper classes/interfaces
• sort of a mini-package for each class

• Example

152

public class LinkedList {
 // Keep this private; no one else should see our implementation
 private static class Node {
 Object value; Node next;
 Node(Object v) { value=v; next=null; }
 };
 // Put this here so it is clear that this is the Transformer for LinkedLists
 public static interface Transformer { public Object transform(Object v); }
 Node head,tail;
 public void applyTransformer(Transformer t) {
 for(Node n = head; n != null; n = n.tail)
 n.value = t.transform(n.value);
 }
 public void append(Object v) {
 Node n = new Node(v);
 if (tail == null) head=n;
 else tail.next = n;
 tail = n;
 }
 }

public class getStringRep implements LinkedList.Transformer {
 public Object transform(Object o) { return o.toString(); }
 }

Example

Standard inner classes

• Defined like a class method/variable

153

• Each instance associated with an instance of the
outer class

• If class A is outer class
• use A.this to get this for instance of outer class

• Can refer to all methods/variables of outerclass
• transparently

• Can’t have any static methods/variables

• Example

Example

154

public class FixedStack {
 Object array [];
 int top = 0;
 class MyEnum implements java.util.Enumerator {

int count = top;
public boolean hasMoreElements() { return count > 0; }

 public Object nextElement() {
if (count == 0)
 throw new NoSuchElementException("FixedStack");
return array[--count];
}

}
 public java.util.Enumerator enumerateAll() {
 return new MyEnum(); }
}

method classes and anonymous classes

• Can refer to all methods/variables of outerclass

155

• Can refer to final local variables

• Can’t have any static methods/variables

• Method classes defined like a method variable

• Anonymous classes defined in new expression
 new BaseClassOrInterface() { extensions }

• Method class Example

• Anonymous class Example

156

public class FixedStack {
 Object array [];
 int top = 0;
 public java.util.Enumerator enumerateOldestK(final int k) {
 class MyEnum implements java.util.Enumerator {

int pos = 0;
public boolean hasMoreElements()

 { return pos < k && pos < top; }
 public Object nextElement() {

 if (!hasMoreElements())
 throw new NoSuchElementException("FixedStack");
 return array[pos++];
 }

 }

 return new MyEnum(); }
}

Method class Example

157

public class FixedStack {
 Object array [];
 int top = 0;
 public java.util.Enumerator enumerateOldestK(final int k) {
 return java.util.Enumerator() {

int pos = 0;
public boolean hasMoreElements() { return pos < k && pos < top;

 public Object nextElement() {
 if (!hasMoreElements())
 throw new NoSuchElementException("FixedStack");
 return array[pos++];
 }

 }
}

Anonymous class Example

158

Lots of important details

• If class B is defined inside of class A
• A synchronized method of B locks B.this, not A.this

• You may want to lock A.this for synchronization

• Can have many B’s for each A

• Can’t define constructor for anonymous inner class

• Inner classes are a compile-time transformation
• separate class file generated for each inner class

• $’s in names

159

160

161

162

http://www.cs.umd.edu/~pugh/java/crashCourse

Multithreading and
Synchronization

Day 2, session 2

http://www.cs.umd.edu/~pugh/java/crashCourse

Multithreading and Synchronization

• What is a thread?

164

• Writing Multithreading code can be difficult

• Working with Threads

• Synchronization

• Depreciated Methods on Threads

• A common multithreading bug

• Some guidelines to simple/safe multithreaded
programming

What is a thread?

• A thread is a program-counter and a stack

165

• All threads share the same memory space
• take turns at the CPU

• WWW browser:
• One thread handling I/O

• One thread for each file being downloaded

• One thread to render web page

• The running thread might:
• Yield

• Sleep

• Wait for I/O or notification

• Be pre-empted

• On multiprocessor, concurrent threads possible

Writing Multithreading code can be difficult

• Need to control which events can happen
simultaneously

• e.g., update and display method

166

• Normally covered only in OS and/or DB courses
• few programmers have substantial training

• Can get inconsistent results or deadlock
• problems often not reproducible

• Very easily to get multithreading, even without trying
• Graphical User Interfaces (GUI’s)

• Remote Method Invocation

Working with Threads

• extending class Thread

167

• Simple thread methods

• Simple static thread methods

• interface Runnable

• Thread Example

• InterruptedException

• Be careful

• Another thread example

• Daemon threads

extending class Thread

• Can build a thread by extending java.lang.Thread

168

• You must supply a public void run() method

• Start a thread by invoking the start() method

• When a thread starts, it executes run()

• When run() finished, the thread is finished/dead

Simple thread methods

• void start()

169

• boolean isAlive()

• void setDaemon(boolean on)

• If only daemon threads are running, VM terminates

• void setPriority(int newPriority)

• Thread schedule might respect priority

• void join() throws InterruptedException

• Waits for a thread to die/finish

Simple static thread methods

• Apply to thread invoking the method
 void yield()
 void sleep(long millisecs)

170

 throws InterruptedException
 Thread currentThread()

interface Runnable

• extending Thread means can’t extend anything else

171

• Instead implement Runnable
• Declares that an object has a void run() method

• Create a new Thread
• giving it an object of type Runnable

• Constructors:
 Thread(Runnable target)
 Thread(Runnable target, String name)

Thread Example

172

public class ThreadDemo implements Runnable {

 public void run() {
 for (int i = 5; i> 0; i--) {
 System.out.println(i);
 try { Thread.sleep(1000); }
 catch (InterruptedException e) { };
 }
 System.out.println("exiting " + Thread.currentThread());
 }

 public static void main(String args[])
 {
 Thread t = new Thread(new ThreadDemo(), "Demo Thread");
 System.out.println("main thread: " + Thread.currentThread());
 System.out.println("Thread created: " + t);
 t.start();
 try { Thread.sleep(3000); }
 catch (InterruptedException e){ };
 System.out.println("exiting " + Thread.currentThread());
 }
}

InterruptedException

• A number of thread methods throw this exception
• Really means: wakeUpCall

173

• interrupt() sends a wakeUpCall to a thread

• won’t disturb the thread if it is working
• however, if the thread attempts to sleep

• it will get immediately woken up

• will also wake up the thread if it is already asleep

• thrown by sleep(), join(), wait()

Be careful

• Under some implementations
• a thread stuck in a loop will never yield by itself

174

• Preemptive scheduling would guarantee it
• not supported on all platforms

• Put yield() into loops

• I/O has highest priority, so should be able to get time

Another thread example

175

class UnSyncTest extends Thread {
String msg;
public UnSyncTest(String s) {
 msg = s;
 start();

 }

 public void run() {
 System.out.print("[" + msg);
 try { Thread.sleep(1000); }
 catch (InterruptedException e) {};

 System.out.println("]");
 }

 public static void main(String args[]) {
 new UnSyncTest("Hello");
 new UnSyncTest("UnSynchronized");
 new UnSyncTest("World");
 }
}

Daemon threads

• A thread can be marked as a Daemon thread

176

• By default, acquire status of thread who spawned you

• When nobody running except Daemons
• Execution terminates

Synchronization

• Locks

177

• Synchronized methods

• Synchronized statement

• Example with Synchronization

• Using wait and notify

• ProducerConsumer example

• A change

• A Better Fix

• Deadlock

Locks

• All objects can be locked

178

• Only one thread can hold a lock on an object
• Other threads block until they can get it

• If your thread already holds a lock on an object
• you can lock it a second time

• object not unlocked until both locks released

• No way to attempt getting a lock

Synchronized methods

• A method can be synchronized
• add synchronized before return type

179

• Obtains a lock on object referenced by this before
starting method

• releases lock when method completes

• A static synchronized method
• locks the class object

Synchronized statement

• synchronized (obj) { block }

180

• Obtains a lock on obj before executing block

• Releases lock once block completes

• Provides finer grain of control

• Allows you to lock arguments to a method

Example with Synchronization

181

class SyncTest extends Thread {
String msg;
public SyncTest(String s) {
 msg = s;
 start();

 }

 public void run() {
 synchronized (SyncTest.class) {
 System.out.print("[" + msg);
 try { Thread.sleep(1000); }
 catch (InterruptedException e) {};

 System.out.println("]");
 }
}

 public static void main(String args[]) {
 new SyncTest("Hello");
 new SyncTest("Synchronized");
 new SyncTest("World");
 }
}

Using wait and notify

• a.wait()

• Gives up lock(s) on a

• adds thread to wait set for a

• suspends thread

182

• a.wait(int m)

• limits suspension to m milliseconds

• a.notify() resumes one thread from a’s wait list
• and removes it from wait set

• no control over which thread

• a.notifyAll() resumes all threads on a’s wait list

• resumed tasks must reacquire lock before continuing

• wait doesn’t give up locks on any other objects

ProducerConsumer example

183

synchronized Object consume() {
 while(!ready) wait();
 ready=false;
 notifyAll();
 return obj;
 }
synchronized void produce(Object o) {
 while(ready) wait();
 obj = o;
 ready=true;
 notifyAll();
 }
}

public class ProducerConsumer {
 private boolean ready = false;
 private Object obj;
 public ProducerConsumer() { }
 public ProducerConsumer(Object o) {
 obj = o;
 ready = true;
 }

A change

184

synchronized void produce(Object o) {
 while(ready) {
 wait();
 if (ready) notify();
 }
 obj = o;
 ready=true;
 notify();
 }

Bad design - no guarantee about who will get woken up

synchronized Object consume() {
 while(!ready) {
 wait();
 if (!ready) notify();
 }
 ready=false;
 notify();
 return obj;
 }

A Better Fix

185

void produce(Object o) {
 while(ready) { synchronized (empty) {

 try {empty.wait();}
 catch (InterruptedException e) {}
}}

obj = o; ready=true;
synchronized (full) {

full.notify();
 }

}

Object consume() {
 while(!ready) { synchronized (full) {
 try { full.wait();}
 catch (InterruptedException e) {}
 }}

Object o = obj; ready=false;
 synchronized (empty) {

empty.notify();
 }
}

Use two objects,
empty and full,
to allow two
different wait sets

Deadlock

• Quite possible to create code that deadlocks
• Thread 1 holds a lock on A

• Thread 2 holds a lock on B

• Thread 1 is trying to obtain a lock on B

• Thread 2 is trying to obtain a lock on A

• deadlock!

186

• Not easy to detect when deadlock has occurs
• Other than by the fact that nothing is happening

Depreciated Methods on Threads

• The following methods are depreciated in Java 1.2
• Discouraged

• Will probably still work

187

• t.stop() -- kills thread t
• causes a ThreadDeath Error to be thrown

• t.suspend() -- halts thread t
• retains all locks held while suspended

• t.resume() - wakes up suspended thread t

188

A common multithreading bug

• Threads might cache values

• Obtaining a lock forces the thread to get fresh
values

• Releasing a lock forces the thread to push out all
pending writes

• volatile variables are never cached

• sleep(...) doesn’t force fresh values

• Current compilers don’t current perform these
optimizations

• Hotspot may

• Problem might also occur with multiple CPU’s

• Example of common multithreading bug

189

Example of common multithreading bug

while (true) {

 try {

 sleep(100);

} catch (InterruptedException e) {};

if (runFlag)

c2.t.setText(Integer.toString(count++));

}

• From Bruce Eckel’s “Thinking in Java”
• mostly an excellent book

• Problems with this example
• No way for thread to gracefully die

• runFlag might be cached (never see changes by other threads)

• c2.t might be cached (write never seen by other threads)

Some guidelines to simple/safe multithreaded
programming

• Synchronize/lock access to shared data

190

• Don’t hold a lock on more than one object at a time
• could cause deadlock

• Hold a lock for as little a time as possible
• reduces blocking

• While holding a lock, don’t call a method you don’t
understand

• e.g., a method provided by another client

• Have to go beyond this for sophisticated situations
• But need to understand threading/synchronization well

• Recommended book for going further:
• Concurrent Programming in Java by Doug Lea

http://www.javasoft.com/docs/books/cp/
http://www.javasoft.com/docs/books/cp/
http://www.javasoft.com/docs/books/cp/
http://www.javasoft.com/docs/books/cp/
http://www.javasoft.com/docs/books/cp/
http://www.javasoft.com/docs/books/cp/

191

192

http://www.cs.umd.edu/~pugh/java/crashCourse

Abstract Windowing
Toolkit

Day 2, session 4

http://www.cs.umd.edu/~pugh/java/crashCourse

Abstract Windowing Toolkit

• The AWT is very complex (as is any GUI library)

194

• The event model was changed substantially for
version 1.1

• Big improvement

• Inter-operable, but not within the same window

• To keep things manageable, I’ll only discuss 1.1
model

• Only reason to use 1.0 model is to be compatible with older
browsers

Widgets/Components

• Container - Panel or Window

195

• Button

• Checkbox

• Choice

• Label

• List

• Scrollbar

• TextField

• TextArea

Automatic Layout Managers

• Determine position and size of components

196

• Depends on minimum, preferred and maximum size
of components

• Allows resizing of windows
• Controls where extra space goes

• Allows for the fact that on different platforms and in
different languages

• Components might have different sizes

• Without a layout manager, must position each
component

• Can write your own layout manager

• Several layout managers provided

Several layout managers provided

• BorderLayout - North/South/West/East/Center

197

• FlowLayout - Like a word processor

• CardLayout - Multiple layouts
• only one of which is displayed at a moment

• Like a tabbed layout, but no tabs

• GridLayout - a regular grid
• All grid elements same size

• GridBagLayout -- like an HTML table
• Components can span multiple columns/rows

• Can control where extra space is directed

• Very powerful and very awkward

Event Handling in version 1.1

• Components allow you to attach listeners
• Different components allow different listeners

• ActionListener

• TextListener

• FocusListener

• MouseListener

• When a component gets an event, it sends the event to all
attached listeners

198

199

Example 1.1 Event handling - part 1

import java.awt.*;
import java.awt.event.*;

public class EventHandling {

 GUI gui = new GUI();
 void search(ActionEvent e) { System.out.println("Search: " + e); }
 void sort(ActionEvent e) { System.out.println("Sort: " + e); }
 void check(ItemEvent e) { System.out.println("Check: " + e); }
 void text(ActionEvent e) { System.out.println("Text event: " + e); }
 void text(TextEvent e) { System.out.println("Text: " + e); }
 static public void main(String args[]) {
 EventHandling app = new EventHandling();
 }

Example 1.1 Event handling - part 2

200

class GUI extends Frame { // Innerclass of EventHandling
 public GUI() {

 super("EventHandling");
 setLayout(new FlowLayout());
 Button b;
 add(b = new Button("Search"));
 b.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) { search(e); }
 });
 add(b = new Button("Sort"));
 b.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) { sort(e); }
 });
 Checkbox cb;
 add(cb = new Checkbox("alphabetical"));
 cb.addItemListener(
 new ItemListener() {
 public void itemStateChanged(ItemEvent e) { check(e); }
 });

Example 1.1 Event handling - part 3

Choice c;
add (c = new Choice());
c.addItem("Red");
c.addItem("Green");
c.addItem("Blue");
c.addItemListener(
 new ItemListener() {
 public void itemStateChanged(ItemEvent e) { check(e); }
 });
TextField tf;
add(tf = new TextField(8));
tf.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) { text(e); }
 });
tf.addTextListener(
 new TextListener() {
 public void textValueChanged(TextEvent e) { text(e); }
 });
pack(); show();

201
}}}

Removing animation flicker

• Default update() method for applets
• Erase to background color

• call paint() to draw new image on clean background

• Can cause flicker

202

• Eliminate flicker
• Erase offscreen image

• paint onto a offscreen image

• copy offscreen image onto screen

• class FlickerFree

• Anyone who extends FlickerFreeApplet is flicker free

class FlickerFree

203

public class FlickerFreeApplet extends Applet {

 private Image offscreenImage;

private Graphics offscreenGraphics;

private Dimension offscreenDimension;

204

FlickerFreeApplet’s update

public final void update(Graphics g) {
Dimension d = size();
// warning! In 1.0, Dimension.equals is broken
if (offscreenImage == null || !d.equals(offscreenDimension)) {
 offscreenDimension = d;

offscreenImage =
 createImage(offscreenDimension.width,
 offscreenDimension.height);
offscreenGraphics = offscreenImage.getGraphics();
};

offscreenGraphics.setColor(getBackground());
offscreenGraphics.fillRect(0,0,
 offscreenDimension.width,offscreenDimension.height);
offscreenGraphics.setColor(getForeground());
offscreenGraphics.setFont(getFont());
paint(offscreenGraphics);
g.drawImage(offscreenImage,0,0,this);
}

http://www.cs.umd.edu/~pugh/java/crashCourse

I/O, Networking and
Utility libraries

Day 2, session 5

http://www.cs.umd.edu/~pugh/java/crashCourse

I/O, Networking and Utility libraries

• I/O classes

206

• URL’s and Web connections

• Sockets

• java.util

• Other libraries

• Loading Resources

I/O classes

• File
• directories: if (f.isDirectory()) System.out.println(f.list());

• interface FilenameFilter -- allows selection of sublist

207

• OutputStream - byte stream going out

• Writer - character stream going out

• InputStream - byte stream coming in

• Reader - character stream coming in

OutputStream - byte stream going out

• base types
• ByteArrayOutputStream

• FileOutputStream - goes to file

• PipedOutputStream - goes to PipedInputStream

• SocketOutputStream (not public) - goes to TCP socket

208

• Filters - wrapped around an OutputStream
• BufferedOutputStream

• ObjectOutputStream (should implement FilterOutputStream)

Writer - character stream going out

• OutputStreamWriter
• wrap around OutputStream to get a Writer

• Takes characters, converts to bytes

• Can specify encoding used to convert characters to bytes

209

• CharArrayWriter

• StringWriter

• Filters

• PrintWriter - supports print, println

• BufferedWriter

• Convenience Writers
• (wraps an OutputStreamWriter around an OutputStream)

• FileWriter

• PipedWriter

InputStream - byte stream coming in

• base types
• ByteArrayInputStream

• FileInputStream

• PipedInputStream

• SocketInputStream (not public) - comes from to TCP socket

210

• Filters - wrapped around an InputStream
• BufferedInputStream

• PushbackInputStream

• ObjectInputStream

• SequenceInputStream -- cat

Reader - character stream coming in

• InputStreamReader
• Wrap around an InputStream to get a Reader

• takes bytes, converts to characters

• Can specify encoding used to convert bytes to characters

211

• CharArrayReader

• StringReader

• Filters
• BufferedReader - efficient, supports readLine()

• LineNumberReader - reports Line Numbers

• PushbackReader

• Convenience Readers
• wraps an InputStreamReader around an InputStream

• FileReader

• PipedReader

URL’s and Web connections

• Example: URLGet

212

• URL’s

• URLConnection

213

import java.net.*;

import java.io.*;

public URLGet {

 public static main(String [] args) throws Exception {

if (args.length != 1) {

System.out.println("Please supply one URL as an argument")

System.exit(1);

}

URL u = new URL(args[0]);

BufferedReader in = new BufferedReader(
 new InputStreamReader(u.openConnection().getInputStream()))

String s;

while((s = in.readLine()) != null) System.out.println(s);

 }
}

Example: URLGet

URL’s

URL u = new URL("http://www.cs.umd.edu:8080/index.html");

214

// then

URLConnection conn = u.openConnection();

// or

InputStream in = u.openStream();

// or

Object o = u.getContents();

 // depends on finding ContentHandler

 // parses content

 // e.g., JPEG file turned into image

URLConnection

int len = conn.getContentLength();

215

// Number of bytes in content

long date = conn.getDate();

// Time of last modification

// Milliseconds since Epoc

// Convert to Date() for other forms

String type = conn.getContentType();

// Get Mime type of content

Object o = conn.getContent();

// finds ContentHandler to parse Contents

Sockets

• Sockets are Internet’s way of sending/receiving
messages

• everything is done via a socket

• Supports

• TCP sockets

• guaranteed, stream based communication

• UDP sockets

• unguaranteed, packet based communications

• also supports Multicast UDP sockets

• TCP Client Socket Example

• TCP Server Socket Example

216

TCP Client Socket Example

217

import java.net.*;
import java.io.*;
public class SocketGet {
 public static void main(String [] args) throws Exception {
 if (args.length != 2) {
 System.out.println(
 "Please supply a hostname and port as arguments");
 System.exit(1);
 }
 Socket s = new Socket(args[0],Integer.parseInt(args[1]))
 BufferedReader in = new BufferedReader (
 new InputStreamReader (s.getInputStream());
 String m;
 while((m = in.readLine()) != null)
 System.out.println(m);
 s.close();
 }}

TCP Server Socket Example

218

import java.net.*;
import java.io.*;
public class SocketServe {
 public static void main(String [] args) throws Exception {
 if (args.length != 2) {
 System.out.println(
 "Please supply a port and a msg as arguments");
 System.exit(1);
 }
 ServerSocket Srv = new ServerSocket(Integer.parseInt(args[0]));
 while (true) {
 Socket s = Srv.accept();
 PrintWriter out = new PrintWriter(s.getOutputStream());
 out.println(args[1]);
 out.close();
 s.close();
 }
 }
}

java.util

• Vector

219

• Dictionaries

• Enumerations and Bitsets

• Miscellaneous

• Java 1.2 Collection Classes

Vector

• A list/vector abstraction

220

• Can insert/delete/modify elements anywhere in list

• Can access by position

• Stack
• An extension of Vector

• Adds push, pop, peek and empty

Dictionaries

• Dictionary
• An abstract class

• Represents a key to value mapping

221

• HashTable
• An implementation of Dictionary

• Properties
• Uses HashTable

• Keys and Values are Strings

• Allows scoping

• Can be saved to a file

Enumerations and Bitsets

• Enumeration
• Just an Interface

• Used in a number of places to return an enumeration
public boolean hasMoreElements()
public Object nextElement()

222

• BitSet
• Provides representation of a set as a bitvector

• Grows as needed

Miscellaneous

• Date
• Not a great design

• 1.1 adds java.util.Calendar and java.text.DateFormat

• many Date methods depreciated

• Complicated due to internationalization

• and bad design?

223

• Random

• StringTokenizer
 StringTokenizer tokens = new StringTokenizer(msg," ");
 while (tokens.hasMoreTokens())
 System.out.println(tokens.nextToken());

• java.util.zip package
• Provides ability to read/write zip archives

Java 1.2 Collection Classes

224

• interface Collection

• interface List

• class Vector

• class Stack

• class ArrayList

• class LinkedList - a doubly linked list

• interface Set

• class HashSet

• interface SortedSet

• class TreeSet

• interface Map - Dictionary like structures

• class HashMap; replaces HashTable

• interface SortedMap

• class TreeMap

Other libraries

• class java.lang.Math
• abstract final class - has only static members

• Includes constants E and PI

• Includes static methods for trig, exponentiation, min, max, ...

225

• java.text Package
• New to Java 1.1

• Text formatting tools

• java.text.MessageFormat provides printf/scanf
functionality

• Lots of facilities for internationalization

226

Loading Resources

• Can load resources from same place as class
• images

• Text files

• Serialized Objects

• local file or http connection

• directory or jar file

• easiest way to get data out of a jar file

• Code snippets

Code snippets

• URL u = obj.getClass().getResource("title.gif");

• gets URL for title.gif from the same place as the class file for
obj

• Doesn’t work in Netscape

• u.getContent() gets content

• java.awt.image.ImageProducer for images

227

• InputStream in = getClass().getResourceAsStream("data");

• Gives access to raw bytes

• Works in Netscape

228

http://www.cs.umd.edu/~pugh/java/crashCourse

Advanced
capabilities/libraries

Day 2, session 5

http://www.cs.umd.edu/~pugh/java/crashCourse

Advanced capabilities/libraries

230

• Object Serialization

• Remote Method Invocation

• Security

• JavaBeans

• Reflection

• Java DataBase Connection (JDBC)

• Drag-n-Drop, Clipboard

• 2D/3G graphics

Object Serialization

231

• Allows you to write/read object to/from a stream

• Correctly handles graphs and cycles

• Two ways to allow on object to be serialized
• implement Serializable -- depend on system

• implement Externalizable -- roll your own

• Version control a tricky and difficult problem
• if you don’t do anything, can’t read previous versions

• Can OK reading old versions

• set serialVersionUID

implement Serializable -- depend on system

• Can define readObject
 private void readObject(ObjectInputStream in)

 throws IOException, ClassNotFoundException

• Can invoke in.defaultReadObject()

• restores all non-static, non-transient fields

232

• Can define writeObject
 private void writeObject(ObjectOutputStream out)

 throws IOException, ClassNotFoundException

• Can invoke out.defaultWriteObject()

• saves all non-static, non-transient fields

implement Externalizable -- roll your own

• to read an object:

public void readExternal(ObjectInput in)
 throws IOException

233

• to write an object:

public void writeExternal(ObjectOutput out)
 throws IOException

Remote Method Invocation

234

• Set up registry to allow you to locate remote objects
by name

• Allows methods to be invoked on remote objects
• Parameters and result copied by-value using serialization

• Except that remote objects aren’t copied

• instead, a remote reference is passed

• Similar to CORBA, but
• only works Java-to-Java

• easier to use

• RMI Agents

RMI Agents

• A program using RMI can specify a codebase
• URL that provides access to class files

235

• If an object x of Class Y is sent from machine A to
machine B

• If B can’t locate code for Class Y locally

• B retrieves it from A’s codebase

Security

236

• Code can be digitally signed

• Determines privileges code will get

JavaBeans

237

• Use the Bean coding style, and your class is a
JavaBean

• use getXXX() method to get value of property XXX

• use setXXX() method to set value of property XXX

• Similar styles for attaching EventListeners, ...

• Can also provide code that describes this info

• Bean development environments
• Work Visually

• Allow you to connect and customize Beans

• Customized Beans can be serialized and saved

• Many environments have similar visual
programming tools

• But JavaBeans are very easy to create

Reflection

• Reflection as in looking in a mirror

238

• Allows examination of the methods supported by a
class at run time

• allows invocation of calls you didn’t know existed at
compile time

• Useful for lots of tools:
• Visual programming environments

• Java Beans

• Serialization

• RMI

• Example use: InvokeMain.java

Example use: InvokeMain.java

• Given name of class and arguments

239

Class classToInvoke = Class.forName(className);
Object[] argumentsToInvoke = new Object[1];
argumentsToInvoke[0] = args;

Method mainMethod
 = classToInvoke.getMethod("main",argsTypeForMain);
mainMethod.invoke(null, argumentsToInvoke);

• invokes static main method with those
arguments

• doesn’t work well with programs that check
for EOF of standard input

Java DataBase Connection (JDBC)

240

• Allows online connect to SQL relational database

• Allows full power SQL

• Designed to allow use in serious database
applications

• Most database vendors are providing JDBC
interfaces

Drag-n-Drop, Clipboard

241

• Allows information to be cut-and-pasted or
dragged-and-dropped

• Data can have multiple data flavors
• A graph could be supplied as

• a picture

• a data series

• text

2D/3G graphics

242

• 2D graphics package is a replacement for
java.awt.Graphics

• Allows more powerful operations (affine transformations, ...)

• 3D graphics provides interface to 3D graphics
system

• will probably require tuned software or special hardware

	Crash Course in Java
	Day 1
	What makes Java different (11-noon)
	Basics (12:30 - 1:20)
	Object Oriented Programming in Java (1:30 - 2:30)
	Applications, Applets and Graphics (3-3:50)
	Java Programming environments (4 - 5)

	Day 2
	Exceptions and inner classes (11-noon)
	Multithreading and synchronization (12:30 - 1:20)
	GUI events and the Abstract Windowing Toolkit (1:30 - 2:30)
	Libraries (3-3:50)
	Advanced capabilities and libraries (4 - 5)

	Some notes about these slides/handouts
	Some pages are left blank intentionally
	so that the first slide for each session starts at the top of a page of handouts
	In some PDF versions of these slides and handouts
	printing is disabled

	People taking the course from me can get a version of the handouts that can be printed
	password protected

	What Makes Java Different
	What makes Java Different
	
	
	
	

	What makes Java Different
	Java is specified
	KISS principle applied
	Semantics are architecture insensitive
	Safe/Secure
	A modern programming language
	Fewer bugs?
	Libraries Galore!
	Speed
	Versions
	The Hype
	MicrosoftÕs J++ vs. Java

	Java is specified
	Pascal/C/C++ isnÕt
	1000*1000
	(-5)/10
	int a[10]; for(int i=0;i<=10;i++) a[i] = 0;
	delete p; q = new foo(); x = p->key; p->key = 0;
	*(int *)(random()) = 0

	The Java specification (is intended) to completely specify the behavior of all programs
	Not just ÒcorrectÓ programs
	Caveat - multi-threading, random numbers, ...
	specified but has multiple valid implementations

	All run-time errors must be caught
	Can make promises about what might happen

	KISS principle applied
	Many useful features were removed from C++
	Makes language easier to learn and implement
	operator overloading
	user-definable coercions
	templates
	multiple inheritance
	multiple supertypes still allowed

	structs/unions
	unsigned integers
	stand-alone functions

	Not essential

	Semantics are architecture insensitive
	Not sensitive to:
	size of machine word
	floating point format (must use IEEE 754)
	Big-endian/little-endian

	Compiled to machine-independent byte-code
	Many C/C++ programs break
	when moved to machine with
	different word size
	different endian

	Safe/Secure
	Can strictly limit access of a chunk of code (relies on language being specified, even for buggy programs)
	Default behavior for untrusted code:
	CanÕt access files
	Network connections are restricted

	Can verify compiled codes!
	Denial of service attacks possible
	and hard to prevent

	Security bugs possible
	Java is one of the smaller security risks on the net
	Downloadable executables

	Security Risks

	Security Risks
	If you run an program in an insecure mode
	It can do anything you can do
	It can set up a spy to watch what you do

	This includes
	Erase your hard disk
	Shut down your computer
	Infect you with a virus
	Make your Internet connection dial long distance
	Add some Quicken wire transfers

	All C/C++ programs run in an insecure mode
	Signed code -- A solution?

	Signed code -- A solution?
	Provides "proof" of who wrote the code
	You might trust big companies
	Allow you to track down perpetrators

	Can be signed by third parties
	If a web page erases your hard disk
	allows you to easily determine who did it
	but subtle attacks might be hard to catch

	No protection against bugs
	or malicious exploitation of bugs

	Active-X and Java code can be signed
	Privileges bestowed to signed code

	Privileges bestowed to signed code
	You can set policies about which signatures give what privileges
	In Active-X, all or nothing
	In Java
	version 1.1 - applet sandbox or full power
	version 1.2 - finer control

	A modern programming language
	Includes many features that PL researchers have been advocating for years (but never caught on in mass-market)
	strong type system
	multi-threading and synchronization
	garbage collection
	exceptions
	class Class
	class Object

	Not an embarrassment to academic CS
	Adapts ideas from: C++, Smalltalk, Lisp, Modula-3, Objective-C

	Fewer bugs?
	Many bugs are memory management bugs
	Pointers also cause problems
	No guarantee that shipping Java programs wonÕt hit Exceptions/Errors
	But the bugs wonÕt propagate far

	Libraries Galore!
	Java has a huge collection of libraries
	Utilities (collection classes, Zip files, Internationalization)
	Graphics/Media (2D/3D, Sound, Video)
	Graphical User Interfaces
	Networking (sockets, URLÕs, RMI, CORBA)
	Threads
	Databases
	Cryptography/Security

	Increasing in each version (1.0 ® 1.1 ® 1.2)
	No other programming environments
	with libraries this complete
	cross-platform

	Huge improvement in programmer productivity

	Speed
	Many JVMÕs are slow, but situation improving
	JVMÕs that do Just-in-time compilation
	Native code compilers
	need to allow for dynamically loaded code

	Byte code optimizers, shrinkers and obsfucators
	SunÕs Hotspot JVM
	How bad is it really?

	How bad is it really?
	Prime number sieve - primes less than 100,000
	Sun Solaris JDK 1.1.6	70 seconds
	Sun Solaris JDK 1.2beta3/JIT	 27 seconds
	Sun Solaris gcc -O4 	21 seconds

	Developers use a different coding style for Java
	Lots of little methods/objects, run-time type dependent stuff
	This is a good thing; better programmer productivity?
	But makes it hard to generate efficient code

	Versions
	Version 1.0.2 - First stable version
	Implemented in 3.x and 4.0 Netscape and IE

	Version 1.1.x - Java 97
	Significant changes to GUI event model
	Lots of new features
	Available in updates to Netscape and IE
	This talk assumes using at least Java 1.1

	Java Plug-in
	Version 1.2
	1.2b4 released early July, 1998
	1.2.0 official release scheduled Sept 21st, 1998

	Version 1.2 / Hotspot JVM
	Beta 3Q 1998
	Official release end of 1998

	The Hype
	Cover of Businessweek !?!?
	Incredibly important to where Java is today
	good tools
	wide availability of tools and support
	lots of libraries
	excessive hype
	overhype backlash

	C++ was born in the early 80Õs
	took a decade to mature

	The downside
	Hasty decisions have been cast in stone
	A number of poor designs exist in the libraries
	difficult to fix without breaking code

	Religion, heat and flames

	MicrosoftÕs J++ vs. Java
	Bad blood between Sun and Microsoft over Java
	MicrosoftÕs viewpoint
	MicrosoftÕs changes to core Java functionality

	Bad blood between Sun and Microsoft over Java
	SunÕs idea is that Java allows you to write software not dependent on a particular operating system or processor
	Obviously not in MicrosoftÕs interest
	There is a lawsuit/countersuit between Sun and Microsoft over Java
	From NY Times article, May 25, 1998
	Ònecessary to fundamentally blunt Java momentumÓ in order Òto protect our core asset, WindowsÓ - Paul Maritz, a Microsoft group vice president
	ÒStrategic Objective: kill cross-platform Java by growing the polluted Java market.Ó - internal Microsoft planning document

	MicrosoftÕs viewpoint
	Java is a good programming language
	Our implementation is the fastest
	Our implementation is more compatible than NetscapeÕs
	J++ allows/encourages you write Java programs exploit Windows-only features for better performance
	fairly clear about when you use Windows-specific features
	(but see next slide)

	Microsoft doesnÕt promise to track all of SunÕs changes to Java
	Java 1.2 changes (New security model, Swing, collections, ...)
	Remote Method Invocation

	MicrosoftÕs changes to core Java functionality
	Microsoft has made minor changes to core packages such as java.lang
	Some changes are not documented
	Some changes expose private variables or Windows-specific features
	Bad API/Programming style
	Understandable - allows more efficient interfaces

	Some changes are incomprehensible
	e.g., leaving off a 3 line method
	Either sloppy or malicious

	Unlikely to surprise developers

	Basics
	Basics
	
	
	
	

	Basics
	Mostly C/C++ syntax: statements
	Mostly C/C++ syntax: expressions
	Hello World example
	Naming conventions
	Values
	Object operations
	Special Objects
	Object/memory allocation
	Garbage Collection
	Other notes
	What is missing?

	Mostly C/C++ syntax: statements
	Empty statement, expression statement
	blocks { ... }
	if, switch, while, do-while, for
	break, continue, return
	any statement can be labeled
	break and continue can specify a label
	continue must specify a loop label

	throw and try-catch-finally
	synchronized
	No goto

	Mostly C/C++ syntax: expressions
	Standard math operators: +, -, *, /, %
	Bit operations: &, |, ^, ~, <<,>>, >>>
	Update operators: =, +=, -=, *=, /=, %=, ...
	Relational operations: <, <=, ==,>=,>, !=
	Boolean operations: &&, ||, !
	Conditional expressions: b ? e1 : e2
	Select methods/variables/class/subpackage: .
	Class operators: new, instanceof, (Class)
	No pointer operations: *, &, ->

	Hello World example
	Naming conventions
	Classes/Interfaces start with a capital letter
	packages/methods/variables start with a lowercase letter
	ForMultipleWords, capitalizeTheFirstLetterOfEachWord
	Underscores_discouraged
	CONSTANTS are in all uppercase

	Values
	Object reference: null or a reference to an object
	boolean (Not a number or pointer/reference)
	char (UNICODE; 16 bits, almost a unsigned int)
	byte (8 bits signed)
	short (16 bits signed)
	int (32 bits signed)
	long (64 bits signed)
	float (32 bits IEEE 754)
	double (64 bits IEEE 754)
	Objects and References

	Objects and References
	All objects are allocated on the heap
	No object can contain another object
	All class variables/fields are references to an object
	A reference is almost like a C/C++ pointer, except
	Can only point to start of heap allocated object
	No pointer arithmetic
	Use . rather than -> to access fields/methods

	String Example

	String Example
	Object operations
	= assignment
	For object references: copies reference, not object

	== equality test
	For object references: true if references to same object

	foo.equals(bar)
	By default, same as ==, but can/should be overridden

	foo.toString()
	Returns String representation, can/should be overridden

	More Object operations

	More Object operations
	foo.clone()
	Returns a shallow copy of foo (not supported on all Objects)

	foo.getClass()
	Returns class of foo (result is of type Class)

	foo instanceof Bar
	true if objected referenced by foo is a subtype of class Bar

	(Bar) foo
	Run-time exception if the object referenced by foo is not a member of a subclass of Bar
	Compile-time error if Bar is not a subtype of foo (i.e., if it always throws an exception)
	DoesnÕt transform anything just lets us treat the result as if it were of type Bar

	Special Objects
	Arrays
	String

	Arrays
	Are a special kind of object (with lots of syntactic sugar)
	Can declare arrays of any type
	Arrays have one instance variable: length
	they also have contents indexed with a subscript of 0 ... length-1
	Can be initialized using {val0, val1, ..., valn} notation
	Initializing huge arrays this way is inefficient

	Array declarations

	Array declarations
	A little surprising for C/C++ programmers
	int[] A and int A[] have identical semantics
	declares A to be a variable that contains a reference to an array of intÕs

	int[] A[], B;
	A is a ref to an array of refÕs array of intÕs
	B is a ref to an array of intÕs

	None of these allocate an array
	A = new int [10] allocates an array of 10 intÕs and makes A be a reference to it
	Array example

	Array example
	String
	A class for representing non-mutable strings
	Òstring constantsÓ in program are converted into a String
	+ does string concatenation
	In some contexts, objects are automatically converted to String type
	More about strings later...

	Object/memory allocation
	The only way/time an object gets allocated is:
	by executing new
	One object per invocation of new

	by having a array constant (e.g., {5, -5, 42})
	having a string constant (e.g., "Hello World!")
	Declaring a reference variable doesnÕt allocate an object
	Allocating an array doesnÕt automatically allocate the contents of the array
	multi-array creation int [][] a = new int[10][10];
	Equivalent to (but faster than):
int [][]a = new int[10];
for(int i = 0; i < 10; i++) a[i] = new int[10];

	No explicit deallocate is required/allowed

	Garbage Collection
	Java uses garbage collection to find objects that cannot be referenced
	(e.g., do not have any pointers to them)

	Garbage collection not currently a major bottleneck
	Not as fast as it should be
	Faster Garbage Collectors coming

	Other notes
	Forward references resolved automatically
	Can refer to method/variable defined later in class

	All integer math performed using intÕs or longs
	Problems for unsigned shifts of shorts/bytes

	Integer division by zero raises an exception
	Integer overflow is handled by dropping extra bits
	Floating point errors create special values (NaN, POSITIVE_INFINITY, ...)
	Separate name spaces for methods, classes, variables, ...
	Can produce confusing error messages

	What is missing?
	No preprocessor (#include, #define, #ifdef, ...)
	No structÕs or unionÕs
	No enumerated types
	No bit-fields
	No variable-length argument lists
	Multiple inheritance
	Operator overloading
	Templates / Parameterized types
	Maybe in 1.3 / 2.0
	3 papers at OOPSLA98, some with Sun co-authors
	Likely to require no changes to VM

	Object Oriented Programming
	Objects, Classes and Interfaces
	Classes
	More about Classes
	Class Modifiers
	class Complex - a toy example
	Details
	Methods
	Instance-Variable and Method Modifiers
	Instance Variable Modifiers
	Method Modifiers
	Method Arguments
	Overriding
	Overloading
	Dynamic method dispatch
	Constructors
	Static components of a class
	Interfaces
	Interface example
	No multiple inheritance
	Garbage Collection
	Class Objects
	Types
	Class types
	Array types
	Object []
	Interface types
	Object Obligations
	Poor man's polymorphism
	
	

	Objects, Classes and Interfaces
	Java Objects, constructors, instance variables and methods
	Superclasses and Interfaces
	public/protected/private methods
	class methods and variables
	final methods

	Classes
	Each object is an instance of a class
	An array is an object

	Each class is represented by a class object
	(of type Class)

	Each class extends one superclass
	(Object if not specified)
	except class Object, which has no superclass

	More about Classes
	Each class has an associated set of methods and fields/variables
	Variables hold primitive values or object references

	Use Ô.Õ to access object fields
	variables and methods
	e.g., x.y(a.b)

	Most methods are invoked using C++ virtual method semantics
	except static, private and final methods

	Class Modifiers
	public - class is visible outside package
	final - No other class can extend this class
	abstract - no instances of this class can be created
	instances of extensions of it can

	class Complex - a toy example
	Details
	You can overload method names
	The method invoked is determined by both the name of the method
	and the types of the parameters
	resolved at compile time, based on compile-time types

	You can override methods: define method that is also defined by a superclass
	arguments and result types must be identical
	resolved at run-time, based on object method is invoked on

	this refers to the object method is invoked on
	super refers to same object as this
	but used to access method/variables for superclass

	Methods
	Methods are operations supported by an object/class
	Can be declared in both classes and interfaces
	Can only be implemented in classes
	All methods must have a return type
	except constructors
	void can be used only as a return type

	references to arrays or objects can be returned
	Method declaration syntax:

 	modifiers returnType methodName (params) {
 		[methodBody]
 		}

	Instance-Variable and Method Modifiers
	Visibility:
	public - visible everywhere
	protected - visible within same package or in subclasses
	default (package) - visible within same package
	private - visible only within this class

	static - a class method or variable

	Instance Variable Modifiers
	transient - not stored when serialized
	volatile - never assume that the variable hasnÕt changed since the last time you looked at it
	might be modified by another thread that doesnÕt have a lock on the object

	final - canÕt be changed, must be initialized in definition or in constructor

	Method Modifiers
	abstract - no implementation provided
	class must be abstract

	final - this method cannot be overridden
	useful for security
	allows compiler to inline class

	native - implemented in some other language
	synchronized
	locks object before method is executed
	lock released after method finishes

	Method Arguments
	Only pass-by-value
	But object parameters are references to heap objects that can be changed

	Only arguments are used to distinguish methods
	Syntax same as C/C++:

	Overriding
	Methods with same name and argument types in a child class override the method in the parent class
	You can override/hide variables
	Both variables will exist
	You donÕt want to do this

	Overloading
	Methods with the same name, but different parameters, either count or type are overloaded:

	Dynamic method dispatch
	If you have a ref a of type A to an object that is actually of type B (a subclass of A)
	instance methods invoked on a will get the methods for class B (i.e., C++ virtual functions)
	class methods invoked on a will get the methods for class A
	invoking class methods on objects discouraged

	Simple Dynamic Dispatch example
	Detailed Example

	Simple Dynamic Dispatch example
	Detailed Example
	Shows
	polymorphism for both method receiver and arguments
	static vs instance methods
	overriding instance variables

	Source
	Invocation and results
	What to notice

	Source
	Invocation and results
	What to notice
	Invoking ab.f(ab) invokes B.f(A)
	Run-time type of object method is invoked on
	Compile-time type of arguments

	ab.h gives the A version of h
	ab.getH()
	B.getH() method invoked
	In B.getH(), h gives B version of h

	Use of super in class B to reach A version of methods/variables
	super not allowed in static methods

	Constructors
	Declaration syntax a little strange (but same as C++):
	No return type specified
	ÒmethodÓ name same as class

	A class can have several Constructors
	with different arguments

	The first statement can/should be this(args) or super(args)
	If omitted, super() is used
	Must be the very first thing, even before variable declarations

	not used for type conversions or assignments
	as in C++

	void constructor generated if no constructors supplied

	Static components of a class
	Static components belong to the class
	Static variables are allocated once (regardless of the number of instances)
	Static methods are not specific to any instance of a class and may not refer to this or super

	You can reference class variables and methods through either the class name or an object reference
	I strongly discourage referencing them via object references;
	There are big differences between instance and class variables/methods

	Interfaces
	An interface is just an object type; no associated code or instance variables
	describes methods supported by interface

	A class can ÒimplementÓ (be a subtype of) any number of Interfaces
	May have final static variables
	Way to define a set of constants

	Interface example
	No multiple inheritance
	A class type can be a subtype of many other types (implements)
	Can only inherit method implementations from one superclass (extends)
	Not a significant omission (in my opinion)
	multiple inheritance is rarely or never necessary or well-used
	ÒThe Case against Multiple Inheritance in C++Ó, T.A. Cargil, The Evolution of C++

	Substantially complicates implementation

	Garbage Collection
	Objects that are no longer accessible can be garbage collected
	SunÕs Java implements a background GC thread
	needs an idle period to work
	System.getRuntime.gc() forces a GC

	method void finalize() is called when an object is unreachable
	Garbage collection is not a major bottleneck
	but isnÕt as fast as it could/should be
	malloc/free isnÕt fast either
	Faster garbage collectors are coming

	Class Objects
	For each class, there is an object of type Class
	Describes the class as a whole
	used extensively in Reflection package

	Class.forName("MyClass")
	returns the class object for MyClass
	will load MyClass if needed

	Class.forName("MyClass").newInstance()
	will create a new instance of MyClass

	MyClass.class will also give the Class object for MyClass

	Types
	A type describes a set of values that can be:
	Held in a variable
	Returned by an expression

	Types include:
	Primitive types: boolean, char, short, int, ...
	Reference types:
	Class types
	Array types
	Interface types

	Class types
	Using the name of a class as a type means a reference to instance of that class or a subclass is a permitted value
	A subclass has all the fields of its superclass
	A subclass has all the methods of its superclass

	Might also be null

	Array types
	If S is a subtype of T
	S[] is a subtype of T[]
	should you be surprised?

	Object[] is a supertype of all arrays of reference types
	A store into an array generates a run-time check that the type being stored is a subtype of the actual type of the array elements
	Performance penalty?
	Similar (and much worse) problems in C++

	Object []
	Interface types
	Using the name of an interface as a type means
	a reference to any instance of a class which implements that interface is a permitted value
	might also be null

	Object referenced is guaranteed to support all the methods of the interface
	invoking a method on an interface might be a little less efficient

	Object Obligations
	These operations have default implementations
	which may not be the one you want

	Poor man's polymorphism
	Every object is an Object
	An Object[] can hold references to any objects
	If we have a data structure Set that holds a set of Object
	Can use it for a set of String
	or a set of images
	or a set of anything

	JavaÕs container classes are all containers of Object
	When you get a value out, have to downcast it

	Applications, Applets and Graphics
	Applications, Applets and Graphics
	Applications
	Reading text input in (JDK 1.1) applications
	Example Echo Application
	Hello World as an applet
	class Applet
	Applet/Embed tag
	Example Applet HTML code
	Try it
	Making applets available over the web
	Graphics: A device-independent interface to graphics
	java.awt.Font
	java.awt.FontMetrics
	java.awt.Color
	Applet/Component Drawing Cycle
	More applet methods
	Some bigger applets
	
	
	
	

	Applications, Applets and Graphics
	applications methods
	applet methods
	embedding applets in HTML
	making applets available over the web
	minimal Graphics

	Applications
	External interface is a public class
	with public static void main(String []args)
	args[0] is first argument (unlike C/C++)
	System.out and System.err are PrintStreamÕs
	Should be PrintWriterÕs, but would break 1.0 code
	System.out.print(...) prints a string
	System.out.println(...) prints a string and adds a newline

	System.in is an InputStream
	Not quite as easy to use

	Reading text input in (JDK 1.1) applications
	
	Wrap System.in in a InputStreamReader
	converts from bytes to characters

	Wrap it in a BufferedReader
	makes it efficient (buffered)
	supports readLine()

	readLine() returns a String
	returns null if at EOF

	Example Echo Application
	Hello World as an applet
	In the file HelloWorldApplet.html:

<applet code=HelloWorldApplet width=300 height=40>
Your browser canÕt handle Java
</applet>

	In the file HelloWorldApplet.java:

public class HelloWorldApplet extends java.applet.Applet {
	public void paint(java.awt.Graphics g) {
	// display "Hello World",
 	// with start of baseline at 20,20
	g.drawString("Hello, World", 20, 20);
	}
}

	class Applet
	For programs that are downloaded and run within a WWW browser
	Minimal applet functions:

 	public void init() // initialization code
 	public void paint(Graphics g) // draws applet window
 	public void destroy() // called when applet is purged

	Applet/Embed tag
	Example Applet HTML code
	Try it
	Hello world applet is at
	http://www.cs.umd.edu/~pugh/crashCourse/HelloWorldApplet.html

	Making applets available over the web
	Put class files in a directory on web server
	Put applet/embed code in HTML file
	Point codebase to that directory
	Specify class file containing applet class

	Graphics: A device-independent interface to graphics
	setColor(Color c)
	drawLine(int x1, int y1, int x2, int y2)
	drawRect(int x, int y, int width, int height)
	draw3DRect(int x, int y, int width, int height,
	 			boolean raised)
	drawOval(int x, int y, int width, int height)
	fillRect(int x, int y, int width, int height)
	fillOval(int x, int y, int width, int height)
	setFont(Font f)
	drawString(String s, int x, int y)

	java.awt.Font
	Cross-platform fonts:
	SansSerif, Serif, Monospaced, Dialog, DialogInput

	Font styles:
	Font.PLAIN, Font.ITALIC, Font.BOLD, Font.ITALIC+Font.BOLD

	Font sizes: any point size allowed
	Constructor: Font(String name, int style, int size)
	Also: Font.decode(String description)

	java.awt.FontMetrics
	Must get from a Graphics or Container object
	FontMetrics fm = g.getFontMetrics(f)

	int stringWidth(String str)
	int getAscent()
	int getDescent()
	DisplayTextApplet -- Source

	java.awt.Color
	Predefined colors: Color.white, Color.red,
	Constructors using RGB colors:
	Color(int r, int g, int b) // 0 .. 255
	Color(float r, float g, float b) // 0.0 .. 1.0

	Applet/Component Drawing Cycle
	update(Graphics g)
	must put up the appropriate display on g
	donÕt assume anything about what is up there already
	might be what was draw by previous update()
	applet might have been resized, iconized or obscured
	Default behavior is to erase component, call paint

	paint(Graphics g)
	must put up appropriate display on g
	should assume blank canvas
	called by default update() and print()

	repaint() queues an update event
	updates events are combined when handled
	No 1-1 correspondence between calls to repaint and update

	More applet methods
	Applet methods:
	void init() // called once when initializing
	void start() // called when applet becomes visible
	void stop() // called when applet becomes invisible
	void destroy() // called once when closing

	methods inherited from Panel/Container:
	add(Component)

	methods inherited from Component:
	get/set Foreground/Background/Font/Name/Size/Enabled
	add/remove event listeners

	Why do AppletÕs have an init() method?
	Why do applets have a destroy() method?

	Why do AppletÕs have an init() method?
	CouldnÕt I just use the constructor instead?
	Good question!
	init() is very similar to constructor

	Answer:
	But some context isnÕt set up until after applet is constructed
	setStub(AppletStub) is called after construction

	Questionable design, but makes it easier to write applets
	Could figure out what is safe to do in constructor
	but safer to just do it in init()

	Why do applets have a destroy() method?
	CouldnÕt I just use finalize() instead?
	Good question!
	Serve same purpose

	Answer:
	Yes
	But destroy() will be called sooner
	need to depend on GC for finalize()

	Some bigger applets
	Clock
	Example: http://www.cs.umd.edu/~pugh/java/crashCourse/Clock.html
	Source: http://www.cs.umd.edu/~pugh/java/crashCourse/Clock.java

	Graph Layout
	Example: http://www.cs.umd.edu/~pugh/java/crashCourse/Graph.html
	Source: http://www.cs.umd.edu/~pugh/java/crashCourse/Graph.java

	Tic-Tac-Toe
	Example: http://www.cs.umd.edu/~pugh/java/crashCourse/TicTacToe.html
	Source: http://www.cs.umd.edu/~pugh/java/crashCourse/TicTacToe.java

	Java programming environments
	Java programming environments
	Classes are grouped into packages
	Imports make a package name implicit	
	Running SunÕs JDK
	What goes where
	JAR files
	java.lang
	Cloneable
	Java Surprises
	More surprises
	Still More Surprises
	
	
	

	Java programming environments
	Situation constantly changing
	SunÕs JDK freely available for most platforms
	GUI-creation tools that generate Java are here
	Useful
	Improving

	Classes are grouped into packages
	For example, java.awt.image
	avoids problems such as multiple LinkedList classes

	No semantics to having a common prefix
	e.g., between java.awt and java.awt.image
	but use them logically

	Package names are an implicit or explicit part of a class name
	e.g., java.awt.image.ColorModel

	Imports make a package name implicit	
	If you import a class or package, you can use just the last name
	allow use of ColorModel rather than java.awt.image.ColorModel
 	import java.awt.image.ColorModel;
	For each class C in java.awt.image, allow use of C rather than java.awt.image.C
 	import java.awt.image.*;

	implicit at the beginning of every java file
 	import java.lang.*;
	import never required, just allows shorter names

	Running SunÕs JDK
	javac - java compiler
	java - java intepreter
	javap - java class disassembler
	jar - Java archive tool
	appletviewer - Applet tester
	javadoc - java documentation tool

	javac - java compiler
	javac filenames
	e.g., javac Test.java
	javac -depend Test.java
	Recompile Test.java and any out-of-date classes Test depends on

	javac -d ~/java/classes Test.java
	Treat ~/java/classes as the location on the classpath where files should go
	If Test.java is in package edu.umd.cs.pugh
	It will go in ~/java/classes/edu/umd/cs/pugh/Test.class

	javac -deprecation Test.java
	Give me detailed information about depreciated classed and methods

	java - java intepreter
	java Classname arguments
	e.g., java Test myInput
	e.g., java edu.umd.edu.pugh.Test myInput

	javap - java class disassembler
	javap Classname
	show fields and methods

	javap -c Classname
	Show bytecodes for methods

	javap -p Classname
	Show private methods/fields

	jar - Java archive tool
	First letter of first argument is action: create/list/extract
	other letters are options:
	f - get jar file name from next argument
	m - when creating jar file, read manifest from file given as argument
	v - verbose

	Examples
	jar cvf test.jar *.class data
	jar tvf test.jar
	jar xf test.jar
	jar xf test.jar Test.class

	appletviewer - Applet tester
	appletviewer files
	One window per applet
	Other HTML ignored
	Can also supply URLÕs

	javadoc - java documentation tool
	javadoc packagename
	e.g., javadoc edu.umd.cs.pugh

	Looks for packagename on classpath
	Builds HTML documentation for package
	Special comments in java source files put into HTML

	What goes where
	Each public class C must be in a file C.java
	If a class C is part of a package P
	package P; must be the first statement in C.java
	which must be in a directory P
	Treats . in package name as sub-directories

	Reverse of domain name is reserved package name
	edu.umd.cs is reserved for the Univ. Maryland CS department

	Classpath gives list of places to look for class files
	both directories and jar/zip files
	As of 1.1, you shouldn't set classpath to tell it where to find system files
	You only need to set it for your own files
	If there are part of a package
	If they arenÕt in the current directory

	JAR files
	Downloading 50 class files and 10 images over http is very expensive
	JAR files are compressed archives
	extension of zip format

	Can hold class files, images, other files
	Java knows how to load JAR files over the net
	Java knows how to extract files from a JAR
	JAR can be signed

	java.lang
	Wrapper classes
	class String
	class StringBuffer

	Wrapper classes
	Allow you to create an Integer, Boolean, Double, ...
	that is a subclass of Object
	Useful/required for fully polymorphic methods
	HashTable, ...

	Used in reflection classes

	Including many utility functions
	conversion to/from string
	allows radix conversion (e.g., hexadecimal)

	Many are static, donÕt involve creation of Wrapper object

	Number: superclass of Byte, Short, Integer, Long, Float and Double
	allows conversion to any other numeric primitive type

	class String
	Cannot be changed/updated
	String objects automatically created for string constants in program
	+ is used for concatenation (arguments converted to String)
	lots of methods, including...
	int length()
	char charAt(int pos)
	int compare(String anotherString)
	void getChars(int begin, int end, char[] dst, int dstBegin)
	int indexOf(int ch) // why doesnÕt this take a char??
	String toUpperCase()

	class StringBuffer
	Can be changed
	Constructors
	StringBuffer()
	StringBuffer(String s)
	StringBuffer(int initialBufferSize)

	lots of methods, including...
	StringBuffer append(anything)
	insert(int offset, String str)

	Used to implement String concatenation

	Cloneable
	class Object supports method Object clone()
	but throws exception CloneNotSupported
	unless you implement Cloneable
	a hack

	Default implementation does a shallow/bitwise copy
	Sometimes you need to do something different
	standard version is protected
	You can declare a public version

	result is of type Object
	YouÕll probably have to downcast it

	Java Surprises
	You donÕt ever need to use import
	Declaring a variable of class Foo doesnÕt allocate an object of class Foo
	All variables are references to heap allocated objects

	packages, classes, methods, fields and labels are separate name spaces
	you can label any statement and break out of it
	Hard to unload/update a class
	You need to give the full package and class name to java interpreter
	but give the file name to the compiler

	More surprises
	Internationalization makes things harder
	Many things take more steps than they would in an English/US only system

	Threads may or may not be preemptive
	You can pass an String[] to a method that wants an Object[]
	When you store into an array a type check is made

	You will write methods you never call
	e.g., method paint(Graphics g) of an Applet

	And call methods you never wrote
	e.g., method repaint() of an Applet

	Still More Surprises
	Override update to eliminate animation flashing
	Beware of RuntimeExceptions
	Watch out for broken sound
	Exceptions in a thread just kill thread

	Watch for misspelling or using wrong types when overriding

	Exceptions and Inner classes
	Exceptions and Inner Classes
	class Throwable
	method throws declarations
	Creating New Exceptions
	Throwing an Exception/Error
	Exception/Error Handling
	java.lang.Throwable
	Inner Classes
	
	
	
	

	Exceptions and Inner Classes
	Exceptions
	declaring exceptions
	catching and throwing exceptions
	Using finally

	Inner classes
	introduced in Java 1.1
	allows classes to be defined inside other classes
	inner classes have access to variables of outer class
	designed for creating helper objects
	Listeners, Adaptors, ...

	Fairly important for Java 1.1 GUI event model

	class Throwable
	Just another class of objects
	Can be thrown
	Two subtypes
	Exception
	Error -- can be thrown without being declared

	Exception
	Reasonable to catch and ignore exceptions
	IOException
	AWTException
	InterruptedException
	RuntimeException -- can be thrown without being declared
	NullPointerException
	IndexOutOfBoundsException
	NegativeArraySizeException

	Error -- can be thrown without being declared
	Generally unreasonable to catch and ignore an error
	VirtualMachineError
	OutOfMemoryError
	StackOverflowError

	LinkageError
	VerifyError
	NoClassDefFoundError

	method throws declarations
	A method can declare the exceptions it might throw
public void openNext() throws 	UnknownHostException,EmptyStackException { ... }
	Must declare any exception you might throw
	unless you catch them
	includes exceptions thrown by methods you call

	C++ has run-time check that you donÕt throw any unexpected exceptions
	better for backward compatibility

	Java uses a compile-time check
	forces you to sometimes deal with exceptions that you know canÕt occur

	Creating New Exceptions
	A user defined exception is just a class that is a subclass of Exception
class MyVeryOwnException extends Exception { }
class MyClass{
	void oops() throws MyVeryOwnException {
		if (some_error_occurred){
			throw new MyVeryOwnException();
 		...

	Throwing an Exception/Error
	Just create a new object of the appropriate Exception/Error type
	and throw it
	Unless a subtype of Error or RuntimeException
	must declare that the method throws the exception

	Exceptions thrown are part of the return-type
	when overriding a method in a superclass
	canÕt throw anything that would surprise a superclass

	Exception/Error Handling
	Exceptions eventually get caught
	First catch with supertype of the exception catches it
	DonÕt catch errors/throwable
	finally is always executed
try { if (i == 0) return; myMethod(a[i]);
} catch (ArrayIndexOutOfBounds e){
 	System.out.println("a[] out of bounds");
} catch (MyVeryOwnException e){
 	System.out.println("Caught my error");
} catch (Exceptio...

	java.lang.Throwable
	Many objects of class Throwable have a message
	specified when constructed
	String getMessage() // returns msg

	String toString()
	void printStackTrace()
	void printStackTrace(PrintWriter s)

	Inner Classes
	Allow a class to be defined within a class or method
	new class has access to all variables in scope
	classes can be anonymous
	4 Kinds of Inner Classes
	Lots of important details

	4 Kinds of Inner Classes
	nested classes/interfaces
	Standard inner classes
	method classes and anonymous classes

	nested classes/interfaces
	Not really an inner class
	Not associated with an instance of the outer class

	Defined like a static class method/variable
	Can refer to all static methods/variables of outerclass
	transparently

	Used to localize/encapsulate classes only used by this class
	information hiding/packaging

	Used to package helper classes/interfaces
	sort of a mini-package for each class

	Example

	Example
	Standard inner classes
	Defined like a class method/variable
	Each instance associated with an instance of the outer class
	If class A is outer class
	use A.this to get this for instance of outer class

	Can refer to all methods/variables of outerclass
	transparently

	CanÕt have any static methods/variables
	Example

	Example
	method classes and anonymous classes
	Can refer to all methods/variables of outerclass
	Can refer to final local variables
	CanÕt have any static methods/variables
	Method classes defined like a method variable
	Anonymous classes defined in new expression
 	new BaseClassOrInterface() { extensions }
	Method class Example
	Anonymous class Example

	Method class Example
	Anonymous class Example
	Lots of important details
	
	If class B is defined inside of class A
	A synchronized method of B locks B.this, not A.this
	You may want to lock A.this for synchronization
	Can have many BÕs for each A

	CanÕt define constructor for anonymous inner class
	Inner classes are a compile-time transformation
	separate class file generated for each inner class
	$Õs in names

	Multithreading and Synchronization
	Multithreading and Synchronization
	
	

	Multithreading and Synchronization
	What is a thread?
	Writing Multithreading code can be difficult
	Working with Threads
	Synchronization
	Depreciated Methods on Threads
	A common multithreading bug
	Some guidelines to simple/safe multithreaded programming

	What is a thread?
	A thread is a program-counter and a stack
	All threads share the same memory space
	take turns at the CPU

	WWW browser:
	One thread handling I/O
	One thread for each file being downloaded
	One thread to render web page

	The running thread might:
	Yield
	Sleep
	Wait for I/O or notification
	Be pre-empted

	On multiprocessor, concurrent threads possible

	Writing Multithreading code can be difficult
	Need to control which events can happen simultaneously
	e.g., update and display method

	Normally covered only in OS and/or DB courses
	few programmers have substantial training

	Can get inconsistent results or deadlock
	problems often not reproducible

	Very easily to get multithreading, even without trying
	Graphical User Interfaces (GUIÕs)
	Remote Method Invocation

	Working with Threads
	extending class Thread
	Simple thread methods
	Simple static thread methods
	interface Runnable
	Thread Example
	InterruptedException
	Be careful
	Another thread example
	Daemon threads

	extending class Thread
	Can build a thread by extending java.lang.Thread
	You must supply a public void run() method
	Start a thread by invoking the start() method
	When a thread starts, it executes run()
	When run() finished, the thread is finished/dead

	Simple thread methods
	void start()
	boolean isAlive()
	void setDaemon(boolean on)
	If only daemon threads are running, VM terminates

	void setPriority(int newPriority)
	Thread schedule might respect priority

	void join() throws InterruptedException
	Waits for a thread to die/finish

	Simple static thread methods
	Apply to thread invoking the method
 	void yield()
 	void sleep(long millisecs)
 		throws InterruptedException
 	Thread currentThread()

	interface Runnable
	extending Thread means canÕt extend anything else
	Instead implement Runnable
	Declares that an object has a void run() method

	Create a new Thread
	giving it an object of type Runnable

	Constructors:
 	Thread(Runnable target)
 	Thread(Runnable target, String name)

	Thread Example
	InterruptedException
	A number of thread methods throw this exception
	Really means: wakeUpCall

	interrupt() sends a wakeUpCall to a thread
	wonÕt disturb the thread if it is working
	however, if the thread attempts to sleep
	it will get immediately woken up

	will also wake up the thread if it is already asleep
	thrown by sleep(), join(), wait()

	Be careful
	Under some implementations
	a thread stuck in a loop will never yield by itself

	Preemptive scheduling would guarantee it
	not supported on all platforms

	Put yield() into loops
	I/O has highest priority, so should be able to get time

	Another thread example
	Daemon threads
	A thread can be marked as a Daemon thread
	By default, acquire status of thread who spawned you
	When nobody running except Daemons
	Execution terminates

	Synchronization
	Locks
	Synchronized methods
	Synchronized statement
	Example with Synchronization
	Using wait and notify
	ProducerConsumer example
	A change
	A Better Fix
	Deadlock

	Locks
	All objects can be locked
	Only one thread can hold a lock on an object
	Other threads block until they can get it

	If your thread already holds a lock on an object
	you can lock it a second time
	object not unlocked until both locks released

	No way to attempt getting a lock

	Synchronized methods
	A method can be synchronized
	add synchronized before return type

	Obtains a lock on object referenced by this before starting method
	releases lock when method completes

	A static synchronized method
	locks the class object

	Synchronized statement
	synchronized (obj) { block }
	Obtains a lock on obj before executing block
	Releases lock once block completes
	Provides finer grain of control
	Allows you to lock arguments to a method

	Example with Synchronization
	Using wait and notify
	a.wait()
	Gives up lock(s) on a
	adds thread to wait set for a
	suspends thread

	a.wait(int m)
	limits suspension to m milliseconds

	a.notify() resumes one thread from aÕs wait list
	and removes it from wait set
	no control over which thread

	a.notifyAll() resumes all threads on aÕs wait list
	resumed tasks must reacquire lock before continuing
	wait doesnÕt give up locks on any other objects

	ProducerConsumer example
	A change
	A Better Fix
	Deadlock
	Quite possible to create code that deadlocks
	Thread 1 holds a lock on A
	Thread 2 holds a lock on B
	Thread 1 is trying to obtain a lock on B
	Thread 2 is trying to obtain a lock on A
	deadlock!

	Not easy to detect when deadlock has occurs
	Other than by the fact that nothing is happening

	Depreciated Methods on Threads
	The following methods are depreciated in Java 1.2
	Discouraged
	Will probably still work

	t.stop() -- kills thread t
	causes a ThreadDeath Error to be thrown

	t.suspend() -- halts thread t
	retains all locks held while suspended

	t.resume() - wakes up suspended thread t

	A common multithreading bug
	Threads might cache values
	Obtaining a lock forces the thread to get fresh values
	Releasing a lock forces the thread to push out all pending writes
	volatile variables are never cached
	sleep(...) doesnÕt force fresh values
	Current compilers donÕt current perform these optimizations
	Hotspot may

	Problem might also occur with multiple CPUÕs
	Example of common multithreading bug

	Example of common multithreading bug
	From Bruce EckelÕs ÒThinking in JavaÓ
	mostly an excellent book

	Problems with this example
	No way for thread to gracefully die
	runFlag might be cached (never see changes by other threads)
	c2.t might be cached (write never seen by other threads)

	Some guidelines to simple/safe multithreaded programming
	Synchronize/lock access to shared data
	DonÕt hold a lock on more than one object at a time
	could cause deadlock

	Hold a lock for as little a time as possible
	reduces blocking

	While holding a lock, donÕt call a method you donÕt understand
	e.g., a method provided by another client

	Have to go beyond this for sophisticated situations
	But need to understand threading/synchronization well

	Recommended book for going further:
	Concurrent Programming in Java by Doug Lea

	Abstract Windowing Toolkit
	Abstract Windowing Toolkit
	Widgets/Components
	Automatic Layout Managers
	Event Handling in version 1.1
	Example 1.1 Event handling - part 1
	Example 1.1 Event handling - part 2
	Example 1.1 Event handling - part 3
	Removing animation flicker

	Abstract Windowing Toolkit
	The AWT is very complex (as is any GUI library)
	The event model was changed substantially for version 1.1
	Big improvement
	Inter-operable, but not within the same window

	To keep things manageable, IÕll only discuss 1.1 model
	Only reason to use 1.0 model is to be compatible with older browsers

	Widgets/Components
	Container - Panel or Window
	Button
	Checkbox
	Choice
	Label
	List
	Scrollbar
	TextField
	TextArea

	Automatic Layout Managers
	Determine position and size of components
	Depends on minimum, preferred and maximum size of components
	Allows resizing of windows
	Controls where extra space goes

	Allows for the fact that on different platforms and in different languages
	Components might have different sizes

	Without a layout manager, must position each component
	Can write your own layout manager
	Several layout managers provided

	Several layout managers provided
	BorderLayout - North/South/West/East/Center
	FlowLayout - Like a word processor
	CardLayout - Multiple layouts
	only one of which is displayed at a moment
	Like a tabbed layout, but no tabs

	GridLayout - a regular grid
	All grid elements same size

	GridBagLayout -- like an HTML table
	Components can span multiple columns/rows
	Can control where extra space is directed
	Very powerful and very awkward

	Event Handling in version 1.1
	Components allow you to attach listeners
	Different components allow different listeners
	ActionListener
	TextListener
	FocusListener
	MouseListener

	When a component gets an event, it sends the event to all attached listeners

	Example 1.1 Event handling - part 1
	import java.awt.*;
import java.awt.event.*;

public class EventHandling {
	 	GUI gui = new GUI();
 void search(ActionEvent e) { System.out.println("Search: " + e); }
 void sort(ActionEvent e) { System.out.println("Sort: " + e); }
 void check(ItemEvent e) { System.out.println("Check: " + e); }
...

	Example 1.1 Event handling - part 2
	class GUI extends Frame { // Innerclass of EventHandling
 	public GUI() {
	 		super("EventHandling");
 setLayout(new FlowLayout());
 Button b;
 add(b = new Button("Search"));
 b.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) { search(e)...

	Example 1.1 Event handling - part 3
	Choice c;
add (c = new Choice());
c.addItem("Red");
c.addItem("Green");
c.addItem("Blue");
c.addItemListener(
 new ItemListener() {
 public void itemStateChanged(ItemEvent e) { check(e); }
 });
TextField tf;
add(...

	Removing animation flicker
	Default update() method for applets
	Erase to background color
	call paint() to draw new image on clean background
	Can cause flicker

	Eliminate flicker
	Erase offscreen image
	paint onto a offscreen image
	copy offscreen image onto screen

	class FlickerFree
	Anyone who extends FlickerFreeApplet is flicker free

	class FlickerFree
	FlickerFreeAppletÕs update

	FlickerFreeAppletÕs update
	I/O, Networking and Utility libraries
	I/O, Networking and Utility libraries
	

	I/O, Networking and Utility libraries
	I/O classes
	URLÕs and Web connections
	Sockets
	java.util
	Other libraries
	Loading Resources

	I/O classes
	File
	directories: if (f.isDirectory()) System.out.println(f.list());
	interface FilenameFilter -- allows selection of sublist

	OutputStream - byte stream going out
	Writer - character stream going out
	InputStream - byte stream coming in
	Reader - character stream coming in

	OutputStream - byte stream going out
	base types
	ByteArrayOutputStream
	FileOutputStream - goes to file
	PipedOutputStream - goes to PipedInputStream
	SocketOutputStream (not public) - goes to TCP socket

	Filters - wrapped around an OutputStream
	BufferedOutputStream
	ObjectOutputStream (should implement FilterOutputStream)

	Writer - character stream going out
	OutputStreamWriter
	wrap around OutputStream to get a Writer
	Takes characters, converts to bytes
	Can specify encoding used to convert characters to bytes

	CharArrayWriter
	StringWriter
	Filters
	PrintWriter - supports print, println
	BufferedWriter

	Convenience Writers
	(wraps an OutputStreamWriter around an OutputStream)
	FileWriter
	PipedWriter

	InputStream - byte stream coming in
	base types
	ByteArrayInputStream
	FileInputStream
	PipedInputStream
	SocketInputStream (not public) - comes from to TCP socket

	Filters - wrapped around an InputStream
	BufferedInputStream
	PushbackInputStream
	ObjectInputStream

	SequenceInputStream -- cat

	Reader - character stream coming in
	InputStreamReader
	Wrap around an InputStream to get a Reader
	takes bytes, converts to characters
	Can specify encoding used to convert bytes to characters

	CharArrayReader
	StringReader
	Filters
	BufferedReader - efficient, supports readLine()
	LineNumberReader - reports Line Numbers

	PushbackReader

	Convenience Readers
	wraps an InputStreamReader around an InputStream
	FileReader
	PipedReader

	URLÕs and Web connections
	Example: URLGet
	URLÕs
	URLConnection

	Example: URLGet
	URLÕs
	URL u = new URL("http://www.cs.umd.edu:8080/index.html");
	// then
	URLConnection conn = u.openConnection();
	// or
	InputStream in = u.openStream();
	// or
	Object o = u.getContents();
	 // depends on finding ContentHandler
	 // parses content
	 // e.g., JPEG file turned into image

	URLConnection
	int len = conn.getContentLength();
	// Number of bytes in content
	
	long date = conn.getDate();
	// Time of last modification
	// Milliseconds since Epoc
	// Convert to Date() for other forms
	
	String type = conn.getContentType();
	// Get Mime type of content
	
	Object o = conn.getContent();
	// finds ContentHandler to parse Contents

	Sockets
	Sockets are InternetÕs way of sending/receiving messages
	everything is done via a socket
	Supports
	TCP sockets
	guaranteed, stream based communication

	UDP sockets
	unguaranteed, packet based communications
	also supports Multicast UDP sockets

	TCP Client Socket Example
	TCP Server Socket Example

	TCP Client Socket Example
	TCP Server Socket Example
	java.util
	Vector
	Dictionaries
	Enumerations and Bitsets
	Miscellaneous
	Java 1.2 Collection Classes

	Vector
	A list/vector abstraction
	Can insert/delete/modify elements anywhere in list
	Can access by position
	Stack
	An extension of Vector
	Adds push, pop, peek and empty

	Dictionaries
	Dictionary
	An abstract class
	Represents a key to value mapping

	HashTable
	An implementation of Dictionary

	Properties
	Uses HashTable
	Keys and Values are Strings
	Allows scoping
	Can be saved to a file

	Enumerations and Bitsets
	Enumeration
	Just an Interface
	Used in a number of places to return an enumeration
public boolean hasMoreElements()
public Object nextElement()

	BitSet
	Provides representation of a set as a bitvector
	Grows as needed

	Miscellaneous
	Date
	Not a great design
	1.1 adds java.util.Calendar and java.text.DateFormat
	many Date methods depreciated
	Complicated due to internationalization
	and bad design?

	Random
	StringTokenizer
 StringTokenizer tokens = new StringTokenizer(msg," ");
 	while (tokens.hasMoreTokens())
 		System.out.println(tokens.nextToken());
	java.util.zip package
	Provides ability to read/write zip archives

	Java 1.2 Collection Classes
	interface Collection
	interface List
	class Vector
	class Stack

	class ArrayList
	class LinkedList - a doubly linked list

	interface Set
	class HashSet
	interface SortedSet
	class TreeSet

	interface Map - Dictionary like structures
	class HashMap; replaces HashTable
	interface SortedMap
	class TreeMap

	Other libraries
	class java.lang.Math
	abstract final class - has only static members
	Includes constants E and PI
	Includes static methods for trig, exponentiation, min, max, ...

	java.text Package
	New to Java 1.1
	Text formatting tools
	java.text.MessageFormat provides printf/scanf functionality

	Lots of facilities for internationalization

	Loading Resources
	Can load resources from same place as class
	images
	Text files
	Serialized Objects
	local file or http connection
	directory or jar file
	easiest way to get data out of a jar file

	Code snippets

	Code snippets
	URL u = obj.getClass().getResource("title.gif");
	gets URL for title.gif from the same place as the class file for obj
	DoesnÕt work in Netscape
	u.getContent() gets content
	java.awt.image.ImageProducer for images

	InputStream in = getClass().getResourceAsStream("data");
	Gives access to raw bytes
	Works in Netscape

	Advanced capabilities/libraries
	Advanced capabilities/libraries

	Advanced capabilities/libraries
	Object Serialization
	Remote Method Invocation
	Security
	JavaBeans
	Reflection
	Java DataBase Connection (JDBC)
	Drag-n-Drop, Clipboard
	2D/3G graphics

	Object Serialization
	Allows you to write/read object to/from a stream
	Correctly handles graphs and cycles
	Two ways to allow on object to be serialized
	implement Serializable -- depend on system
	implement Externalizable -- roll your own

	Version control a tricky and difficult problem
	if you donÕt do anything, canÕt read previous versions
	Can OK reading old versions
	set serialVersionUID

	implement Serializable -- depend on system
	Can define readObject
 	private void readObject(ObjectInputStream in)
 	 	throws IOException, ClassNotFoundException
	Can invoke in.defaultReadObject()
	restores all non-static, non-transient fields

	Can define writeObject
 	private void writeObject(ObjectOutputStream out)
 		throws IOException, ClassNotFoundException
	Can invoke out.defaultWriteObject()
	saves all non-static, non-transient fields

	implement Externalizable -- roll your own
	to read an object:

public void readExternal(ObjectInput in)
 	throws IOException

	to write an object:

public void writeExternal(ObjectOutput out)
 	throws IOException

	Remote Method Invocation
	Set up registry to allow you to locate remote objects by name
	Allows methods to be invoked on remote objects
	Parameters and result copied by-value using serialization
	Except that remote objects arenÕt copied
	instead, a remote reference is passed

	Similar to CORBA, but
	only works Java-to-Java
	easier to use

	RMI Agents

	RMI Agents
	A program using RMI can specify a codebase
	URL that provides access to class files

	If an object x of Class Y is sent from machine A to machine B
	If B canÕt locate code for Class Y locally
	B retrieves it from AÕs codebase

	Security
	Code can be digitally signed
	Determines privileges code will get

	JavaBeans
	Use the Bean coding style, and your class is a JavaBean
	use getXXX() method to get value of property XXX
	use setXXX() method to set value of property XXX
	Similar styles for attaching EventListeners, ...
	Can also provide code that describes this info

	Bean development environments
	Work Visually
	Allow you to connect and customize Beans
	Customized Beans can be serialized and saved

	Many environments have similar visual programming tools
	But JavaBeans are very easy to create

	Reflection
	Reflection as in looking in a mirror
	Allows examination of the methods supported by a class at run time
	allows invocation of calls you didnÕt know existed at compile time
	Useful for lots of tools:
	Visual programming environments
	Java Beans
	Serialization
	RMI

	Example use: InvokeMain.java

	Example use: InvokeMain.java
	Given name of class and arguments
	invokes static main method with those arguments
	doesnÕt work well with programs that check for EOF of standard input

	Java DataBase Connection (JDBC)
	Allows online connect to SQL relational database
	Allows full power SQL
	Designed to allow use in serious database applications
	Most database vendors are providing JDBC interfaces

	Drag-n-Drop, Clipboard
	Allows information to be cut-and-pasted or dragged-and-dropped
	Data can have multiple data flavors
	A graph could be supplied as
	a picture
	a data series
	text

	2D/3G graphics
	2D graphics package is a replacement for java.awt.Graphics
	Allows more powerful operations (affine transformations, ...)

	3D graphics provides interface to 3D graphics system
	will probably require tuned software or special hardware

