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Abstract

We consider regularization methods for numerical solution of linear ill-
posed problems, in particular, image deblurring, when the singular value
decomposition (SVD) of the operator is available. We assume that the
noise-free problem satisfies the discrete Picard condition and define the
Picard parameter, the index beyond which the data, expressed in the coor-
dinate system of the SVD, are dominated by noise. We propose estimating
the Picard parameter graphically or using standard statistical tests. Hav-
ing this parameter available allows us to estimate the mean and standard
deviation of the noise and drop noisy components, thus making filtered
solutions much more reliable. We show how to compute a near-optimal
choice of filter parameters for any filter. This includes the truncated singu-
lar value decomposition (TSVD) filter, the truncated singular component
method (TSCM) filter, and several new filters which we define, including
a truncated Tikhonov filter, a Tikhonov-TSVD filter, a Heaviside filter,
and a spline filter. We show how to estimate the error in any spectral
filter, regardless of how the filter parameters are chosen. We demonstrate
the usefulness of our new filters, our near-optimal choice of parameters,
and our error estimates for restoring blurred images.

1 Introduction

In this work, we construct near-optimal filters for solving general linear ill-posed
problems. Our examples, however, all concern image deblurring, so we focus on
that particular application.

Images recorded by cameras or medical imaging devices are usually con-
taminated by noise and by blur that comes from factors such as the motion of
the camera or the object, lens imperfections, or atmospheric turbulence. The
restoration of such images is challenging since the problem is ill-posed. Even
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if the blur is known (e.g., due to the motion or defocus), the noise is unknown
and random.

A camera records an array of pixel values, corresponding to averages over
square subsets (pixels) that partition the domain of the image. For definiteness,
consider a grayscale image with an intensity in the interval [0, 255] recorded for
each pixel, 0 for a black pixel value and 255 for white. Blurring occurs when a
pixel value is affected by the values of its neighbors. In this work, we assume
that this is caused by a linear transformation. We can simplify the problem
formulation by stacking the pixels of the image, column by column, to form
a vector. The matrix A defining the linear transformation can be determined
analytically or measured experimentally by determining point spread functions
for each pixel of the original image. Experimentally, under conditions where the
noise is negligible, the camera is used to capture an image of a scene containing
a single white pixel with black elsewhere. Arranging the resulting image, called
a point spread function (PSF), as a vector gives the column of A corresponding
to that pixel. If the blur is spatially invariant, then the other columns of the
matrix are rearrangements of that one. Otherwise, the process is repeated for
each pixel [19].

1.1 The Linear Model

We use the notation in Table 1. Note that matrices (uppercase) and column
vectors (lowercase) are boldface.

Table 1: Notation for the Model
Symbol Definition

A The m× n blurring matrix, possibly defined through PSFs.
Xtrue,xtrue Original (true) n-pixel image in matrix and vector form.
Btrue, btrue The m-pixel image resulting from blurring Xtrue.

E, e The m-pixel noise.
B, b The m-pixel blurred image with added noise:

B = Btrue + E and b = btrue + e.

With the above notation, our discrete linear model of image blurring is
described by the equation btrue = Axtrue, or

b = Axtrue + e, (1)

and we know that 0 ≤ (xtrue)j ≤ 255, j = 1, . . . , n.
Much research has been performed on ways to restore an image (e.g., [2, 6,

21]) and many different approaches and algorithms are now used to eliminate
noise and blur. Our work focuses on the computation of a restored image using
spectral filters that give weight to components of the image that are not so
contaminated by noise. For each filter, we seek a near-optimal choice of the filter
parameters that will give nearly the best approximation of the original image
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xtrue. The near-optimal parameter for the Tikhonov filter has been determined
in [20]. We build upon this work to devise general near-optimal filters.

1.2 Filtered Solutions

We assume that the noise e is sampled from a distribution with mean 0 and
standard deviation s and that the matrix A is full-rank (rank=n ≤ m) and
generally ill-conditioned, since it is a faithful discretization of an ill-posed con-
tinuous operator. For simplicity, we will assume that A is a real matrix but the
generalization to complex is straight-forward.

We use the coordinate system of the singular value decomposition (SVD) of
A to represent the true solution and approximations to it. Let the SVD of A be
A = UΣV T . The matrices U and V are orthogonal with size m×m and n×n
respectively. The matrix Σ is zero except for its main diagonal elements, the
singular values of the matrix A in non-increasing order σ1 ≥ σ2 ≥ · · · ≥ σn > 0.
We denote the ith column of U by ui and the ith column of V by vi.

Multiplying (1) by uTi and using the SVD, we obtain [11, Sec 1.4]

xtrue =

n∑
i=1

uTi (b− e)

σi
vi. (2)

Since the noise vector e is unknown, we cannot compute this solution.
Instead, we compute a filtered solution xfilt using a filter function ϕλ and

the information available to us:

xfilt =

n∑
i=1

φi(λ)
uTi b

σi
vi, (3)

where
φi(λ) = ϕλ(σi).

Ideally, we want to minimize the norm of the error, the difference between
xtrue and our approximation xfilt:

min
λ
‖xfilt − xtrue‖2.

We use the 2-norm for convenience, but other choices are possible. Well-known
examples of filters ϕλ(σ) include the truncated SVD (TSVD) filter

φi(λ) =

{
1, if i ≤ λ,
0, otherwise,

(4)

with λ ∈ {1, . . . , n}, and the Tikhonov Filter

φi(λ) =
σ2
i

σ2
i + λ

, (5)
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with λ ∈ R+. Note that the parameter in the TSVD filter can also be made
continuous by reparameterizing, defining, for λ ∈ R+,

ϕλ(σ) =

{
1, if σ ≥ λ,
0, otherwise.

O’Leary has determined a choice of parameter λ that aims to minimize the error
‖xtrue − xfilt‖ for the Tikhonov filter [20].

1.3 Contributions and Outline

In this paper we make four main contributions:

• Section 2: We define a Picard parameter, related to the discrete Picard
condition [12], that identifies the value k such that uTi b ≈ uTi e for i ≥ k.
The Picard parameter, implicit in some earlier work on regularization (see,
for example, [3, Sec. 3.2], [10, Sec. 5], [11, Sec. 6.6], [23]), can be estimated
graphically or, when the noise is Gaussian, by using standard statistical
tests. We show that having k available to us makes the filtered solutions
much more reliable, since we can use it to estimate the mean and standard
deviation of the noise and to drop the noisy components i ≥ k.

• Section 3: We show how to compute a near-optimal choice of λ for any
spectral filter. This includes the TSVD filter and several new filters which
we define, including a truncated Tikhonov filter, Heaviside filters, and
a spline filter. We call this parameter choice the Statistically Optimal
Filtering Method (SOF).

• Section 4: We propose an estimate for the error ‖xtrue − xfilt‖ that can
be used for any spectral filter, whether or not λ is determined using SOF.

• Section 5: We propose several new filters, including Heaviside, hybrid, and
spline filters.

Numerical results are presented in Section 6, and conclusions are given in Section
7.

This work is a further development of that in Taroudaki’s PhD dissertation
[24].

2 Picard Parameter Estimation

In this section we define the Picard parameter and discuss its estimation, man-
ually and then (for Gaussian noise) automatically, using the Lilliefors test.

2.1 The Discrete Picard Condition

Using the SVD of A, define

β = U Tb, ε = U Te.
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Figure 1: Picard plots. Top right: The data available in solving the problem, the
singular values (red circles) and the observed image in the U coordinate system
(blue stars). Top left: The true noise-free data (black diamonds) decay faster
than the singular values, so the discrete Picard condition is satisfied. Bottom
left: The noise (green plusses) violates the Picard condition and eventually
dominates the true data. The blue data are the sum of the (unknown) black
and green datapoints.

Then the b vector satisfies the discrete Picard condition if the sequence of true
data values βi − εi decay faster than the sequence of singular values σi. With
the added noise, however, there is a value k < n for which the βi values are
dominated by noise for i ≥ k. For those values of i, βi ≈ εi. So for a fixed n, we
define the Picard parameter k as the smallest index such that βi ≈ εi for i ≥ k.

Note that the Picard parameter is distinct from a regularization parameter
that might be determined, for example, for the TSVD method. It is useful to
use k−1 as an upper bound on indices of singular values to be considered when
determining a regularization parameter, or use σk−1 as a lower bound on singular
values to be included. This eliminates consideration of contaminated data that
might mislead an automatic parameter choice method. Setting the filter to zero
for σ ≤ σk causes no loss of information and reduces the computational cost.
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2.2 Manual estimation of the Picard parameter

The Picard parameter can be estimated graphically. The Picard plot displays
{log |βi|} and {log σi} vs. i. The value i for which the plot of {log |βi|} levels
off is an estimate of the Picard parameter for a noisy problem.

The Picard plot for a 64× 64 Barbara image blurred by separable Gaussian
blur is shown in the upper left in Figure 1. This noise-free problem satisfies the
discrete Picard condition.

In contrast, the upper right Picard plot includes additive noise of standard
deviation s = 1, shown in green in the lower left. The leveling off of the |βi|
values is evident, at about k = 1000. If larger noise is added, then the leveling
off occurs even sooner.

2.3 Automatic estimation of the Picard parameter when
the noise is Gaussian

Estimating the Picard parameter from a Picard plot is subject to human judge-
ment. In this subsection we discuss how the parameter might be estimated
automaticially if the added noise is Gaussian with mean and standard deviation
unknown. Other types of noise would require a different statistical test, but the
methodology would be similar.

Our goal is to determine a value k beyond which the βi are plausible sam-
ples from a normal distribution. This normality testing can be approached in
many different ways, including examination of a histogram of the data and
use of a test of whether a null hypothesis (“The sample is drawn from a nor-
mal distribution.”) is valid or not. These null-hypothesis tests include the
D’Agostino’s K-squared test [4], the Jarque-Bera test [13], the Lilliefors test
[15], the Kolmogorov-Smirnov test [17], and others [5]. For our purposes, we
use the Lilliefors test, which is an adaptation of the Kolmogorov-Smirnov test.

The Liliefors test is performed on a sample of points in three major steps.

1. Estimate the population mean and the population variance using the sam-
ple mean and variance.

2. Compute the maximum discrepancy between the empirical distribution
function Fq(x) of the sample and the cumulative distribution function
F (x) of the normal distribution with the estimated mean and variance.

3. Assess whether the maximum discrepancy

Dq = sup
x
|Fq(x)− F (x)|

is large enough to be statistically significant.

The empirical distribution function Fq for q independent and identically
distributed observations Xi is defined as

Fq(x) =
1

q

q∑
i=1

IXi≤x,
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where

IXi≤x(x) =

{
1, if Xi ≤ x,
0, otherwise.

According to the Glivenko-Cantelli theorem [8, 1], if the sample that we
examine comes from a distribution F (x), then Fq(x) will uniformly converge to
F (x) almost surely:

Dq = ‖Fq − F‖ = sup
x
|Fq(x)− F (x)| → 0 almost surely.

If Dq is less than a desired tolerance, then the null hypothesis is true with some
probability. The smaller the tolerance, the larger the probability is.

We set the Picard parameter k by examining the sequences

{βi}ni=j ,

for j = n − 3, n − 4, . . . , 1. The first time that 10 successive sequences, for
j = ` − 1, . . . , ` − 10, fail the Lilliefors test at the 95% confidence level, we
assume that the data are no longer noise-dominated and we set k = `.

We implement this using Matlab’s lillietest, which returns 0 if, with
95% confidence, the sample comes from a normal distribution and 1 if it does
not. It requires sequences of at least 4 elements, so we need a discretization
(pixelization) fine enough so that at least the trailing 14 β values are primarily
due to noise. Once we have an estimate of k, we can also estimate the mean
and standard deviation of the noise using the sample values.

In the case when there is no noise, we expect that the elements of b will
decrease in average and that the Picard condition will be satisfied. That means
that we do not expect the last entries in b to resemble a normal distribution, so
the Lilliefors test will fail. In this unlikely event we would keep all the β values
and set k = n+ 1.

This method performed well in our tests, but other methods, such as the
Mann-Kendall (nonparametric) test [14, 16] for monotonic trend should be con-
sidered, especially if the noise is not Gaussian.

3 Near-optimal parameter choice for general fil-
ters

Recall from (2) that the true solution to our problem is

xtrue =

n∑
i=1

uTi (b− e)

σi
vi =

n∑
i=1

βi − εi
σi

vi.

We hope to approximate it well using a filtered solution

xfilt =

k∑
i=1

φi(λ)
βi
σi

vi,
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Figure 2: Truly optimal filters. The left plot is for σi ∈ [0, 0.2587] and the
right plot is for σi ∈ [0.2587, 1]. The gray curves are the optimal filters for 500
different noise samples. The black curve shows the average of these filters. The
red curve shows the proportion of the 2-norm of the true image due to singular
components to the left of the singular value.

where this expression differs from (3) in that it uses the Picard parameter to
truncate the summation. We want to determine a nearly optimal filter φ(λ).

From filters proposed in the literature, it is easy to conclude that an optimal
filter is shaped something like the Tikhonov model: close to zero for small
singular values, close to one for large singular values, and making a smooth
transition for intermediate singular values.

We performed a simple experiment to determine how truly optimal filters
really look. We used a 64 × 64 version of the Barbara image, blurring it with
a separable Gaussian blur. We added noise that was normally distributed with
mean zero and standard deviation one. We computed the truly optimal filter,

φi =
(βtrue)i
βi

,

the one that recovers the true image, where

βtrue = β − ε.

In Figure 2 we plot this filter in gray for 500 different noise samples. The
black curve shows the average of these 500 filters. The optimal filter values
are indeed near one for large singular values and near zero for small singular
values, but even the average of the filters is wildly oscillating for intermediate
singular values. A smoothly transitioning filter has no chance of capturing this
behavior, so we might ask how important it is to have good filter values in the
intermediate region. The answer is given in the red curve, which shows the
proportion of the 2-norm of the true image due to singular components to the
left of each value; i.e., the red value at σi is n∑

j=i

(uTj xtrue)
2/

n∑
j=1

(uTj xtrue)
2

1/2

.
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We see that 99% of the magnitude of the solution is in components corresponding
to singular values of magnitude 0.2587 or larger, which explains why a smoothly
transitioning filter might be effective.

Without full knowledge of the noise, we can’t hope to reproduce the truly
optimal filter for a given problem, but our aim in this work is to compute a
near-optimal filter, one that approximately minimizes the error

‖xtrue − xfilt‖. (6)

Our assumptions are:

• The entries in the noise vector ε have mean 0 and standard deviation s,
and an estimate of s is available.

• The Picard parameter k has already been determined.

• For i ≥ k, we believe that βi − εi is neglibly small, so we set φi(λ) = 0.

Algorithm 1 SOF algorithm to compute the near-optimal filter

1: Input: Blurring matrix A, given image b, the Picard parameter k, the
standard deviation s or an estimate of it, and a function that evaluates the
filter φ(λ) for any given value of λ.

2: Output: Optimal parameter λ∗ of the filter and restored image x∗.
3: Compute the SVD of A = UΣV T .
4: Let β = U Tb.
5: Find the minimizer λ∗ of

g(λ) =

k−1∑
i=1

(1− φi(λ))2β2
i − 2(1− φi(λ))s2

σ2
i

.

6: Set x∗j =
∑k−1
i=1 φi(λ

∗)βiσi vi.
7: Estimate the error using (10).

We compute

‖xtrue − xfilt‖2 =

n∑
i=1

[(
βi − εi
σi

− φi(λ)
βi
σi

)]2

≈
k−1∑
i=1

[(
βi − εi
σi

− φi(λ)
βi
σi

)]2

=

k−1∑
i=1

(
(1− φi(λ))βi − εi

σi

)2

=

k−1∑
i=1

ε2i
σ2
i

+

k−1∑
i=1

(1− φi(λ))2β2
i − 2(1− φi(λ))βiεi
σ2
i

.
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Note that the first term does not depend on the filter. Since εi is unknown,
we cannot evaluate this last expression. so we approximate it using expected
values wherever necessary. Note that E(βiεi) = E(((βtrue)i + εi)εi) = s2, so

‖xtrue − xfilt‖2 ≈
k−1∑
i=1

ε2i
σ2
i

+

k−1∑
i=1

(1− φi(λ))2β2
i − 2(1− φi(λ))E(βiεi)

σ2
i

=

k−1∑
i=1

ε2i
σ2
i

+

k−1∑
i=1

(1− φi(λ))2β2
i − 2(1− φi(λ))s2

σ2
i

. (7)

We see that we need to minimize

g(λ) =
k−1∑
i=1

(1− φi(λ))2β2
i − 2(1− φi(λ))s2

σ2
i

. (8)

The resulting Statistically Optimal Filtering (SOF) algorithm is given in Algo-
rithm 1. If some of the parameters in λ take on discrete values, then Step 6 in
Algorithm 1 can be implemented as follows:

Set gmin to the largest floating point number.
for each possible choice of the discrete parameters in λ do

Find the minimizer λ̂ of g(λ) with respect to its continuous variables.

if g(λ̂) < gmin then

Set gmin = g(λ̂)

Set λ∗ = λ̂.
end if

end for

Minimizing equation (8) for the Tikhonov filter gives a solution similar to
the one produced by O’Leary in [20]. The difference is that [20] includes terms
for i ≥ k in the minimization.

We note that this procedure can be applied to any existing spectral filter,
including the TSVD filter (4) the Tikhonov filter (5), and a filter of Rust [22]
that is closely related to the TSVD filter. The difference is that it truncates
components with small |βi|, since these components are likely to be dominated
by noise. In later work (private communication) Rust proposed also truncating
components with small singular value, using a Picard plot, much as we did in
determining the Picard parameter. The resulting truncated singular component
(TSCM) filter is

φi(λ) =

{
1, if 1 ≤ i ≤ λ and |uTi b| > τs2,
0, otherwise,

(9)

where τ is the truncation level (typically τ ∈ {1, 2, 3}) and λ ∈ {1, . . . , k}.
Given the values of the Picard parameter k and the truncation level τ , the filter
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depends on a single parameter λ. Of all the filters considered in this work, this
is the only one that does not have a corresponding ϕλ(σ) definition, since the
filter values depend on the observed data.

4 Uncertainty Quantification

From our derivation in Section 3, we see that (7) is an estimate of ‖xtrue−xfilt‖.
We can make that estimate realistic by observing that if φi(λ) < 1/2, then we
must conclude that βi ≈ εi, so we propose the error estimate

‖xtrue − xfilt‖2 ≈
k−1∑
i=1

r2i
σ2
i

+

k−1∑
i=1

(1− φi)2β2
i − 2(1− φi)r2i
σ2
i

, (10)

where

ri =

{
s, if φi > 1/2,
βi, otherwise.

We note that this error estimate does not depend on how the filter φ was
derived, so it is of use even when the filter parameters are not determined by
our SOF method but by other methods. The most commonly used parameter
determination methods are generalized cross validation and the discrepancy
principle.

Generalized cross validation (GCV) [9] determines the parameter λ so that
if we leave one observation bi out of the computation, it is best predicted by
the parameters chosen for the remaining observations. This is equivalent to
minimizing the GCV function

G(λ) =
‖(I−AVΦΣ−1UT )b‖22

trace(I−AVΦΣ−1UT ))2
, (11)

where Φ is the diagonal matrix of the filter factors φi.
The Discrepancy Principle (DP) [18] computes the parameter λ for which the

norm of the residual approximates the expected norm of the noise (δ = E(‖e‖2)):

‖b−Axfilt‖2 = τδ, (12)

where τ is a factor commonly set to τ ∈ {2, 3, 4, 5}. In our work, we used the
parameter τ = 2. This method relies on having a good estimate of the expected
norm of the noise.

5 Some new regularizing filters

Next, we consider some useful new filters. See Figures 3 and 6 for illustrations
of typical behavior of TSVD, Tikhonov, TSCM, and these new filters.
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TSVD: Tikhonov: Tikhonov-k:
σλ = 10−4 λ = 10−4 λ = 10−4, σk = 0.005

Hybrid: σλ1
= .05 Heaviside-1: Heaviside-2:

λ2 = 10−4, σλ2
= .005, σ̃ = 0.022, λ = 0.005 σ̃ = 0.022, λ = 0.005

Figure 3: Typical behavior of various filters: plots of φ(σ) vs. σ

5.1 Truncated Tikhonov Filter

The Truncated Tikhonov filter is a truncated form of the Tikhonov filter:

φi(λ) =

{
σ2
i

σ2
i+λ1

, if 1 ≤ i ≤ λ2,
0, otherwise,

(13)

where λ1 ∈ R+ and λ2 ∈ {1, . . . , k − 1}.
Using this filter, we retain the good properties of the Tikhonov filter, i.e.,

the decrease in the weight of the terms that contain the small singular values,
and also we decrease the computational cost since we do not add the terms that
do not contribute any significant information but are dominated by noise.

Setting k = n+ 1 recovers the Tikhonov filter.

5.2 The Hybrid (HYBR) Filter

We introduce a new, hybrid filter that combines the Tikhonov regularization
filter with the TSVD filter:

φi(λ) =


1, if i ≤ λ2,
σ2
i

σ2
i+λ1

, if λ2 < i ≤ λ3,
0, if λ3 < i ≤ n.

(14)

We have one continuous parameter λ1 ∈ R+. and two discrete parameters
0 ≤ λ2 ≤ λ3 < k. Alternatively, we can set λ3 = k − 1, reducing the number of
parameters to two.
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This filter assumes that all of the singular values with an index less than λ2
correspond to important information whereas those which have an index greater
than λ3 correspond to components overwhelmed by noise. For intermediate
singular values, the Tikhonov filter is used.

Fuhry and Reichel [7] have created a similar filter called the regularized
Tikhonov Filter:

φi(λ) =

{
1, if σi > λ,
σ2
i

λ2 , if λ > σi.

5.3 Heaviside (HS) Filters

In general, the filters give more weight to the components of the solution that
correspond to large singular values and less to those with smaller singular values.
The TSVD, for example, is a shifted Heaviside function

ϕλ(x) =

{
1, if x > λ,
1
2 , if x = λ,
0, if x < λ,

(15)

where λ is between two singular values. We can use a continuous function that
approximates the TSVD filter. For example, define the Heaviside-1 filter

φi(λ) = e−e
−(σi−σ̃)/λ

,

where σ̃ is a centering parameter. Alternatively, define the Heaviside-2 filter as

φi(λ) =
1

1 + e−(σi−σ̃)/λ
.

In both cases, the filters depend on the continuous parameter λ. The parameter
σ̃ ∈ [σk, σ1] can be specified by the user, chosen automatically based on the
estimated noise, or used as an additional λ-parameter in the optimization.

5.4 A spline filter

Another idea is to create a filter

φi(λ) = s(σi), (16)

using a spline s(σ) with knots y1 < y2, · · · < y` in [σk, σ1], perhaps chosen
equally spaced on a linear- or log-scale. As an example, we consider a cubic
spline.

A convenient representation for a cubic spline s(σ) on the interval [yj , yj+1],
for j = 1, · · · , `− 1, is

sj+1(σ) = mj
(yj+1 − σ)3

6hj+1
+mj+1

(σ − yj)3

6hj+1
+ aj(σ − yj) + bj ,
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where hj+1 = yj+1 − yj and mj , aj , and bj are parameters. The spline and its
first two derivatives must be continuous at the knots, but it can have disconti-
nuities in its third derivative at the knots. Imposing the continuity conditions
results in constraints on the parameters. Our representation has been chosen so
that the second derivative is continuous, since

s′′j+1(yj) = mj = s′′j (yj),

but the other continuity conditions result in the linear constraints

sj+1(yj) = mj
h2
j+1

6 + bj = mj
h2
j

6 + aj−1(hj) + bj−1 = sj(yj),

s′j+1(yj) = −mj
hj+1

2 + aj = +mj
hj
2 + aj−1 = s′j(yj),

for j = 2, . . . , ` − 1. This gives us 2` − 4 conditions for the 3` − 2 parameters,
leaving ` + 2 parameters to determine. We reduce this to ` parameters λ by
specifying boundary conditions s(σk) = 0 and s(σ1) = 1. Other choices of
boundary conditions can be used.

6 Numerical Results

In this section we present results of using several filters:

• TSVDn: Standard TSVD (4), with no use of the Picard paramater.

• TIKn: Standard Tikhonov (5), with no use of the Picard paramater.

• TIKk: Tikhonov, truncated using the Picard parameter (13).

• TSVDk: TSVD with the restriction that λ ≤ k.

• HYBRk: The new hybrid filter, using the Picard parameter (14).

• SPLlink: The new spline filter, 5 knots, using the Picard parameter (16).

We determine the parameters for the filters in four ways:

• SOF: our new Algorithm 1 (denoted by “S” in later figures).

• GCV: generalized cross-validation (11) (denoted by “G” in later figures).

• DP: the discrepancy principle (12) (denoted by “D” in later figures).

• OPT: the true optimal parameters for the given filter. Note that this
cannot be determined without knowing the noise sample, so it is not a
method that can be used on real problems.

This gives us 24 algorithms. Matlab implementations of these algorithms are
available at http://www.cs.umd.edu/users/oleary/software.
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Figure 4: 128× 128 Barbara: results
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Figure 5: 128× 128 Barbara: error images (black = 0)
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Figure 6: 128× 128 Barbara: filters
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Example 1

This experiment is performed using a 128× 128 Barbara image with separable
Gaussian blur and standard deviation of the noise s = 1. The resulting images
for SOF, GCV, and DP, shown in Figure 4, are all quite similar to the optimal
ones, shown in the last column. The error images, shown in Figure 5 do show
some differences, though. In particular, the GCV error images, and sometimes
the DP images, are whiter, indicating larger error. Figure 6 shows the filters that
were used to produce these images. It is remarkable that such different filters
can produce such similar results, but explained by the experiment in Figure 2.

Next we explore the reliability of these methods.

Example 2

We repeated the above experment 50 times, using a 64× 64 Barbara image, to
see how reliable the methods are. We used s = 1 as well as s = 10.

Figure 7 shows box plots of the relative errors for the methods. Along the
horizontal axis are the 6 filters, with columns for SOF, GCV, and DP for each
filter. Note that TSVDn produced a wide variety of relative errors. This was our
motivation for developing reliable ways to compute the Picard parameter; the
results for TSVDk are much more consistent. In general, DP produced larger
errors, while the performance of SOF and GCV were generally comparable.

Figure 8 shows the error factors, the ratio of the error of these methods to
the error produced by OPT, the true optimal parameter. Again DP is shown
to often produce much larger errors. For the larger noise level, there is signif-
icant variation in the quality of the results for the SPL filter. We believe that
there are multiple local minimizers for the error function and that more careful
minimization from multiple starting points would be necessary to resolve this.

Figure 9 shows the quality of the error estimate (10) for the 24 methods.
We note that regardless of method, the estimate is often within an order of
magnitude of the true value.

7 Conclusions

We defined the Picard parameter and we described a manual and an automatic
way of computing it. The manual approach is based on the Picard plot and the
automatic on histograms and the Lilliefors method for normality testing. The
Picard parameter proved to be quite useful for constraining the parameters in
spectral filters. It would be very useful to develop better methods for determin-
ing the Picard parameter for Gaussian noise, and to develop methods for other
noise distributions.

We derived a way to determine near-optimal parameters for spectral filters
and compared this method with GCV and DP.

We defined several new filters and demonstrated their usefulness.
Finally, we developed an error estimate that can be used for any spectral

filter, regardless of how the parameters are chosen.
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Figure 7: 64 × 64 Barbara: relative error ‖xtrue − xfilt‖/‖xtrue‖. Top: s = 1.
Bottom: s = 10.
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Figure 8: 64× 64 Barbara: ‖xtrue−xfilt‖/‖xtrue−xopt‖. How close to optimal
is the error for this kind of filter? Top: s = 1. Bottom: s = 10.
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Figure 9: 64 × 64 Barbara: How good is the error estimate? Top: s = 1.
Bottom: s = 10.
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