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Abstract

We describe the use of a Matlab tool called gide that allows user-
aided deblurring of images. gide helps practitioners restore a blurred
grayscale image using their knowledge or intuition about the true image,
but safeguarding from possible bias by validation using statistical diagnos-
tics based on an assumption of Gaussian added noise. gide allows prac-
titioners (or students) to visually explore the range of statistically likely
solutions resulting from any of three regularization methods: Tikhonov,
truncated SVD, and total variation.
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1 Introduction

Restoring a blurred image requires choice of a regularization method and as-
sociated parameter. Different choices can lead to a very wide variety of re-
constructed images. Practitioners faced with these choices might favor results
biased by what they expect to see and thereby introduce image artifacts or miss
true image features.

This is demonstrated in Figure 1. The practitioner might not expect the
moon to have train tracks and may favor a reconstruction like the reconstructed
image in the center of the figure, where that information is lost.

To avoid bias, we developed a methodology for method choice and parameter
selection that uses three statistical diagnostics to validate solutions, under the
assumption of Gaussian additive noise in a blurred grayscale image.

We packaged the methodology into Matlab software called gide, Graphical
Image Deblurring Exploration, including a user-friendly graphical user interface
(gui). The software was built upon James Nagy’s RestoreTools package [6].
It allows practitioners (or students) to visually explore the range of statistically
likely solutions resulting from any of three regularization methods: Tikhonov,
truncated SVD, and total variation.

2 A Brief Overview of gide

Medical and scientific imaging takes raw noisy data from a scientific instrument
(MRI, CT, astronomical camera, etc.) and processes (“deblurs”) this data to
produce images that are useful to practitioners. These rather expensive images
are often critical in making medical or scientific decisions, so it is important
that the deblurring is performed well. Unfortunately, image deblurring is an
example of an ill-posed inverse problem: small changes (e.g., noise) in the data
can make arbitrarily large changes in the deblurred image.

To overcome this limitation, we typically use our knowledge about the par-
ticular problem to formulate constraints [3]. For example, we might choose to

Figure 1: Left: Blurred Image, Center: Deblurred Image, Right: True Image
which has “train tracks”. Without knowledge that the true image has “train
tracks” one might accept the deblurred result without realizing that important
information has been lost.
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limit the norm of the solution image (Tikhonov regularization), approximate the
blurring operator by a low-rank matrix (Truncated Singular Value Decomposi-
tion (TSVD) regularization), or limit the Total Variation (TV) of the solution.
Including these constraints makes the problem well-posed, and thus the new
problem has a well-determined solution that we hope is near the true solution
of the original problem. Once we choose a regularization method, we also need
to choose a parameter that we call γ. These choices are not easy.

In this work we take the viewpoint of a practitioner looking for a good re-
construction of a single image, or of a student gaining experience with various
methods. Figure 2 shows that different regularization methods can yield very
different reconstructions. But choosing an appropriate method and parameter
for a given problem is difficult, relying on properties of the particular problem
and knowledge of the application area. Practitioners often have invaluable ex-
perience that is crucial in finding a good approximate solution, but too much
reliance on intuition can lead them to see what they expect to see, rather than
the true solution. Any candidate reconstruction should be validated using sta-
tistical analysis.

We present a methodology and software with a graphical user interface (gui)
that can be used by practitioners to choose an appropriate regularization method
and associated parameter while reducing the bias that can be introduced by
choosing based on seeing a visually appealing reconstruction. This methodology
gives practitioners the ability to compare regularization methods by presenting
a plausible range for γ and by presenting results of statistical tests of plausibility
of each candidate image as a solution to the original ill-posed problem.

Our proof-of-concept software package gide (Graphical Image Deblurring
Exploration) was built in Matlab using the RestoreTools package [6]. Fig-
ure 3 shows a screen shot of the interface. The gui is easy to use. After typing
startGIDE:

• A user can either provide a blurred image or choose from samples that we
provide.

• Similarly, a user either provides a blurring matrix or a separable Point
Spread Function (PSF), or chooses the default boxcar or Gaussian blurs.
(See Section 7.2 for the definition of these blurs.) Every new problem
specification generates a different random noise sample, so final results
will change.

• After selecting one of the regularization methods (TSVD regularization,
Tikhonov regularization, or TV regularization), clicking Compute pro-
duces an initial solution based on automatic selection of the regularization
parameter γ.

• The resulting deblurred image appears, along with other information, in-
cluding the results of the statistical diagnostics. For each diagnostic, in
addition to detailed information, either Yes or No is displayed, indicating
whether or not it is satisfied.
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Figure 2: Restorations of the 256 × 256 blurred satellite image provided in
RestoreTools with zero boundary conditions, signal-to-noise ratio SNR=9,
and parameter γ chosen by the automatic parameter selection methods detailed
in Section 5. This indicates the wide variety of results that can be produced by
regularization methods.

• The user then uses the slide bar to adjust γ. This changes the result-
ing image and diagnostics in real time, allowing the user to explore the
range of statistically plausible solutions. The blurred image, true image
(if available), and deblurred image are also displayed, for convenience, in
a separate figure.

In the remainder of this user’s manual we briefly review the deblurring prob-
lem in Section 3, the regularization methods in Section 4, initial parameter
choices in Section 5, statistical diagnostics in Section 6, and gide installation
and use in Section 7. Finally we discuss testing and validation in Section 8 and
present a summary and conclusion in Section 9.

3 Mathematical Model of Imaging and Regular-
ization

An image can be thought of either as a real continuous function or as a collection
of discrete square pixels.
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Figure 3: Screenshot of the gide gui. Choices made at the top left result in
the images displayed below and in the diagnostics on the right.
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3.1 Continuous Representation

In the continuous case, the blurring model can be represented by

Ku+ ν = w, (1)

where K is the known blurring operator, u is the true image, w is the observed
image, and ν is noise that we assume to be generated by a Gaussian white noise
process. Equation (1) is an example of an ill-posed problem since the operator
K is an infinite-dimensional operator whose singular values converge to zero.
One way to impose stability is to solve (1) in a least-squares sense while adding
a regularization or penalty term R(u) that incorporates a priori assumptions
about the size and smoothness of the desired solution. In this case, our problem
becomes

min
u

1

2
‖Ku− z‖22 + γR(u), (2)

where γ is a nonnegative parameter. The choice of space over which the mini-
mization is performed can also provide regularization.

3.2 Discrete Representation

In Section 3.1, we modeled 2D deblurring problems as determination of a real
function of two variables over the spatial domain of the image. Alternatively,
we can model it by determination of a piecewise constant function, evaluated at
nv×nh pixels, where v denotes vertical and h denotes horizontal. Let n = nvnh
be the number of pixels in the image we wish to reconstruct. We assume that
the number of pixels in the mh × mv blurred image is m = mhmv and that
m ≥ n. For definiteness, we form a vector of pixels by stacking columns of an
image into a single column vector. We assume zero boundary conditions for
pixels outside the border of our image.

Then a discrete linear model of blur takes the form

Ax + ε = b, (3)

where A is a (known) m × n blurring matrix, x is an (unknown) n × 1 vector
containing pixel values of the true image, ε is an (unknown) m×1 vector of noise
that we assume to be drawn from a normal distribution with zero mean, and b
is the (known) m × 1 blurred and noisy image data. Equation (3) is called a
discrete ill-posed problem because A is an ill-conditioned matrix approximating
the infinite-dimensional blurring operator.

To regularize, we replace (3) by

min
x

1

2
‖Ax− b‖22 + γQ(x). (4)

The first term ensures fidelity to the model (3), while the function Q is chosen
to assure that the minimization problem is well-posed. The scalar parameter γ
is chosen to balance these two objectives.
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3.3 Constructing the Blurring Matrix from the Point Spread
Function

Consider an image of a single white pixel surrounded by black pixels. The image
resulting from blurring this image is called the point spread function (PSF) for
that pixel. If the blur is identical at all pixels (i.e., spatially invariant), then the
blurring matrix can be constructed from a single PSF; see, for example, [5]. In
general, we can form a column of the blurring matrix by imaging a single white
pixel and then stacking the columns of the resulting image into a single column.

For more details regarding finding the PSF and constructing the blurring
matrix see the textbook [5].

We discuss two example PSFs, the boxcar and the Gaussian, in Section 7.2.

4 Discrete Regularization Methods

gide gives the user a choice of three different regularization methods. Two of
the methods (Tikhonov and TSVD) can be easily applied once the Singular
Value Decomposition (SVD) of A is computed. They were chosen because of
their efffectiveness, popularity and ease of implementation. The third method,
TV, was chosen because it favors solutions that include steep gradients (edges),
typical of real images [10].

4.1 SVD-Based Regularization Methods

Define the SVD of A to be

A = UΣVT =

n∑
i=1

σiuiv
T
i (5)

where U = [u1, . . . ,un] is an m × n matrix and V = [v1, . . . , vn] is an n × n
matrix, each with orthonormal columns, and the diagonal matrix Σ has entries
σ1 ≥ · · · ≥ σn ≥ 0 [4].

The Tikhonov regularization function is

Qtik(x) = ‖Lx‖22,

where L is the identity matrix, an approximation of the first derivative operator,
a diagonal weighting matrix [3, p. 12], or a problem-specific operator. We choose
L to be the identity matrix (otherwise the generalized SVD should be used),
and the solution to problem (4) is then given [4] by

xγ =

n∑
i=1

σ2
i

σ2
i + γ

uTi b

σi
vi. (6)

Alternatively, in TSVD we regularize the problem by truncating A. Effec-
tively, Qtsvd puts an infinite penalty on using components i of the SVD for
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which σi is too small. The TSVD solution is given by [4]

xγ =

n∑
i=1

φi
uTi b

σi
vi (7)

where φi = 1 for i ≤ γ and φi = 0 otherwise. In this case the regularization
parameter γ is an integer chosen from the interval [1, n].

Notice that for both Tikhonov regularization and TSVD, the coefficient
uT
i b
σi

is multiplied by a number close to one when σi is large and a number close to
zero when σi is very small.

4.2 TV Regularization for the Continuous Problem

Before discussing the implementation of discrete TV regularization, we explain
the concepts for the continuous problem.

In TV regularization, our regularization function is the l1 norm of the gra-
dient (∇) of the solution and thereby retains sharp edges in the image that
may be obscured if, for example, the l2 norm is used, as in Tikhonov regular-
ization. Using a coordinate system (s, t) ∈ Ω for the domain of the image, the
regularization function in (2) is taken to be

RTV (x) =

∫
Ω

|∇x| dΩ, (8)

where

|∇x| =
√
x2
s + x2

t , (9)

xs denotes the partial derivative of x in the s direction, and xt denotes the
partial derivative in the t direction.

The continuous problem becomes the minimization of

f(u) =
1

2
‖Ku− z‖22 + γ

∫
Ω

|∇u|dΩ. (10)

The first-order condition of optimality (also known as the Euler-Lagrange equa-
tion) for the problem with homogeneous Neumann boundary conditions is

0 = K∗(Ku− z)− γ∇ · ( ∇u
|∇u|

), (11)

where K∗ is the adjoint operator of K in the l2 inner product space. This
regularization problem is non-linear and the TV term is not differentiable at
zero. Often this difficulty is avoided by adding a small positive constant β > 0
so that (11) becomes

g(u) = K∗(Ku− z)− γ∇ · ( ∇u√
|∇u|2 + β

) = 0. (12)
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Unlike the Tikhonov and TSVD problems, which have the closed-form solu-
tions (6) and (7), the TV problem must be solved iteratively by methods such
as time marching schemes, Newton’s method, lagged diffusivity fixed point iter-
ation, or primal-dual Newton method. We used a primal-dual Newton method
as presented in [1].

4.2.1 Formulation of Newton’s Method

The first step of this method is to find a quadratic model that matches function
value and the first two derivatives of f at the current iterate u, where f(u) is
given in (10). Our search direction δu points from the current iterate u to the
minimizer of the quadratic function and satisfies the equation

H(u)δu = −g(u), (13)

where

H(u) = K∗K − γ∇ ·

(
1√

|∇u|2 + β
(I − ∇u∇uT

|∇u|2 + β
)∇

)
. (14)

4.2.2 Linearization Based on Introducing a New Variable

In [1] the authors suggest improving the method by introducing a new variable

w =
∇u√
|∇u|2 + β

. (15)

This technique is motivated by primal-dual optimization and gives better global
convergence behavior than Newton’s method [1]. From (12) we find the equiv-
alent system of equations:

K∗(Ku− w)− γ∇ · w = 0, (16)

w
√
|∇u|2 + β −∇u = 0. (17)

We now linearize this system to find:[ √
|∇u|2 + β −(I − w∇uT√

|∇u|2+β
)∇

−γ∇· K∗K

] [
δw
δu

]
= −

[
f(w, u)
g(w, u)

]
. (18)

This method for computing search directions for w and u is called the primal-
dual Newton’s method [1].

4.3 Discretization of the TV Regularization Method

The method of Section 4.2 has a discrete analogue. After discretization, the
regularization function becomes

Qtv(x) =

n∑
i=1

√
‖DT

i x‖22 + β. (19)
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Assuming x is stacked by columns, DT
i x = [xi+nv − xi, xi+1 − xi]T is the dis-

cretization of ∇x (with zero used when a subscript is out of range) [1]. A small
β > 0 is added because the TV term is not differentiable at zero. The resulting
discrete TV problem is

min
x

1

2
‖Ax− b‖22 + γ

n∑
i=1

√
‖DT

i x‖22 + β. (20)

4.3.1 Discrete Formulation of Newton’s Method

The discretization of (12) and (14) yields

g(x) = AT (Ax− b) + γDE−1DTx, (21)

where

νi =
√
‖DT

i x‖2 + β, (22)

E = diag(νiI2)i=1,..,m, (23)

I2 is a 2× 2 identity matrix, and

H(x) = ATA + γDE−1FDT , (24)

where

F = diag(I2 −
DT
i xxTDi

ν2
i

)i=1,..,m. (25)

4.3.2 Formulation of Primal-Dual Newton’s Method

Analogous to the discretization in Section 4.3.1, we introduce the 2m×1 vector
y of dual variables. The discretization of the Primal-Dual Newton method
becomes [

E −F̄DT

γD ATA

] [
∆y
∆x

]
= −

[
Ey −DTx

γDy + AT (Ax− b)

]
, (26)

where F̄ = diag(I2 − yT
i xT Di

νi
)i=1,...,m. This can be written as:

C∆x = ḡ(x),

∆y = −y + E−1DTx + E−1F̄DT∆x,

where
C = γDE−1F̄DT + ATA (27)

and
ḡ(x) = −(γDE−1DTx + AT (Ax− b)). (28)

Note that C is not symmetric and as suggested by the authors of [1] should be
replaced by symmetrization C̄ = 1

2 (C + CT ) of C.
In summary, we solve the TV regularization problem using the Primal-Dual

Newton Method (Algorithm 1) with conjugate gradients (Algorithm 2), as de-
scribed in [1]. For the line search, we used cvsrch.m, translated into Matlab
from code developed by Jorge J. Moré and David J. Thuente as part of minpack.

Figure 4 shows the results of applying the TV method on two test images.
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Algorithm 1 The Primal-Dual Newton Method

Initialize x0 and set k = 0.
while xk is not “good enough” do

To compute the Newton direction ∆xk, use CG to solve C̄∆xk = −ḡ(xk).
Set xk+1 = xk + αk∆xk where αk is determined by a linesearch.
Compute ∆yk = −yk + E−1DTxk + E−1F̄DT∆xk.
Set yk+1 = yk + sk∆yk where sk = .9 maxi=1,...,m{s : ‖yi + s∆yi‖ < 1}.
Set k = k + 1.

end while

“good enough”: ‖g(xk)‖/‖g(x0)‖ < 10−3.

Algorithm 2 The Conjugate Gradient Method for solving C̄(x)∆x = −ḡ

Initialize r = −ḡ(xk)− C̄(xk)∆x, q = r, ρ = ‖r‖, and γ = ρ2.
while ‖r‖/ρ ≥ tol do

Compute α = γ
qTC̄(x)q

.

Set ∆x = ∆x + αq.
Set r = r− αC̄(x)q.
Compute γ̂ = ‖r‖2.
Compute β = γ̂

γ , γ = γ̂.
Set q = r + βq.

end while

Suggested tolerance [1]: tol = min(0.1, 0.9‖g(xk)‖2/‖g(xk−1)‖2) for k > 0,
and tol = 0.1 when k = 0.
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Figure 4: Results of Newton-CG for Total Variation regularization for two im-
ages, a 16 × 16 striped image (top) and a 64 × 64 Modified Shepp-Logan im-
age(bottom).

5 Initial Parameter Selection

A number of automated parameter selection methods have been developed, some
based on prior knowledge of the particular problem (distribution of noise or
errors), others based on statistical criteria. The parameters chosen by these
methods are often far from those that minimize the deviation of the computed
solution from the true solution [3]. In this work, automated parameter selection
methods are used only to find an initial parameter, to provide a starting point
for the user. We choose to use generalized cross validation (GCV) for the SVD-
based methods, since the computation can be performed efficiently. For TV,
GCV is too costly, so we use the discrepancy principle.

5.1 Generalized Cross-Validation (GCV)

GCV is based on the popular leave-one-measurement-out model, checking the
reasonableness of a parameter determined from m− 1 measurements by seeing
how well the resulting model predicts the mth measurement [4, p. 95]. The idea
is to choose the parameter γ that minimizes the prediction errors. In GCV we
formulate this as minimizing

G(γ) =

m∑
k=1

[bk − (Ax(k)
γ )k]2, (29)

13



where x
(k)
γ is the estimate that results from using the regularization parameter

γ but omitting the kth measurement bk. For SVD-based methods, the GCV
expression can be greatly simplified [5]. For Tikhonov regularization, G becomes

Gtik(γ) =

∑m
i=1(

uT
i b

σ2
i +γ2 )2∑m

i=1( 1
σ2
i +γ2 )2

(30)

while for TSVD,

Gtsvd(γ) =
1

(m− γ)2

m∑
i=γ+1

(uTi b)2. (31)

5.2 Discrepancy Principle

If we know the distribution of the noise ε then we can choose γ so that

‖Axγ − b‖2 = νE(‖ε‖2), (32)

where E denotes expected value and ν = 2 is a safety factor [4, p. 90]. The
appropriate value of γ is computed by solving (32) using Matlab’s fzero, an
efficient root finding algorithm.

6 Statistical Diagnostics

We use statistical diagnostics to test the plausibility of a candidate regulariza-
tion solution as a solution to the original ill-posed problem. We use the three
diagnostics from [9] to generate a range of plausible regularization parameters.

These diagnostics, proposed by Bert Rust [8], are based on the simple ob-
servation that since

ε = b−Ax (33)

is noise drawn from some statistical distribution, then

rγ = b−Axγ (34)

should ideally equal ε and therefore be a sample from the same distribution.
We use standard statistical tests to evaluate how typical rγ is as a sample from
the distribution, which we assume to be normal with known variance.

6.1 Choice of Diagnostics

To use the diagnostics, we normalize our problem so that ε ∼ N(0, Im). If the
error is distributed as N(0,S2), this can be done by multiplying the blurring
matrix A and the observed image b by S−1.

We now discuss the three diagnostics shown on the right side of the gui in
Figure 3.
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6.1.1 Residual Diagnostic 1

Since ε ∼ N(0, Im), we know the distributionof ‖ε‖22. The sum of squares of a set
of m independent identically distributed (i.i.d.) standard normal (ε ∼ N(0, Im))
random samples is a random variable with a χ2 distribution. It has expected
value m and variance 2m [7]. Therefore, our first diagnostic tests whether the
residual norm squared, ‖rγ‖22, is within two standard deviations (i.e., within the
95% confidence interval) of the expected value of ‖ε‖22. Therefore, we want

‖rγ‖22 ∈ [m− 2
√

2m,m+ 2
√

2m]. (35)

gide displays the residual norm-squared, the endpoints of the confidence interval
and a yes/no answer to whether we are within the confidence interval.

6.1.2 Residual Diagnostic 2

The histogram of the elements of rγ should look like a bell-shaped curve. We use
a χ2 goodness-of-fit test [7] which tests whether the residual is drawn from an
i.i.d standard normal distribution (null hypothesis) by comparing it to the the-
oretical distribution. gide displays the histogram of the residual and a yes/no
answer to whether the p-value displayed satisfies p > 0.05. If yes, then one
should accept the null hypothesis with 95% confidence.

6.1.3 Residual Diagnostic 3

If we view the elements of ε and r as time series with index i = 1, . . . ,m then
{εi} forms a white noise series. We expect {ri} to also be a white noise series.
One way to assess this is to compute the cumulative periodogram of the residual
[2, Chapter 7].

First we compute the discrete Fourier transform of r to form a vector r̂.
The periodogram is defined as the vector of squared absolute values |r̂k2|. The
cumulative periodogram (with components numbered from 0 to p = d(m−1)/2e)
is given by

ck =

∑k
j=0 |r̂k

2|∑p
j=0 |r̂k

2|
j = 0, . . . , p (36)

If we look at the periodogram of white noise, the expected value of |r̂k2| at
each frequency k is the same, so a plot of the expected values of ck vs. k is a
straight line from (0, 0) to (p, 1). The 95% confidence interval for the plot of the
cumulative periodogram of white noise is displayed by gide, along with the plot
of the computed c for the residual. The endpoints of the confidence interval are
at approximately at plus or minus 1.36/

√
(p− 1) relative to the straight line

whenever p > 31 [2].

6.2 Validation of Residual Diagnostics

The three diagnostics all test the hypothesis that the residual components are
drawn from a normal distribution, but the diagnostics are sensitive to somewhat
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Table 1: For 1000 runs, number of times the Diagnostics fail to be satisfied.
I(i) = 1 if (i − 1) mod (100) = 0 or (i − 2) mod (100) = 0 and I(i) = 0
otherwise.

Residual Diag. 1 Diag. 2 Diag. 3
ri ∼ N(0, 1) 51 46 14
ri + I(i) 950 999 539

ri + .05 ∗ sp sp ∼ pois(1) 156 1000 149

different perturbations, as we illustrate here.
Each of the diagnostics was applied first to sequences of 1000 standard nor-

mal i.i.d. samples to confirm that it was satisfied approximately 95% of the
time; see Table 6.2. From the first line in the table, for 1000 different sequences,
this is true.

Then we applied the diagnostics to sequences of standard normal i.i.d. sam-
ples, but with one added to every 100th sample. The second line of the table
shows that Diagnostics 1 and 2 accurately detect that the result is not normal,
but Diagnostic 3 is only correct in 54% of the trials.

Finally, we add a small amount of Poisson-distributed noise to sequences of
standard normal i.i.d. samples. The third line of the table shows that only
Diagnostic 2 reports non-normality reliably.

Diagnostic 2 is reliable in all three of these simple tests, but the others
provide useful information as well. Diagnostic 1 gives the user a range of residual
norms that satisfy that diagnostic; this helps the user easily find a range of
feasible values for γ. Diagnostic 3 gives a useful visualization of how similar the
residual is to the Gaussian distribution, which is sometimes difficult to see from
Diagnostic 2.

Note that for a given noise sample, there may be no parameter that
satisfies all three diagnostics. The diagnostics should just be considered as
indicators that the solution computed is more or less reasonable, based upon
the hypothesis of the distribution of errors in the data.

7 Using the Software

gide was built using Matlab’s gui toolbox. It enables a user with limited or
no experience with the methods discussed above to find suitable solutions to
a problem. As Figure 3 shows, a user can select the type of blur, an exam-
ple test problem, and the regularization method. Clicking Compute finds an
initial solution based on the approximate parameter (found using GCV or the
discrepancy principle). The user can then use the slide bar below the images to
vary the regularization parameter in order to explore the results and look for
solutions that satisfy each of the three diagnostics on the right.
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7.1 Installation

gide can be downloaded from http://www.cs.umd.edu/users/oleary/software.
gide Version 5.1 has been tested under Matlab version R2014b and Restore-
Tools version April 2012.

You need to also download RestoreTools from http://www.mathcs.emory.

edu/~nagy/RestoreTools/ and follow the installation instructions.
Then edit the gide file startGIDE.m to set path to RestoreTools and

path to GIDE to the complete directory names where you have stored these
two packages.

Typing startGIDE into Matlab should bring up the gui.

7.2 Choose Blur

Either of the preloaded blurs (Gaussian or boxcar) can be used with either of the
preloaded images to generate a test problem. Alternatively, upload a blurring
matrix for your own test problem.

The blurring matrix titled “Boxcar” models a boxcar blur of band size three
where the nonzero components of the PSF are given by

1

9

 1 1 1
1 1 1
1 1 1

 .

This means that each given true pixel value has been averaged with its eight
neighboring pixels to obtain a blurred pixel value.

The blurring matrix titled “Gaussian” models a Gaussian blur of band size
three and σ = .7 where the nonzero components are

1

2πσ2

 exp(− (−1)2+12

2σ2 ) exp(− 02+12

2σ2 ) exp(− 12+12

2σ2 )

exp(− (−1)2+02

2σ2 ) exp(− 02+02

2σ2 ) exp(− 12+02

2σ2 )

exp(− (−1)2+(−1)2

2σ2 ) exp(− 02+(−1)2

2σ2 ) exp(− (−1)2+(−1)2

2σ2 )

 .

Similarly, this means that the blurred pixel values are weighted averages of true
pixel values in a 3× 3 neighborhood.

The SVD-based methods, the matrix structures, and the implementations of
GCV and the discrepancy principle were taken from RestoreTools [6]. We
implemented the primal-dual TV algorithm and the statistical diagnostics.

7.3 Choose Image

The cell.tif and a 16 × 16 version of Matlab’s Shepp-Logan are available
for testing. You can also specify your own “Test Image”.

7.4 Choose Method

You have your choice of Tikhonov, truncated SVD, or TV regularization.
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7.5 Compute

After choosing the blur, the image, and the method, the Compute button will
produce an initial deblurred image using an automatic choice of the regulariza-
tion parameter γ. The box next to Compute will indicate when the computa-
tion is complete. The three diagnostics will be displayed. The parameter γ can
be adjusted using the slide bar that appears under the original and deblurred
images. Again, the box next to Compute will indicate when the computation
is complete.

Adjusting the parameter so that the diagnostics move into their “yes” ranges
produces a reconstruction that is statistically plausible. There is no guarantee,
however, that a parameter exists that satisfies all three diagnostics.

Sliding to the right increases the residual-norm-squared (Diagnostic 1) and
tends to move the red line (the cumulative periodogram) in Diagnostic 3 to the
left.

7.6 Limitations

The speed of today’s computers limits the size of images for which real-time
response is reasonable in the gui.

gide is meant to be a tool for exploration. If you have a large image that
you need to deblur, we suggest extracting a small piece of it. Using gide, you
can determine find an appropriate regularization method and a statistically-
validated candidate parameter that can then be used for the full image. Using
this regularization parameter, the computation for the full image can be done
using RestoreTools or the TV program TVPrimDual.m.

gide is a working proof-of-concept that could be scaled to a faster com-
putational tool by using a compiled computer language and high-performance
computing.

8 Results and Testing

In this section we discuss some testing we performed on different components
of gide on a variety of test images.

8.1 Test Images

We used artificially generated images and PSF functions for development and
initial testing of the software. These data sets were created to be of any size.
For testing and validation we used the images found in RestoreTools as well as
a variety of PSFs also found in RestoreTools.
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Figure 5: For Tikhonov regularization for deblurring the 16×16 segment of the
image cell.tif with SNR = 75, parameters in a range (±0.0025) were found to
satisfy Diagnostic 1. As the SNR decreases, the range of parameters satisfying
the diagnostic increases.

8.2 Signal-to-Noise Ratio Effect on Diagnostics

As one may expect, the diagnostics are affected by the Signal-to-Noise Ratio
(SNR) which is defined as

SNR = 10 log10(
‖b‖2

‖ε‖2
). (37)

The range of plausible parameters that meet the diagnostics increases as the
SNR approaches to zero and as the SNR increases the range of plausible solutions
becomes smaller (Figure 5). Note that users should be careful when they have a
very small SNR as the diagnostics used may not be the best measure for plausible
solutions. This test was performed on a 16 × 16 piece of Matlab test image
cell.tif where the range of SNR was varied from 20 to 75. Ranges plotted are
for Diagnostic 1 and the Tikhonov method, although a similar relationship was
found for the different methods, diagnostics, and different test images included
in the gui.

8.3 Effects of γ on Computation Time

We found that the computation time of the TV regularization method (depen-
dent on the number of CG iterations) is dependent on the value of γ. See Figure
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Figure 6: The range in log10 of computational time (seconds) for the TV regu-
larization method for parameters between γ = 1 and γ = 10−9. For all image
sizes the maximum time occurred for γ = 1.

Figure 7: 129× 129 image of cell.tif with Gaussian blur and zero boundary
conditions with SNR = 60.
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6 for results for different values of γ.

As a result of this finding, we looked into using preconditioners to speed up
the algorithm for large γ. An incomplete LU factorization (ILU) is suggested as
a preconditioner for the Primal-Dual Newton method [1]. We did not find the
use of ILU to be robust enough to be included in the gui as we had to adjust
the drop tolerance depending on γ.

8.4 Results on Larger Images and Varied PSF

Although the gui is only able to handle very small images, additional tests
of the Primal Dual TV method were done on larger images as well as images
with a variety of PSFs. See Figure 2 and Figure 7 comparing the results using
Tikhonov and TSVD to the TV method.

9 Summary and Conclusions

When decisions are based on images, it is important to use a regularization
method and parameter that can be justified on statistical grounds. gide helps
practitioners do this. The software takes advantage of the practitioner’s trained
eyes while limiting bias by using statistical diagnostics. Even without detailed
knowledge of the numerical method, the user can explore different solutions with
real-time diagnostics determining whether the solution is statistically plausible.

There has been work in automatic parameter selection but these methods
have shown not to be reliable over a variety of problems. Given this challenge
and the lack of automatic approaches for choosing a regularization methods, our
methodology is a straightforward approach for finding an appropriate method
and parameter.

To effectively be used in real time, our methodology is currently limited to
relatively small images. That being said the software has been proved useful in
an undergraduate course on image restoration, giving the students immediate
feedback about the effects of different regularization methods and parameter
choices.
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