
Trustworthy, Useful Languages for Probabilistic Modeling and Inference

Neil Toronto

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Jay McCarthy, Chair
Kevin Seppi
Chris Grant
Eric Mercer
Dan Olsen

Department of Computer Science

Brigham Young University

June 2014

Copyright c© 2014 Neil Toronto

All Rights Reserved

ABSTRACT

Trustworthy, Useful Languages for Probabilistic Modeling and Inference

Neil Toronto
Department of Computer Science, BYU

Doctor of Philosophy

The ideals of exact modeling, and of putting off approximations as long as possible,
make Bayesian practice both successful and difficult. Languages for modeling probabilistic
processes, whose implementations answer questions about them under asserted conditions,
promise to ease much of the difficulty.

Unfortunately, very few of these languages have mathematical specifications. This makes
them difficult to trust: there is no way to distinguish between an implementation error and a
feature, and there is no standard by which to prove optimizations correct. Further, because
the languages are based on the incomplete theories of probability typically used in Bayesian
practice, they place seemingly artificial restrictions on legal programs and questions, such as
disallowing unbounded recursion and allowing only simple equality conditions.

We prove it is possible to make trustworthy probabilistic languages for Bayesian practice
by using functional programming theory to define them mathematically and prove them
correct. The specifications interpret programs using measure-theoretic probability, which is a
complete enough theory of probability that we do not need to restrict programs or conditions.

We demonstrate that these trustworthy languages are useful by implementing them, and
using them to model and answer questions about typical probabilistic processes. We also
model and answer questions about processes that are either difficult or impossible to reason
about precisely using typical Bayesian mathematical tools.

Keywords: Bayesian, Probability, Domain-Specific Languages, Functional Programming,
Semantics, Measure Theory

To my wife, Amy.

ACKNOWLEDGMENTS

I must first thank my parents for bringing me up right.

I must secondly thank my parents again, for encouraging my curiosity and intellectual

development. Only now do I hear stories of the difficulties they had finding age-appropriate

computer accessories and programming books for my Christmas presents—in the mid-1980s,

when such things were scarce and few were made for children.

I must thirdly thank my parents yet again, for trying to instill in me a love of hard work.

It eventually took. I assure them it was worth it.

My master’s advisor, Dan Ventura, was a joy to work with. He took me in when I was

still an undergraduate, and showed me how to enjoy doing research and to be unafraid of

tackling hard, important problems. He allowed a great deal of freedom, even though my

inquiries eventually took me to a different research area.

My PhD advisor, Jay McCarthy, has been stellar in every respect. He showed me how to

research programming languages rigorously, taught me how to structure my communication,

and offered excellent insights and suggestions on research that crosses into an area he initially

knew little about. Without Jay’s guidance, there would be little to distinguish this work

from other work in probabilistic languages. Together, we have done it in a way that is the

most complete and reliable.

I cannot confine my thanks only to Jay’s professional instruction. He has also ensured

that I could take care of my family without going into debt, and ensured that I have the

connections necessary to secure a good career. The wait for “when Daddy gets a real job”

has been bearable, with no ever-increasing financial load and with good prospects to look

forward to. The positive repercussions will be nearly endless. I am eternally grateful.

My wife, Amy, has constantly supported my academic pursuits for 11 years. This is

truly marvelous in a way that words are too narrow to contain.

I thank my children, for praying for me every day, and for being sweet, loving, talented,

and so very interesting.

Lastly, I thank my God and Savior, whose justice and mercy make life meaningful and

beautiful.

Table of Contents

List of Figures xiii

1 Thesis 2

1.1 Introduction . 2

1.2 Terms . 3

1.3 Proof and Supporting Evidence . 4

1.4 Reading Transition System . 5

2 Background 8

2.1 Bayesian Practice . 9

2.1.1 Discrete Probability and Joint Distribution Models 9

2.1.2 Probability Densities and Density Models 13

2.2 Measure-Theoretic Probability . 19

2.2.1 Probability Measures . 19

2.2.2 Measure-Theoretic Models . 24

2.2.3 Segue: Approximating Measure Theory 28

2.3 Functional Programming Theory . 29

2.3.1 λ-Calculus . 29

2.3.2 Evaluation Order . 32

2.3.3 Big-Step Operational Semantics . 33

2.3.4 Denotational Semantics . 37

2.3.5 Categorical Semantics . 40

vi

2.3.6 Abstract Interpretation . 45

3 Related Work 49

3.1 Implementations . 49

3.2 Semantics . 50

3.3 Somewhat Related Work . 51

4 Computing in Cantor’s Paradise With λZFC 52

4.1 Motivation . 52

4.2 Language Tower and Terminology . 54

4.3 Metalanguage: First-Order Set Theory . 55

4.3.1 The Gateway to Cantor’s Paradise: Infinity 57

4.3.2 Every Set Can Be Sequenced: Well-Ordering 59

4.3.3 Infinity’s Infinity: An Inaccessible Cardinal 59

4.4 λZFC’s Grammar . 60

4.4.1 An Infinite Set Rule For Finite BNF Grammars 61

4.4.2 The Grammar of Infinite, Encoded Terms 63

4.5 λZFC’s Big-Step Reduction Semantics . 64

4.6 Syntactic Sugar and a Small Set Library . 67

4.7 Example: The Reals From the Rationals . 69

4.8 Example: Computable Real Limits . 71

4.8.1 The Limit Monad . 72

4.8.2 The Computable Limit Monad . 73

4.9 Related Work . 75

4.10 Conclusions . 77

5 Using λZFC 78

5.1 Computations and Values . 78

5.2 Auxiliary Type Systems . 79

vii

5.3 Using ZFC Values and Theorems . 80

5.4 Internal Equality and External Equivalence 81

5.5 Additional Functions and Syntactic Forms 82

5.6 Extensional Functions . 82

6 Countable Models and Implementation 84

6.1 Introduction . 84

6.2 The Expression Language . 86

6.2.1 Background Theory: Random Variables 86

6.2.2 Interpreting Random Variable Expressions As Computations 87

6.2.3 Implementation in Racket . 89

6.3 The Query Language . 89

6.3.1 Background Theory: Probability Spaces 90

6.3.2 Background Theory: Queries . 90

6.3.3 Interpreting Query Notation . 91

6.3.4 Approximating Queries . 92

6.3.5 Implementation in Racket . 92

6.4 Conditional Queries . 93

6.5 The Statement Language . 95

6.5.1 Interpreting Common Conditional Theories 95

6.5.2 Interpreting Statements as Monadic Computations 97

6.5.3 Approximating Models and Queries 99

6.5.4 Implementation in Racket . 99

6.5.5 Examples . 100

6.6 Why Separate Statements and Queries? . 102

6.7 Conclusions . 103

7 Interlude: Uncountable Outcomes and Recursion 104

viii

8 Preimage Computation Theory: Running Programs Backwards 106

8.1 Introduction . 106

8.1.1 Measure-Theoretic Semantics . 107

8.1.2 Arrow Solution Overview . 108

8.2 Arrows and First-Order Semantics . 109

8.2.1 Alternative Arrow Definitions and Laws 109

8.2.2 First-Order Let-Calculus Semantics 113

8.3 The Bottom Arrow . 116

8.4 Deriving the Mapping Arrow . 117

8.4.1 Composition . 119

8.4.2 Pairing . 120

8.4.3 Conditional . 121

8.4.4 Laziness . 122

8.4.5 Correctness . 122

8.5 Lazy Preimage Mappings . 123

8.5.1 Composition . 125

8.5.2 Pairing . 126

8.5.3 Disjoint Union . 127

8.6 Deriving the Preimage Arrow . 128

8.6.1 Composition . 130

8.6.2 Pairing . 131

8.6.3 Conditional . 131

8.6.4 Laziness . 132

8.6.5 Correctness . 132

8.7 Preimages Under Partial, Probabilistic Functions 133

8.7.1 Motivation . 134

8.7.2 Threading and Indexing . 134

ix

8.7.3 Applicative, Associative Store Transformer 135

8.7.4 Partial, Probabilistic Programs . 136

8.7.5 Correctness . 139

8.7.6 Termination . 142

8.8 Output Probabilities and Measurability . 145

8.9 Approximating Semantics . 146

8.9.1 Implementable Lifts . 146

8.9.2 Approximate Preimage Mapping Operations 148

8.9.3 Correctness . 151

8.9.4 Preimage Refinement Algorithm . 153

8.10 Implementations . 156

8.11 Conclusions . 157

9 Preimage Computation Implementation 158

9.1 Introduction . 158

9.2 Abstract Sets and Concrete Values . 159

9.2.1 Infinite Binary Trees . 164

9.2.2 Disjoint Bottom and Top Unions . 168

9.2.3 Testing . 171

9.3 Preimages Under Real Functions . 174

9.3.1 Invertible Primitives . 175

9.3.2 Two-Argument Primitives . 177

9.3.3 Primitive Implementation . 188

9.3.4 Piecewise Monotone Primitives . 194

9.4 Sampling Methods . 195

9.4.1 Partitioned Sampling . 196

9.4.2 Partitioning Probabilistic Program Domains 200

9.4.3 Approximate Partitions of Probabilistic Program Domains 206

x

9.4.4 Random Source Sampling . 213

9.4.5 Self-Adjusting Probabilistic Search 216

9.5 Conclusions . 220

10 Example Programs 222

10.1 Guaranteed Termination . 222

10.2 Primitives . 226

10.3 Theories With Density Models . 230

10.3.1 Normal-Normal . 230

10.3.2 Normal-Normals . 234

10.3.3 Polynomial Fitting . 236

10.3.4 Model Selection . 239

10.4 Theories Without Density Models . 242

10.4.1 Observing Sums . 242

10.4.2 Bounded Measuring Devices . 243

10.4.3 Non-Axial Conditions . 245

10.4.4 Stochastic Ray Tracing . 247

10.4.5 Probabilistic Program Verification . 248

10.5 Current Shortcomings . 251

10.5.1 Engineering Required . 251

10.5.2 Research May Be Required . 252

10.5.3 Research Required . 253

10.6 Conclusions . 255

11 Conclusions and Future Work 257

11.1 Conclusions . 257

11.2 Future Work . 258

11.2.1 Expressiveness . 258

xi

11.2.2 Optimization . 259

11.2.3 Guarantees . 262

11.2.4 Branching Out . 264

A Measurability Theorems 266

A.1 Basic Definitions . 266

A.2 Measurable Pure Computations . 267

A.2.1 Composition . 268

A.2.2 Pairing . 270

A.2.3 Conditional . 270

A.2.4 Laziness . 271

A.3 Measurable Probabilistic Computations . 271

A.4 Measurable Projections . 274

B Sampling Theorems 276

B.1 Basic Definitions . 276

B.1.1 Measures . 276

B.1.2 Integration . 278

B.1.3 Differentiation . 280

B.1.4 Transition Kernels . 284

B.2 Sampling Proofs . 285

References 290

xii

List of Figures

1.1 A transition system for reading this dissertation 6

2.1 Computing probabilities using the standard normal density function 14

2.2 Joint density model plot . 15

2.3 Bayes’ law for densities, in pictures . 18

2.4 Conditional probabilities as limits of ratios 21

2.5 Conditional probabilities with a uniform random source model 27

2.6 Big-step operational semantics example . 33

2.7 Implementation of the big-step semantics 35

2.8 Big-step operational semantics with nondeterminism 36

2.9 Denotational semantics and implementation 38

2.10 Denotational semantics with nondeterminism 39

2.11 Categorical semantics with nondeterminism 42

2.12 Abstract semantics with nondeterminism 46

4.1 Definition of λ−ZFC . 60

4.2 Semantic function FJ·K . 61

4.3 λZFC’s grammar . 64

4.4 λZFC’s semantics . 65

6.1 Random variable expression semantics . 88

6.2 Implementation of RJ·K . 89

6.3 Implementation of finite approximation and distribution queries 93

xiii

6.4 State monad functions for queries and statements 97

6.5 Theory extension and query semantic functions 99

8.1 First-order semantics . 114

8.2 Bottom arrow definitions . 116

8.3 Additional mapping operations . 118

8.4 Mapping arrow definitions . 118

8.5 Lazy preimage mappings . 124

8.6 Comparison of arrows used as target categories 129

8.7 Preimage arrow definitions . 130

8.8 Associative store arrow transformer . 136

8.9 A random source ω ∈ Ω . 137

8.10 Specific preimage arrow lifts . 146

8.11 A finite model of a rectangular subset of Ω 148

8.12 Implementable, approximating arrows . 151

8.13 Preimage refinement algorithm . 155

9.1 Implementation dependency graph . 158

9.2 Haskell typeclass for rectangular sets . 159

9.3 Haskell implementation of sets of pairs . 160

9.4 Typed Racket implementation of rectangular sets 161

9.5 Typed Racket implementation of intervals 163

9.6 Typed Racket representation of Rect Ω . 166

9.7 Typed Racket representation of values ω ∈ Ω 167

9.8 Computing the preimage of [2, 7] . 176

9.9 Computing an approximate preimage of [0, 1/2] 180

9.10 Four (0, 1)× (0, 1)→ (0, 1) functions and their axis properties 183

9.11 Multiplication on R× R . 184

xiv

9.12 Images and preimages under real functions 191

9.13 Images and preimages under two-dimensional real functions 193

9.14 Preimage refinement sampling . 196

9.15 Sampling uniformly in a partitioned unit square 199

9.16 A computation tree and an induced partition of Ω 202

9.17 Branch index collecting semantics . 207

9.18 Final indexes arrow definitions . 210

9.19 Preimage refinement sampling . 211

9.20 Independent vs. dependent uniform sampling 215

9.21 Self-adjusting, probabilistic tree search . 217

9.22 Self-adjusting, probabilistic tree search algorithm 218

9.23 Implementation dependency graph . 221

10.1 Sampling from preimages under multiplication and division 227

10.2 Samples from Dr. Bayes and a density estimate 232

10.3 Nested rectangular conditions . 235

10.4 Inference with εi of differing magnitudes . 236

10.5 Bayesian analysis of Dr. Bayes’s running time, using Dr. Bayes 238

10.6 Bayesian theory selection in Dr. Bayes . 241

10.7 The distribution of X given Y1 + Y2 = 2 . 243

10.8 Bayesian inference with a bounded measuring device 244

10.9 Circular probabilistic conditions . 246

10.10 Stochastic ray tracing in Dr. Bayes . 247

10.11 The dependency problem . 254

xv

“I think you’re begging the question,” said Haydock, “and I can see looming ahead

one of those terrible exercises in probability where six men have white hats and

six men have black hats and you have to work it out by mathematics how likely it

is that the hats will get mixed up and in what proportion. If you start thinking

about things like that, you would go round the bend. Let me assure you of that!”

Agatha Christie, The Mirror Crack’d

1

Chapter 1

Thesis

This branch of mathematics [Probability] is the only one, I believe, in which good

writers frequently get results which are entirely erroneous.

Charles S. Peirce

1.1 Introduction

Probability is notorious for being counterintuitive. Ask anyone who is wrestling with the

birthday paradox, the Monty Hall problem, or the Bayesian phenomenon explaining away.

Probability’s habit of violating intuition makes any automation of probabilistic reasoning

helpful. For automation, Bayesian practitioners are increasingly turning to languages for

modeling probabilistic processes, whose implementations compute answers to questions about

the processes under constraints.

Probabilistic languages should have mathematical specifications. The reason is simple:

if a probabilistic language is implemented to be faithful to its maker’s intuitions instead of a

specification, it is almost certainly faulty.

Unfortunately, there are currently few probabilistic languages that have mathematical

specifications. This state of affairs is partly responsible for another: until now, every

probabilistic language that can support Bayesian practice is artificially limited in what it can

express. Most commonly, probabilistic languages disallow unbounded loops and recursion,

allow only discrete or continuous distributions, and restrict constraints to the form X = c.

The thesis statement is essentially that these states of affairs need not continue.

2

Thesis Statement: Functional programming theory and measure-theoretic prob-

ability provide a solid foundation for trustworthy, useful languages for constructive

probabilistic modeling and inference.

1.2 Terms

To model something is to make it into a model of a theory, by developing the theory.

For example, physicists model gravity by developing theories of gravitation; the physical

phenomenon is a model of the theories. Likewise, Bayesians model probabilistic processes by

developing probabilistic theories for which the physical processes are models. When there

are mathematical models of theories, the mathematical models can be used to predict the

physical models’ behavior and discover their properties.

Bayesians write theories in many ways. One is to write them constructively: in such a

way that the theory contains enough information to directly construct one of its mathematical

models. This is often regarded as the ideal way to write them.

Inference means answering questions about theories. In this context, it implies condi-

tioning: constraining the model in a way that preserves certain relative probabilities.

Measure-theoretic probability [43] is the most successful theory of probability in

precision, maturity, and explanatory power. It was first developed in the early 1900s to

formalize intuitive ideas about probability, to unify notions of discrete and continuous random

variables, and to settle paradoxes that arise from incorrectly applying intuition to infinities.

Functional programming theory is used to give mathematically precise meaning to

programs and to give rules for executing them. In it, the λ-calculus serves as a model of

computation and as a minimal language in which to reason by substitution.

A trustworthy language has a mathematical meaning called a semantics. By defining

a language mathematically, it is possible to prove theorems about it, which apply to all faithful

implementations. Further, if a language implementation computes something unexpected, its

semantics provides a way to determine whether its behavior is correct.

3

We generally think of languages as being useful when they save time by automating

calculations. Languages are also useful when they allow us to express ideas naturally and

reason about them precisely, or provide abstraction mechanisms so we can express ideas and

reason about them at high levels.

1.3 Proof and Supporting Evidence

All but usefulness in the thesis can be proved, and for usefulness, we give evidence. To prove

and give evidence for the thesis, for two languages, we define semantics, prove them correct,

implement approximations of them, and test the implementations.

The first language is an initial investigation into our general approach. First, we define

an exact semantics that transforms Bayesian theories into λ-calculus terms that build exact

measure-theoretic models of the theories. Second, we derive an approximating semantics that

outputs approximate models to carry out computations. To keep the investigation simple, we

restrict theories to countable probability distributions and finitely many statements.

We ensure that the first language is trustworthy by deriving its exact semantics from

an idealized expected meaning of Bayesian theories, and computing answers to queries from

approximate models in a way that converges to the correct answers according to the exact

models. We demonstrate that the language is useful by implementing the approximating

semantics, and encoding theories and running queries that are difficult to model directly

without it.

The second language’s semantics handles uncountable probability distributions and

recursion by transforming a first-order functional language with probabilistic choice into

λ-calculus terms that build models. Again, we derive an approximating semantics for building

approximate models.

We show the language is trustworthy by proving

• Exact queries always terminate with correct answers (Theorem 8.51).

• All probabilistic programs have output distributions, regardless of nontermination

4

(Theorems 8.52 and 8.53).

• The approximations are sound, always terminate, and have other desirable properties

(Theorems 8.58 through 8.61).

• Answers computed using the approximations correctly converge (Theorem B.22).

Further, Theorems 8.52 and 8.53 apply to any probabilistic programming language that can

be transformed into ours. Because ours is Turing-equivalent (with a random oracle) and

is easy to extend with uncomputable operations such as real limits and decidable equality,

this includes all probabilistic programming languages to date, and likely almost all future

probabilistic programming languages.

We demonstrate the second language is useful by implementing the approximating

semantics and encoding some typical Bayesian theories and running queries. In all of our

tests, the theory encodings are straightforward and the queries are efficient.

To demonstrate further usefulness, we encode theories and run queries that are impossible

to reason about precisely using typical Bayesian mathematical tools. One example draws

inferences from a correctly modeled thermometer. Another is a simple, direct theory of

light transport and a query that together carry out stochastic ray tracing. We also recast

probabilistic program verification as Bayesian inference and verify the error bounds of

floating-point function implementations.

The second language’s main implementation is called Dr. Bayes. It can be found at

https://github.com/ntoronto/drbayes.

1.4 Reading Transition System

While this work is designed to make sense when read straight through, readers may skip

some depending on their goals.

In principle, answers to questions such as “Which chapters should I read if I am interested

only in implementations of probabilistic languages with conditioning and recursion?” can

be answered using a dependency graph. However, the graph would be a mess of arrows:

5

https://github.com/ntoronto/drbayes

Chapter 2

Background

Chapter 4

λZFC

Chapter 5

Using λZFC

Chapter 6

Countable
Models and

Implementation

Chapter 7

Interlude

Chapter 8

Preimage
Computation

Theory

Chapter 9

Preimage
Computation

Implementation

Appendix A

Measurability
Theorems

Appendix B

Sampling
Theorems

Chapter 1

Thesis

Chapter 10

Example
Programs

Chapter 3

Related
Work

Figure 1.1: A transition system showing possible paths through this dissertation.

for example, everything after Chapter 2 (Background) depends on Chapter 2; similarly for

Chapter 5 (Using λZFC). Figure 1.1 shows an alternative: a transition system on chapters for

which following any path (with backtracking permitted) guarantees a reader will not miss

out on prerequisites.

Chapter 2 gives the necessary background in Bayesian practice and functional program-

ming theory, and motivates using measure theory. Chapter 3 reviews related work.

The semantics mentioned in the preceding section transform programs into λ-calculus

terms. This target language has three requirements that, taken together, are unusual for

a λ-calculus: it must be able to represent infinite objects and operations on them, it must

have nonterminating programs, and measure-theoretic theorems must apply directly to its

terms. Before this work, such a λ-calculus did not exist. Chapter 4 defines one, λZFC, with

the precision necessary to carry out proofs with it.

6

While this precision is necessary for doing the rest of our work and verifying it, such

precision is not necessary for understanding it. Readers who are not verifying our work

may therefore skip from Chapter 3 to Chapter 5, which gives an overview of λZFC and

its relationship with contemporary mathematics, gives examples of use, and defines some

common terminology and functions.

Chapter 6 defines a semantics for Bayesian notation restricted to countable probability

distributions and finitely many statements. Chapter 7 explains why its specific way of

transforming notation into models does not extend easily to theories with recursion, which

motivates a slight change in tactics.

Following the new tactics, Chapter 8 defines a semantics for a probabilistic language

with uncountable distributions, recursion, and arbitrary probabilistic conditions. Chapter 9

gives details that should be common to all implementations, and details specific to ours.

Chapter 10 explores our implementation’s capabilities, strengths and weaknesses through

examples.

Appendix A contains proofs of theorems critical to correctness, but whose inclusion in

Chapter 8 would interrupt the narrative flow too much for readers unfamiliar with measure

theory. Appendix B is similar, but contains proofs of theorems from Chapter 9. While

familiarity with measure theory is helpful while reading these two chapters, it is not strictly

necessary: both explain the necessary concepts, and import enough definitions and lemmas

from other sources to verify the proofs.

7

Chapter 2

Background

Our work bridges Bayesian practice and functional programming theory using measure-

theoretic probability. Here, we attempt to give enough background in each area that readers

can follow the aspects of our work they are not familiar with, at least at a high level.

It is difficult to find two areas in computer science as different as Bayesian practice

and functional programming theory. In Bayesian practice, we find deeply held belief that

unknowns can and should be quantified (usually by probabilities), reasoning by probabilistic

inference, willingness to accept many kinds of approximations, and common notation that

is—to put it kindly—flexible. In functional programming theory, we find deeply held belief

that unknowns should be qualified (usually universally), reasoning by logical inference, little

tolerance for unsound approximations even if they converge, and common notation that

is—to put it kindly—almost precise enough to feed a compiler.

There is one common trait that makes bridging both areas even conceivable. While

Bayesians model processes and functional programming researchers model languages, both

approach their tasks methodically, and both create theories in which every entity they want

to reason about is represented explicitly. If something important is going on behind the

scenes—whether a hidden Markov process or mutating the program’s store—it is brought

to the fore and fully characterized. In both areas, the extra time and cognitive burden are

considered worthwhile payment for reliable artifacts and repeatable results.

It is this trait, explicit representation, that makes it possible to automate Bayesian

inference, and again this trait that makes it possible to prove the automation correct.

8

2.1 Bayesian Practice

From Bayesian practice, the requisite background includes probability mass functions, proba-

bility densities, queries and manipulation rules, Bayesian modeling, and Bayesian inference.

We assume readers know arithmetic, some set theory, functions, and the basic ideas behind

integration.

2.1.1 Discrete Probability and Joint Distribution Models

In a probabilistic model of a real-world process, distinguished identifiers called random

variables denote random values. These are regarded as free variables, but with additional

information that quantifies the likelihoods of every combination of their values, or observable

outcomes. The additional information is completely characterized by a function called a

joint distribution.

For example, suppose X,Y ∈ {h, t} are random variables that each represent the

outcome of a coin toss, one of which may not be fair. Further, let the joint distribution

pX,Y : {h, t} × {h, t} → [0, 1] quantify the likelihood of every possible combination of

observable outcomes by defining

pX,Y =
[
(h,h) 7→ 1

4
, (h, t) 7→ 1

4
, (t,h) 7→ 1

6
, (t, t) 7→ 1

3

]
(2.1)

(The subscript “X,Y ” is just part of the function name, and has no special meaning.) This

is a probability mass function: its outputs sum to 1.

The probability that X = t and Y = h is pX,Y (t,h) = 1
6 . Another way to write “the

probability that X = t and Y = h” is with a probability query:

Pr[X = t ∧ Y = h] = pX,Y (t,h) (2.2)

A probability query always implicitly refers to some ambient joint distribution. In general,

the result of a probability query Pr[e] is the sum of probabilities of observable outcomes

9

for which the proposition e is true. Conjunctions are often separated by a comma; e.g.

Pr[X = x,Y = y] means Pr[X = x ∧ Y = y].

Probability queries have manipulation rules. One is that random variables may be

“summed out” to consider the probabilities of the values of others independently. For example,

to consider just the probabilities of values of X, we may sum out Y :

Pr[X = x] =
∑

y∈{h,t}
Pr[X = x,Y = y] (2.3)

According to this rule, X represents the outcome of a fair coin toss (independent of Y):

Pr[X = h] = Pr[X = h,Y = h] + Pr[X = h,Y = t] = 1
4

+ 1
4

= 1
2

Pr[X = t] = Pr[X = t,Y = h] + Pr[X = t,Y = t] = 1
6

+ 1
3

= 1
2

(2.4)

Another manipulation rule allows fixing the value of one random variable to consider the

probabilities of the values of others dependently. For example, if x is fixed and Pr[X = x] > 0,

then the probability that Y = y is

Pr[Y = y |X = x] = Pr[X = x,Y = y]
Pr[X = x] (2.5)

This conditional probability query is read “the probability that Y = y given X = x.”

Using this rule, we can determine that, if X is known to be t, then Y represents a coin toss

that is not fair:

Pr[Y = h |X = t] = Pr[X = t,Y = h]
Pr[X = t] =

1
6
1
2

= 1
3

Pr[Y = t |X = t] = Pr[X = t,Y = t]
Pr[X = t] =

1
3
1
2

= 2
3

(2.6)

We could similarly show Pr[Y = h |X = h] = 1
2 and Pr[Y = t |X = h] = 1

2 , so when X is

known to be h, Y represents a fair coin toss.

10

To avoid the condition Pr[X = x] > 0, the preceding rule is often written

Pr[X = x,Y = y] = Pr[X = x] · Pr[Y = y |X = x]

= Pr[Y = y] · Pr[X = x |Y = y]
(2.7)

In this form, it is called the chain rule.

As a function of x, Pr[X = x] is a probability mass function, but over just X instead

of X and Y together. With any fixed x, as a function of y, Pr[Y = y |X = x] is also a

probability mass function. Most Bayesian models are constructed by reifying these queries

as functions called (respectively) distributions and conditional distributions, and using

the chain rule to build a joint distribution. For the present example,

pX =
[
h 7→ 1

2
, t 7→ 1

2

]

pY |X(y |x) =

x = h

[
h 7→ 1

2 , t 7→
1
2

]
(y)

x = t
[
h 7→ 1

3 , t 7→
2
3

]
(y)

pX,Y (x, y) = pX(x) · pY |X(y |x)

(2.8)

In the conditional distribution pY |X , the “Y |X” subscript is simply part of the function name,

and in applying it, (y |x) is just another way to write the arguments (y,x).1 The syntax

simply connotes that we expect Pr[Y = y |X = x] = pY |X(y |x).

This model can be more compactly specified by a constructive theory about X and Y ,

which states only the properties that a joint distribution model must satisfy:

X ∼
[
h 7→ 1

2
, t 7→ 1

2

]

Y ∼

X = h

[
h 7→ 1

2 , t 7→
1
2

]
X = t

[
h 7→ 1

3 , t 7→
2
3

]
(2.9)

Here, X ∼ e is read “X is distributed e.” In this leaner form, it is perhaps easier to understand
1It is common to leave off subscripts such as Y |X and use the form of application to distinguish the

different ps; e.g. p(x) means pX(x) and p(y |x) means pY |X(y |x). Doing so is helpful when there are many
random variables, and it is usually unambiguous, but the practice often confuses and frustrates newcomers.

11

the process being modeled, which is

1. Toss a coin and call its outcome X.

2. If X = h, toss a fair coin and call its outcome Y .

3. If X = t, toss a biased coin with heads probability 1
3 and call its outcome Y .

It is usually easy to manually translate constructive theories into programs that sample

random variable values.

By combining a conditional probability query and the chain rule (or using the chain rule

twice), we get Bayes’ law: if Pr[Y = y] > 0, then

Pr[X = x |Y = y] = Pr[X = x] · Pr[Y = y |X = x]
Pr[Y = y] (2.10)

This is different than Pr[Y = y |X = x]. This time, we are interested in the conditional

probability that X = x given we know Y = y for some fixed y.

For example, suppose we did not observe X, but were allowed to observe Y = t. Given

that we know the second coin toss is tails, the probability that X = t is

Pr[X = t |Y = t] = Pr[X = t] · Pr[Y = t |X = t]
Pr[Y = t]

=
1
2 ·

2
3∑

x∈{h,t} Pr[X = x,Y = t]

=
1
2 ·

2
3

1
4 + 1

3
=

1
3
7
12

= 4
7

(2.11)

which is greater than Pr[X = t] = 1
2 . Similarly, Pr[X = h |Y = t] = 3

7 , which is less than

Pr[X = h] = 1
2 . Observing the effects of the second coin toss—even random effects—allows

us to draw stronger conclusions about the first coin toss. In this case, we know it is more

likely to be tails.

Using Bayes’ law to draw probabilistic conclusions about probabilistic processes given

observed probabilistic effects is called Bayesian inference.

It is easy for probability newcomers with logical background to think of conditional

queries as being analogous to logical implication. A short example demonstrates that doing

12

so leads to faulty intuition. To compute the probability that Y = t =⇒ X = t, we apply

logical rules to the query until it is a disjunction of distinct observable outcomes, and add

their probabilities:

Pr[Y = t =⇒ X = t]

= Pr[¬(Y = t) ∨X = t]

= Pr[Y = h ∨X = t]

= Pr[(Y = h ∧X = t) ∨ (Y = h ∧X = h) ∨ (Y = t ∧X = t)]

= Pr[Y = h ∧X = t] + Pr[Y = h ∧X = h] + Pr[Y = t ∧X = t]

= 1
6

+ 1
4

+ 1
3

= 3
4

(2.12)

This is clearly not Pr[X = t |Y = t] = 4
7 . In a similar fashion, Pr[Y = t =⇒ X = h] = 2

3 ,

which is not Pr[X = h |Y = t] = 3
7 .

In conditioning on Y = t, we did not consider any outcomes in which Y 6= t: we restricted

the possible outcomes to those for which Y = t and renormalized the probabilities of X = h

and X = t. On the other hand, in computing the probability that Y = t =⇒ X = t, we had

to consider all of the outcomes in which Y 6= t, and only one outcome in which Y = t.

2.1.2 Probability Densities and Density Models

Probability mass functions cannot quantify the likelihoods of uncountably many observable

outcomes, such as when X ∈ R. In these cases, the distributions, conditional distributions,

and joint distributions are specified using probability density functions: functions over

outcomes that integrate to 1 instead of sum to 1.2

For example, this probability density function defines the standard normal distribu-

tion, or bell curve:

fN(x) = 1√
2π

exp
(
−x2

2

)
(2.13)

2For readers familiar with measure theory: we use the word density for densities with respect to Lebesgue
measure, and mass for densities with respect to counting measure. We call all other densities derivatives.

13

xxxxxxxxx

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.1.1.1.1.1.1.1.1.1

.2.2.2.2.2.2.2.2.2

.3.3.3.3.3.3.3.3.3

Figure 2.1: Integrating under the standard normal density to compute Pr[X ∈ (0, 1)] ≈ 0.34.

If X has a standard normal distribution, then the probability that X ∈ (0, 1) is

Pr[X ∈ (0, 1)] =
∫ 1

0
fN(x) dx ≈ 0.3413447460685 (2.14)

Figure 2.1 plots this density and illustrates integrating under it to compute Pr[X ∈ (0, 1)].

When probabilities are computed by integrating density functions, sets of outcomes may

have positive probability, but every single outcome has zero probability. For any random

variable X ∈ R, outcome x ∈ R, and density function fX : R→ [0,∞),

Pr[X = x] =
∫ x

x
fX(x) dx = (fX(x)− 0) · (x− x) = fX(x) · 0 = 0 (2.15)

As a consequence, interval endpoints do not matter; i.e. Pr[X ∈ [a, b]] = Pr[X ∈ (a, b)]. We

discuss other, more difficult consequences further on.

The normal distribution can be extended to a distribution family by parameterizing

14

000000000

.05.05.05.05.05.05.05.05.05

.1.1.1.1.1.1.1.1.1

.15.15.15.15.15.15.15.15.15

222222222

000000000

-2-2-2-2-2-2-2-2-2

222222222

000000000

-2-2-2-2-2-2-2-2-2 xxxxxxxxx

yyyyyyyyy

Figure 2.2: The joint density model fX,Y constructed from the density fX and the conditional density fY |X .
Integrating under fX,Y on the set (−2, 0)× (−2,−1) computes Pr[X ∈ (−2, 0),Y ∈ (−2,−1)].

it on a mean µ and a standard deviation σ:

fN(x |µ,σ) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.16)

(Again, the application syntax (x |µ,σ) simply means (x,µ,σ).) Using parameterized dis-

tributions, we can define a joint density model of a probabilistic process involving two

random variables X,Y ∈ R:

fX(x) = fN(x | 0, 1)

fY |X(y |x) = fN(y |x, 1)

fX,Y (x, y) = fX(x) · fY |X(y |x)

(2.17)

Integrating under fX,Y computes probability queries:

Pr[X ∈ (a, b),Y ∈ (c, d)] =
∫ b

a

∫ d

c
fX,Y (x, y) dy dx (2.18)

15

Figure 2.2 illustrates the joint density model fX,Y and computing a probability query.

As with discrete models, density models can be specified by constructive theories:

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)
(2.19)

The probabilistic process being modeled is

1. Choose X according to the standard normal distribution.

2. Choose Y according to a normal with mean X, standard deviation 1.

Again, it is usually easy to manually translate such theories into programs that sample

random variable values.

When all single outcomes have zero probability, interpreting theories in terms of expected

conditional probability queries is difficult. Fortunately, densities have rules analogous to rules

for manipulating probability queries, which allow practitioners to derive joint density models

from theories and compute a restricted class of conditional queries. Instances of the two most

important rules are

fX(x) =
∫ ∞
−∞

fX,Y (x, y) dy

fX,Y (x, y) = fX(x) · fY |X(y |x) = fY (y) · fX|Y (x | y)
(2.20)

The second rule is the chain rule for densities, and it justifies constructing the joint density

fX,Y from the density fX and the conditional density fY |X .

The rules for densities can be used to derive Bayes’ law for densities: if fY (y) > 0,

then, starting from the right-hand side of the chain rule,

fY (y) · fX|Y (x | y) = fX(x) · fY |X(y |x)

fX|Y (x | y) = fX(x) · fY |X(y |x)
fY (y) (2.21)

= fX(x) · fY |X(y |x)∫ ∞
−∞

fX,Y (x, y) dx

16

= fX(x) · fY |X(y |x)∫ ∞
−∞

fX(x) · fY |X(y |x) dx

The last form is conveniently in terms of fX and fY |X , which we have on-hand.

Using Bayes’ law for densities, we can draw conclusions about X given knowledge about

Y . For example, suppose we want to know the distribution of X given Y = 2, as a density.

A quite lengthy derivation finally results in

fX|Y (x | 2) = fX(x) · fY |X(2 |x)∫ ∞
−∞

fX(x) · fY |X(2 |x) dx

= fN(x | 0, 1) · fN(2 |x, 1)∫ ∞
−∞

fN(x | 0, 1) · fN(2 |x, 1) dx

· · ·

= fN(x | 1,
√

1
2)

(2.22)

We can answer conditional probability queries such as “the probability that X ∈ (a, b) given

Y = 2” by integrating fX|Y (x | 2) = fN(x | 1,
√

1
2):

Pr[X ∈ (a, b) |Y = 2] =
∫ b

a
fN(x | 1,

√
1
2) dx (2.23)

While using Bayes’ law for densities is difficult, it is easy to visualize, at least in two

dimensions. We may think of using it as happening in three steps: restrict, project, then

renormalize. Figure 2.3 illustrates them. First, we restrict the joint density model (Figure 2.3a)

to the subset of R × R where y = 2 (Figure 2.3b). Second, because the resulting model

integrates to zero and therefore all answers to probability queries using it would be zero, we

project it onto the x axis (Figure 2.3c), on which it integrates to a positive value. Third,

because the total probability is now less than 1, we renormalize the restricted, projected

model by dividing its output by its area, and obtain a probability density (Figure 2.3d).

Using Bayes’ law for densities is not only often technically challenging, but in general

there are no closed-form solutions. In such cases, practitioners turn to approximation

techniques such as Monte Carlo integration, or sampling, to answer conditional probability

17

000000000

.05.05.05.05.05.05.05.05.05

.1.1.1.1.1.1.1.1.1

.15.15.15.15.15.15.15.15.15

222222222

000000000

-2-2-2-2-2-2-2-2-2

222222222

000000000

-2-2-2-2-2-2-2-2-2 xxxxxxxxx

yyyyyyyyy

(a) The original joint density model.

000000000

.05.05.05.05.05.05.05.05.05

.1.1.1.1.1.1.1.1.1

.15.15.15.15.15.15.15.15.15

222222222

000000000

-2-2-2-2-2-2-2-2-2

222222222

000000000

-2-2-2-2-2-2-2-2-2 xxxxxxxxx

yyyyyyyyy

(b) Restricting the model to the subset of its do-
main where y = 2. The probability of the subset
is zero.

xxxxxxxxx

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.05.05.05.05.05.05.05.05.05

.1.1.1.1.1.1.1.1.1

.15.15.15.15.15.15.15.15.15
not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2

(c) Projecting the restricted model onto the x axis
results in a density that integrates to a nonzero
constant that is less than 1.

xxxxxxxxx

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.1.1.1.1.1.1.1.1.1

.2.2.2.2.2.2.2.2.2

.3.3.3.3.3.3.3.3.3

.4.4.4.4.4.4.4.4.4

.5.5.5.5.5.5.5.5.5

density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2density of X|Y=2
not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2not density of X|Y=2

(d) Normalizing the restricted, projected model
results in a probability density that characterizes
the distribution of X given Y = 2.

Figure 2.3: Bayes’ law for densities, in pictures.

18

queries.

2.2 Measure-Theoretic Probability

From measure-theoretic probability, the requisite background includes approximation with

limits, measures, and the formal definition of random variable. The preceding section is

prerequisite, and it helps to understand the definition of differentiation as a limit.

2.2.1 Probability Measures

Many queries cannot be answered using Bayes’ law for densities. Two main reasons are

• The query cannot be put in terms of axis-aligned conditions.

• The theory has no density model in the first place.

We give an example of each and show how to answer the queries, to motivate using a more

general way to define probability distributions.

Queries Without Axis-Aligned Conditions

Bayes’ law for densities implicitly projects a restricted density onto an axis. It does so to get

around the fact that the condition set—all of the points 〈x, y〉 for which Y = y—has zero

area, and therefore zero probability. In other words, it does so because the following equality

cannot be true, because the right-hand side is equivalent to 0/0, which is undefined:

Pr[X ∈ (a, b) |Y = y] = Pr[X ∈ (a, b),Y = y]
Pr[Y = y] (2.24)

This raises a question: are there similar tricks for zero-probability condition sets that are not

aligned with an axis? The answer is sometimes, if we are lucky.

In Bayesian modeling, this question comes up whenever we can observe only the outputs

19

of deterministic functions of random variables. For example, suppose we have the theory

X ∼ Normal(0, 1)

Y1 ∼ Normal(X, 1)

Y2 ∼ Normal(X, 1)

(2.25)

and we need to know Pr[X ∈ (a, b) |Y1 + Y2 = y]. As with the preceding example, we have a

zero-probability condition set; i.e. Pr[Y1 + Y2 = y] = 0. But in this case, the condition set is

not aligned with an axis.

However, we are lucky: we can project onto an axis before applying Bayes’ law. It is

well-known that if Y1 ∼ Normal(µ1,σ1) and Y2 ∼ Normal(µ2,σ2), then Y1 +Y2 ∼ Normal(µ1 +

µ2,
√
σ2

1 + σ2
2).3 Because Y1 and Y2 are referred to only in the query, we rewrite the theory as

X ∼ Normal(0, 1)

Y ∼ Normal(X + X,
√

12 + 12)
(2.26)

and answer Pr[X ∈ (a, b) |Y1 + Y2 = y] = Pr[X ∈ (a, b) |Y = y] using Bayes’ law for densities.

There are other well-known transformations. If X and Y have normal distributions, then

X/Y has a Cauchy distribution. It is always possible to obtain the density of Y = f(X) if f is

monotone and has a differentiable inverse. But modeling within the confines of preconditions

for known transformations is quite limiting, and sooner or later, we run out of tricks.

For example, suppose we have the following theory and query:

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)

Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 = 1

]
(2.27)

In words, the query is “what is the probability that X ∈ (a, b) and Y ∈ (c, d) given X,Y is

on the unit circle?” Clearly Pr
[√

X2 + Y 2 = 1
]

= 0. A trick to get around division by zero

in this case might exist, but it is not obvious.

We need a general technique to avoid 0/0. One is inspired by differential calculus, which
3This is true when Y1 and Y2 are conditionally independent, which is the case here.

20

 2·ε 2·ε 2·ε 2·ε 2·ε 2·ε 2·ε 2·ε 2·ε 000000000
.05.05.05.05.05.05.05.05.05

.1.1.1.1.1.1.1.1.1
.15.15.15.15.15.15.15.15.15

111111111

000000000

-1-1-1-1-1-1-1-1-1

111111111

000000000

-1-1-1-1-1-1-1-1-1

xxxxxxxxx

yyyyyyyyy

densitydensitydensitydensitydensitydensitydensitydensitydensity

ConditionConditionConditionConditionConditionConditionConditionConditionCondition
QueryQueryQueryQueryQueryQueryQueryQueryQuery
IntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersection

Figure 2.4: Computing Pr
[
X ∈ (−1.5, 0),Y ∈ (−1.5, 0) |

√
X2 + Y 2 = 1

]
as a limit of ratios. The answer is

the proportion of the volume above (−1.5, 0)× (−1.5, 0) under the joint density restricted to
√

x2 + y2 ∈
(1− ε, 1 + ε), as ε approaches 0.

avoids 0/0 using limits. If f : R→ R is differentiable, then f ’s derivative at x ∈ R is

lim
ε→0

f(x + ε)− f(x− ε)
2 · ε

(2.28)

Although the numerator and denominator both approach zero, the limit of their ratio is

well-defined. We may do the same with zero-probability conditions: approach them with

positive-probability conditions, and take a limit; i.e.

Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 = 1

]
= lim

ε→0
Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 ∈ (1− ε, 1 + ε)

]
= lim

ε→0

Pr
[
X ∈ (a, b),Y ∈ (c, d),

√
X2 + Y 2 ∈ (1− ε, 1 + ε)

]
Pr
[√

X2 + Y 2 ∈ (1− ε, 1 + ε)
]

(2.29)

Figure 2.4 illustrates the idea with ε = 1
4 . As ε approaches 0, the probability of (a, b)× (c, d)

approaches the correct conditional probability.

The fact that we can answer probability queries in the absence of densities suggests that

21

queries are the more general construct. To replace the joint density fX,Y with a function

that directly answers unconditioned rectangular queries about the present theory, we define

partial function on subsets of R2, or PX,Y : P(R2) ⇀ [0, 1] by

PX,Y ((a, b)× (c, d)) = Pr[X ∈ (a, b),Y ∈ (c, d)]

=
∫ b

a

∫ d

c
fX,Y (x, y) dy dx

(2.30)

We need PX,Y to answer questions about more subsets of R2 than just rectangles, such as

the annulus surrounding the unit circle. To make PX,Y do so, we define it in terms of a more

general form of integration called Lebesgue integration:4

PX,Y (A) =
∫

A
fX,Y dm (2.31)

Here, the set A ⊆ R2 may be any countable union of rectangles, the complement of any such

union, any countable union of such complements, and so on. These infinitary unions and

complements include essentially every set of interest, particularly any annulus that covers

the set {〈x, y〉 ∈ R2 |
√

x2 + y2 = 1}. Now PX,Y is a joint probability measure: a function

that returns the probabilities of sets.

From PX,Y , we can define another probability measure P ′X,Y : P(R2) ⇀ [0, 1] to answer

queries conditioned on the unit circle:

P ′X,Y (A) = lim
ε→0

PX,Y (A ∩ {〈x, y〉 ∈ R2 |
√

x2 + y2 ∈ (1− ε, 1 + ε)})
PX,Y ({〈x, y〉 ∈ R2 |

√
x2 + y2 ∈ (1− ε, 1 + ε)})

(2.32)

Now we have

Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 = 1

]
= P ′X,Y ((a, b)× (c, d)) (2.33)

Unlike PX,Y , the probability measure P ′X,Y has no corresponding density.
4Pronounced “lehBEG,” and named after French mathematician Henri Lebesgue.

22

Theories Without Density Models

Suppose we have a thermometer whose output is not quite correct, but is usually within 1

degree. We could model its error with a normal distribution with standard deviation 1. If

the thermometer cannot show a number greater than 100 and we want to model that fact,

assuming the correct temperature is 99, we could write a theory about it like this:

T ∼ Normal(99, 1)

U = min(T , 100)
(2.34)

so that U represents the thermometer’s output. Because T ≥ 100 if and only if U = 100,

Pr[T ≥ 100] = Pr[U = 100] > 0. But we know that if U has a density, Pr[U = 100] = 0.

While U has no density, it does have a probability measure. We can compute it by

integrating the density of T up to 100 and adding Pr[T ≥ 100] if the set happens to contain

100. Let fT (t) = fN(t | 99, 1) and define the measures PT ,PU : P(R) ⇀ [0, 1] by

PT (A) =
∫

A
fT dm

PU(A) = PT (A ∩ (−∞, 100)) +

PT ([100,∞)) if 100 ∈ A

0 if 100 6∈ A

(2.35)

so that Pr[U ∈ A] = PU (A). Here, A may be any countable union of intervals, the complement

of any such union, any countable union of such complements, and so on.

Not only does U have a measure but no density, it is easy to write a program that

samples its values. It is also easy to write programs that output random values in R ∪ R2 or

(using lazy data structures) RN, which in general have measures but not densities. Therefore,

if we are to automatically derive models for arbitrary theories encoded as programs, they

must be measure-theoretic models, not density models.

23

2.2.2 Measure-Theoretic Models

Another way to write PU is

PU(A) = PT ({t ∈ R | min(t, 100) ∈ A}) (2.36)

If we interpret U as a function in R→ R, defined by U(t) = min(t, 100), we can define PU by

PU(A) = PT ({t ∈ R | U(t) ∈ A})

= PT (U−1(A))
(2.37)

The notation U−1(A) is read “the preimage of A under U .” Preimages generalize inverses,

in the sense that, because they operate on sets, they are defined regardless of whether U is

invertible. For example,

U−1({99}) = {99}

U−1({100}) = [100,∞)

U−1({101}) = ∅

(2.38)

whereas the inverses of 100 and 101 under U are undefined. In fact, inverses are defined on

precisely the points for which preimages map singleton sets to singleton sets.

Our measure-theoretic model of the thermometer theory is now

PT (A) =
∫

A
fT dm

U(t) = min(t, 100)
(2.39)

where fT (t) = fN(t | 99, 1) and PT : P(R) ⇀ [0, 1]. The distribution of U is simply PT ◦ U−1.

Measuring the outputs of functions by measuring those outputs’ preimages is so simplify-

ing and powerful that measure-theoretic probability defines all random variables as functions.

The standard form of a measure-theoretic model is

Ω = ...

P (A) = ...

X1(ω) = ...

X2(ω) = ...
(2.40)

24

where Ω is a set of outcomes that are philosophically assumed to be random, the probability

measure P : P(Ω) ⇀ [0, 1] is assumed to quantify their randomness, and X1 : Ω → B1

and X2 : Ω → B2, and so on, are random variables, or deterministic functions that

observe some aspect of each outcome. The distribution of each random variable Xi is

P ◦ X−1
i , or PXi

(A) = P (X−1
i (A)). Chapter 6’s semantics interprets discrete Bayesian

theories mechanically as measure-theoretic models in this form.

Defining random variables as functions factors measure-theoretic models into an assumed-

random part and a deterministic part. Among the many advantages to doing so is that it

allows changing the outcomes Ω and probability measure P to make them more convenient

or more efficient to compute, without affecting queries, as long as the random variables are

changed accordingly.

As an example, first consider the standard form of the thermometer model:

Ω = R

P (A) =
∫

A
fT dm

U(ω) = min(ω, 100)
(2.41)

Most of its complexity resides in P . We will move this complexity out of P and into random

variables. Recall that fN with one parameter is the standard normal distribution’s probability

density function. We define FN : R → [0, 1], its corresponding cumulative distribution

function (CDF), by integrating fN from −∞ to argument x:

FN(x) =
∫ x

−∞
fN dx (2.42)

It is well-known that if Z ∼ Uniform(0, 1) and F is a strictly monotone CDF, then F−1 is

invertible and F−1(Z) has the distribution defined by F . More concretely, if Z ∼ Uniform(0, 1)

then F−1
N (Z) ∼ Normal(0, 1). Further, because the normal distribution family’s µ parameter

only shifts the standard normal, µ+ F−1
N (Z) ∼ Normal(µ, 1).

Using inverse CDFs to sample from arbitrary distributions using uniformly distributed

samples is called inverse transform sampling. There is no random sampling in pure

25

mathematics, but we can do something similar to transform the measure-theoretic model

into one in which Ω has a uniform distribution:

Ω = (0, 1)

P (A) = m(A)

T (ω) = 99 + F−1
N (ω)

U(ω) = min(T (ω), 100)
(2.43)

Here, m(A) means the length of A. Because P assigns each set in the unit interval (0, 1) its

length, P defines a uniform distribution over Ω; therefore T ∼ Normal(99, 1). The random

variable U : Ω → R does not change much: it simply refers to T (ω) instead of ω. In both

models, P ◦ U−1 is the same.

We call measure-theoretic models with uniform probability measures, such as the model

defined in (2.43), uniform random source models. Chapter 8’s semantics interprets

probabilistic programs as deterministic functions from an infinite-dimensional uniform random

source Ω to program outputs; i.e. it defines a uniform random source model for every possible

program. We use inverse transform sampling in Chapter 9 to extend the probabilistic language

with primitives that define distributions by computing preimages under their inverse CDFs.

As another example, consider again the normal-normal theory

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)
(2.44)

and a measure-theoretic model defined in terms of its density model:

Ω = R2

P (A) =
∫

A
fX,Y dm

X(ω0,ω1) = ω0

Y (ω0,ω1) = ω1

(2.45)

Again, most of the model’s complexity resides in P . The random variables are simply

projections: they return the first and second coordinates of points ω ∈ R2. We again use the

inverse of the standard normal’s CDF to move the complexity into the random variables, to

26

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

000000000 .2.2.2.2.2.2.2.2.2 .4.4.4.4.4.4.4.4.4 .6.6.6.6.6.6.6.6.6 .8.8.8.8.8.8.8.8.8 111111111
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111
Condition preimageCondition preimageCondition preimageCondition preimageCondition preimageCondition preimageCondition preimageCondition preimageCondition preimage
Query preimageQuery preimageQuery preimageQuery preimageQuery preimageQuery preimageQuery preimageQuery preimageQuery preimage
IntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersectionIntersection

(a) Exact query
ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

000000000 .2.2.2.2.2.2.2.2.2 .4.4.4.4.4.4.4.4.4 .6.6.6.6.6.6.6.6.6 .8.8.8.8.8.8.8.8.8 111111111
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111
Points ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimagePoints ∈ query preimage
Points ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimagePoints ∉ query preimage

(b) Monte Carlo approximation

Figure 2.5: Computing Pr
[
X ∈ (−1.5, 0),Y ∈ (−1.5, 0) |

√
X2 + Y 2 = 1

]
as a limit of ratios, using a uniform

random source model. (a) The answer is the proportion of the preimage intersection X−1((−1.5, 0)) ∩
Y −1((−1.5, 0)) that is within the preimage Z−1((1− ε, 1 + ε)), as ε approaches 0. (b) An approximate answer
is the proportion of points, uniformly distributed in the condition preimage, that are in the query preimage.

obtain a uniform random source model:

Ω = (0, 1)2

P (A) = m(A)

X(ω0,ω1) = F−1
N (ω0)

Y (ω0,ω1) = X(ω0,ω1) + F−1
N (ω1)

(2.46)

Here, m(A) means the area of A.

Figure 2.4 illustrated answering queries Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 = 1

]
using

a limit of queries with positive-probability conditions and a density model. To use a measure-

theoretic model, we define another random variable Z(ω) =
√

X(ω)2 + Y (ω)2 and compute

Pr
[
X ∈ (a, b),Y ∈ (c, d) |

√
X2 + Y 2 = 1

]
= lim

ε→0

P (X−1((a, b)) ∩ Y −1((c, d)) ∩ Z−1((1− ε, 1 + ε)))
P (Z−1((1− ε, 1 + ε)))

(2.47)

The fact that the models defined in (2.45) and (2.46) are equivalent means that this query

has the same answer regardless of which model is used. Figure 2.5a illustrates answering it

using the uniform random source model defined in (2.46), again with ε = 1
4 .

27

2.2.3 Segue: Approximating Measure Theory

We have been using the word compute in an abstract, mathematical sense. As far as we know,

no computer can carry out the limit in (2.47) in a finite amount of time. Further, each step in

the limit is generally not finitely computable. (The “exact” preimages shown in Figure 2.5a

are only finite approximations that are just fine enough to look smooth.) In general, we

cannot hope to exactly measure the preimages of query and condition sets in finite time.

To solve this problem, not only does Chapter 8 interpret probabilistic programs as

functions from a uniform random source to outputs, but it interprets programs as functions

that compute preimages, and additionally as functions that compute approximate preimages.

Chapter 9 further shows how to use approximate preimages of condition sets to efficiently

sample within the exact preimages of condition sets. Figure 2.5b illustrates the idea behind

sampling: to approximately answer a conditional query, count the proportion of uniform

samples in the condition preimage that are also within the query preimage.

The semantics defined in Chapters 6 and 8 that interpret theories and programs are

similar to compilers, in that they mechanically transform terms into a target language. If their

exact interpretations are to be measure-theoretic models, the target language must be able

to express real numbers, limits, infinite sets, probability measures, integration, and generally

every other infinite value and infinitary operation used in measure-theoretic probability. If

the approximate interpretations are to be implementable, the target language must have

a computable sublanguage. Ideally, the target language’s computable sublanguage would

be similar some programming language, and the target language would easily manipulate

random variables, which are functions.

The foundation of typical mathematics is the language of first-order logic extended with

sets and set operations, from which everything else is defined. Because measure theory is

defined in this language, it clearly can be used to define measure-theoretic models. It has

computable sublanguages; e.g. a set of natural numbers is recursively enumerable if and

only if it can be defined by a logical formula ∃n1. ∃n2. · · · ∃nk.φ(n1,n2, ...,nk,m) in which φ

28

contains only bounded quantifiers. But these computable sublanguages are not anything like

programming languages. Further, typical mathematics lacks first-class functions and general

recursion, making it awkward to define functions that manipulate functions.

Chapter 4 defines a new target language, λZFC, by extending the foundations of mathe-

matics with anonymous, first-class functions. The result is a powerful functional programming

language capable of expressing all of the infinitary operations required to construct measure-

theoretic models. It easily manipulates functions. Its computable sublanguage is similar to

typical functional programming languages. Best of all, it allows us to exactly interpret theo-

ries and probabilistic programs as measure-theoretic models, and then obtain approximate,

computable, directly implementable code just by replacing a few infinitary operations with

approximating, computable, directly implementable operations.

The idea of using a λ-calculus as a target language and the tools for formally defining

the interpretation of programs come from functional programming theory.

2.3 Functional Programming Theory

From functional programming theory, the requisite background includes the λ-calculus,

big-step operational semantics, denotational semantics, categorical semantics, and abstract

interpretation. We assume readers know basic computer science theory, including propositional

logic, relations, functions, proof by induction, context-free grammars, and nondeterminism.

2.3.1 λ-Calculus

The following grammar defines a set of variable names X and a language E (a set of terms)

called the pure λ-calculus.

e ::= x | e e | λx. e

x ::= [variable names]
(2.48)

Terms λx. e are unnamed functions of one argument, terms x refer to function arguments,

and terms e1 e2 apply e1 to e2 (i.e. “call” function e1 with argument e2). For readers unused

29

to the λ-calculus but familiar with other mathematical languages, perhaps the most difficult

thing to get used to is that juxtaposition means application instead of multiplication.

As in most mathematical languages, parentheses are optional. Lambda terms greedily

enclose their bodies in implicit parentheses, so λx.λy. e (with some assumed-meaningful

function body e) is the same term as λx. (λy. e): a function that receives an x and returns a

function of y in which x is available. Application is left-associative, so e1 e2 e3 is the same

term as (e1 e2) e3. Here, e1 e2 returns a function, which is applied to e3.

This duality makes it easy to write two-argument functions using nested lambdas, and

apply them using sequences of arguments. For example, (λx.λy. e) ex ey defines a function

of two arguments and applies it to ex and ey.

Like its younger brother the Turing machine, the pure λ-calculus is a universal model of

computation. Also like the Turing machine, it would be quite painful to program with it.

Unlike the Turing machine, it is easy to get something practical with a few extensions such

as pairs and numbers, and a few primitive functions to operate on them.

In most programming languages, implementation details define the meaning of function

application. It typically involves a jump from one machine address to another, and if the

function returns, a jump back. However, in the pure λ-calculus and its extensions, there

are no jumps or machine addresses. Function application is defined entirely in terms of

substitution, as in algebra. For example, suppose hypot is a term in a λ-calculus extended

with real numbers, defined by

hypot = λx.λy.
√

x2 + y2 (2.49)

Applying hypot eliminates lambdas by substituting their formal arguments with the supplied

30

actual arguments:

hypot 3 4 =
(
λx.λy.

√
x2 + y2

)
3 4

=
((
λx.

(
λy.

√
x2 + y2

))
3
)

4

≡
(
λy.

√
32 + y2

)
4

≡
√

32 + 42

(2.50)

The two equivalences at the end of (2.50) are called β-reductions, or just reductions. We

would expect
√

32 + 42 to further reduce to 5.

Computer implementations of an extended λ-calculus, such as the programming language

Racket, necessarily use jumps and machine addresses to implement function application.

However, the meanings of their programs are defined mathematically as the results of carrying

out reductions. It is therefore possible to reason about programs algebraically and inductively,

without having to consider complicating machine details.

It is sometimes convenient to define a λ-calculus whose variables refer to function

arguments by number instead of by name. Such numeric references are called De Bruijn

indexes.5 One form of the pure λ-calculus with De Bruijn indexes is

e ::= env n | e e | λ. e

n ::= 0 | 1 | 2 | · · ·
(2.51)

where a “variable” term env 0 refers to the innermost lambda’s argument.

Suppose we define hypot as a term in a λ-calculus with De Bruijn indexes, extended

with real numbers:

hypot = λ.λ.
√

(env 1)2 + (env 0)2 (2.52)

Here, env 1 (which was previously x) refers to the outer lambda’s argument and env 0 refers
5Typically pronounced “deh brOIN,” and named after Dutch mathematician Nicolaas de Bruijn.

31

to the inner lambda’s argument. Reducing an application of hypot proceeds this way:

hypot 3 4 =
(
λ.λ.

√
(env 1)2 + (env 0)2

)
3 4

≡
(
λ.
√

32 + (env 0)2
)

4

≡
√

32 + 42

(2.53)

2.3.2 Evaluation Order

So far, we have been taking a certain evaluation order for granted when manually computing

reductions. To highlight an ambiguity, consider this lambda term, which returns 0 given any

argument:

zero = λx. 0 (2.54)

Suppose 1 / 0 does not reduce to any value, as in algebra. Should zero (1 / 0) reduce to 0,

or likewise not reduce? In other words, should we accept this reduction:

zero (1 / 0) = (λx. 0) (1 / 0)

≡ 0
(2.55)

or should we require function arguments to reduce before substituting them? Always reducing

function arguments first is call-by-value reduction, and substituting without reducing

arguments is call-by-name. Both policies have their place, but we mostly use call-by-value

reduction, in which zero (1 / 0) does not reduce.

Instead of describing evaluation order using English phrases with scattered mathematical

terms, we could instead give our λ-calculus a semantics: a precise mathematical definition

of the meaning of its terms. To specify evaluation order and other operational aspects

specifically, we would typically give it an operational semantics.

32

e ::= v | add e e

v ::= 0 | 1 | 2 | · · ·

(a) A grammar to define sets E and V

v ⇓ v
(val) e1 ⇓ v1 e2 ⇓ v2

(add e1 e2)⇓(v1 + v2)
(add)

(b) Reduction rules to define ⇓ ⊆ E × V

Figure 2.6: A big-step operational semantics for a simple addition language.

2.3.3 Big-Step Operational Semantics

An operational semantics is defined by a reduction relation, which relates program terms

to other program terms. There are two main kinds of operational semantics:

• Small-step, specified by a subset of E × E, where E is the set of program terms.

• Big-step, specified by a subset of E × V , where E is the set of program terms and

V ⊆ E is the set of irreducible program values (e.g. the number 4, the pair 〈10, 23〉).

For example, suppose we have a lambda term

inc = λx.x + 1 (2.56)

A small-step semantics would typically “stop” after a function application. If “⇒” is a

small-step reduction relation, then (inc 4)⇒ (4 + 1) should be true, and also (4 + 1)⇒ 5,

so we can conclude inc 4 reduces to 5 in two small steps. On the other hand, a big-step

semantics cannot “stop” after most function applications. If “⇓” is a big-step reduction

relation, then we cannot expect (inc 4)⇓(4 + 1) because by any reasonable definition, the

term 4 + 1 is an expression but not a value. We should expect, however, that (inc 4)⇓ 5 is

true; i.e. inc reduces to 5 in one big step.

As with call-by-name and call-by-value, small-step and big-step semantics both have

their place. However, as Chapter 4 contains the only operational semantics in this dissertation

and it is a big-step semantics, we concentrate on big-step in this overview.

Figure 2.6 defines a language and its semantics by giving a grammar and a big-step

reduction relation “⇓”. The language is even simpler than the pure λ-calculus: its terms

simply represent adding concrete numbers. The relation “⇓” is defined by reduction rules

33

in the form

premise1 premise2 · · ·
conclusion (name) (2.57)

Grammar nonterminals are implicitly universally quantified, premises are implicitly con-

juncted, and the rule is interpreted as an implication. For example, the (add) rule in

Figure 2.6b means “for all e1, e2 ∈ E and v1, v2 ∈ V , if e1 reduces to v1 and e2 reduces to v2,

then add e1 e2 reduces to v1 + v2.” The (val) rule means “for all v ∈ V , v reduces to v” or

equivalently, “for all v ∈ V , true implies v reduces to v.”

The reduction relation “⇓” is defined as the smallest subset of E × V for which the

reduction rules hold. Defining it as the smallest subset precludes unintended conclusions

such as 4⇓ 5, which are not otherwise precluded by interpreting the rules as implications.

Equivalently, it restricts “⇓” to conclusions that are provable from the reduction rules.

Reduction rules can be used directly to build derivation trees, which represent both

computation steps and proofs of conclusions. For example, suppose we want to use the

reduction rules in Figure 2.6b to compute the value of add (add 4 5) 90. We start by writing

it as a conclusion without premises:

(add (add 4 5) 90)⇓ v1
(2.58)

There is only one rule (add) with a matching conclusion, so we add its premises, renaming

variables as appropriate:

(add 4 5)⇓ v2 90⇓ v3

(add (add 4 5) 90)⇓ v1
(2.59)

There is only one rule (val) matching the conclusion 90⇓ v3, and it has no premises. We thus

only add premises for the (add) rule matching (add 4 5):

4⇓ v4 5⇓ v5

(add 4 5)⇓ v2 90⇓ v3

(add (add 4 5) 90)⇓ v1
(2.60)

34

(define value? exact-nonnegative-integer?)
(struct add (e1 e2))

(define (reduce e)
(match e

[(? value? v) v]
[(add e1 e2) (define v1 (reduce e1))

(define v2 (reduce e2))
(+ v1 v2)]))

Figure 2.7: Racket implementation of the semantics defined in Figure 2.6.

It is easy to find values of v3, v4 and v5 that make the leaf premises true, so we substitute

them and recursively fill in the conclusions:

4⇓ 4 5⇓ 5
(add 4 5)⇓ v2 90⇓ v3

(add (add 4 5) 90)⇓ v1
=⇒

4⇓ 4 5⇓ 5
(add 4 5)⇓ 9 90⇓ 90
(add (add 4 5) 90)⇓ v1

=⇒

4⇓ 4 5⇓ 5
(add 4 5)⇓ 9 90⇓ 90
(add (add 4 5) 90)⇓ 99

(2.61)

Thus, the rightmost derivation tree in (2.61) is a proof that (add (add 4 5) 90)⇓ 99.

In most cases, reduction relations can be mathematically constructed by iterating a

function that uses the reduction rules to add more conclusions given known premises. A

fixpoint is reachable in countably many iterations, and as a consequence, derivation trees

are always finite. On the other hand, Chapter 4 defines a λ-calculus in which the iterating

function must be applied uncountably many times to reach a fixpoint, and as a consequence,

its derivation trees may be infinite. Despite this minor difference in size, the basic principles

behind the reduction relation’s construction and use are the same.

If a big-step reduction relation “⇓” relates each left-hand side term to exactly one

right-hand side term, it is a total function, or ⇓ : E → V . If it relates each left-hand side

term to at most one right-hand side term, it is a partial function, or ⇓ : E ⇀ V . In either

case, if its derivation trees are finite, it can be implemented as a recursive function.

Figure 2.7 gives a Racket implementation of “⇓” in Figure 2.6b. (We say Racket is

the implementation’s host language.) The implementation defines a structure type add to

model add expressions, and uses Racket’s built-in big integers to model V . Computation

35

e ::= v | add e e | choose e e

v ::= 0 | 1 | 2 | · · ·

(a) A grammar to define sets E and V

v ⇓ v
(val) e1 ⇓ v1 e2 ⇓ v2

(add e1 e2)⇓(v1 + v2)
(add)

e1 ⇓ v1

(choose e1 e2)⇓ v1
(left) e2 ⇓ v2

(choose e1 e2)⇓ v2
(right)

(b) Reduction rules to define ⇓ ⊆ E × V

Figure 2.8: Big-step operational semantics for a language with nondeterministic choice.

recursively reduces expressions, and proceeds similarly to the derivation tree construction

in (2.58) through (2.61). As an example of use, at DrRacket’s Read-Eval-Print Loop (REPL),

we get

> (reduce (add (add 4 5) 90))
99

as expected.

Figure 2.8 extends the present example language with nondeterministic choice, which

results in a reduction relation that is not a function. The culprits are the new rules (left)

and (right), which can both match the same conclusion. For example, suppose we want to

use the reduction rules in Figure 2.8b to compute the value of add (choose 4 5) 90. We start

as before, by writing it as a conclusion without premises:

(add (choose 4 5) 90)⇓ v1
(2.62)

We match the conclusion to the (add) rule and add its premises:

(choose 4 5)⇓ v2 90⇓ v3

(add (choose 4 5) 90)⇓ v1
(2.63)

Again, there is only one rule (val) matching the conclusion 90⇓ v3, and it has no premises.

For the conclusion (choose 4 5)⇓ v2, however, we may choose either (left) or (right), leading

36

to two different derivation trees:

4⇓ v4

(choose 4 5)⇓ v2 90⇓ v3

(add (choose 4 5) 90)⇓ v1

5⇓ v5

(choose 4 5)⇓ v2 90⇓ v3

(add (choose 4 5) 90)⇓ v1
(2.64)

After replacing v3, v4 and v5 with the only values that make the leaf premises true and

recursively filling in the conclusions, we would find that both (add (choose 4 5) 90)⇓ 94 and

(add (choose 4 5) 90)⇓ 95 are true, and would have derivation trees to prove these facts.

An implementation of a nondeterministic semantics would be correct if, for every

interpretation of a term e that produced value v, e⇓ v were a valid conclusion. For choose 4 5,

for example, a correct implementation may always choose 4, always choose 5, choose randomly,

choose the number that gives the best or worst outcome according to some objective function,

or always choose 4 on weekends or during the fall equinox. Its choice is simply not modeled

by the semantics.

Suppose we wanted to compute results for every possible combination of nondeterministic

choices. We could define a big-step relation ⇓ : E → P V , which returns (when used as a

function) a set of values, and implement it. However, we are saving that example for the

next section.

2.3.4 Denotational Semantics

A denotational semantics is defined by a deterministic semantic function from language

terms to values in another language. The other language is called the metalanguage or

target language, and is often an axiomatic logic such as first-order set theory (i.e. ordinary

mathematics).

Figure 2.9a defines a denotational semantics for the addition language without choose by

defining a semantic function J·K : E → N. The double square brackets are simply a different

application syntax: they connote nothing mathematically, but serve as a visual cue to read

applications of the semantic function as “the meaning of” or “the denotation of.” For example,

37

J·K : E → N

JvK = v

Jadd e1 e2K = Je1K + Je2K

(a) A semantic function for the ad-
dition language

(define-syntax meaningof
(syntax-rules (add)

[((add e1 e2)) (+ (meaningof e1)
(meaningof e2))]

[(v) v]))

(b) An implementation of the semantic function as a syntax
transformer

Figure 2.9: A denotational semantics and its implementation.

the meaning of add (add 4 5) 90 is

Jadd (add 4 5) 90K = Jadd 4 5K + J90K

= (J4K + J5K) + J90K

= (4 + 5) + 90

= 99

(2.65)

The semantic function is compositional: it gives meaning to terms by combining the

meanings of their direct subterms. Compositionality allows most proofs of program properties

to be done by structural induction, as we will demonstrate shortly.

When the results of applying J·K are computable, because it is compositional, it is often

easy to implement it as local syntax transformation or compilation. Figure 2.9b shows a

Racket implementation of J·K as a transformation from meaningless parenthetical syntax (an

add function does not exist) to runnable Racket syntax. The syntax transformer is barely

more than a transcription of the semantic function’s definition, with a little extra code to

signal to Racket that it is to be applied to the syntax of expressions before compiling or

evaluating them (i.e. define-syntax instead of define) and to identify the symbol add as a

terminal symbol.

The results of compilation seem to be equivalent to the results of reduction:

> (meaningof (add (add 4 5) 90))
99

38

J·K : E → P N

JvK = {v}
Jadd e1 e2K = {v1 + v2 | v1 ∈ Je1K , v2 ∈ Je2K}

Jchoose e1 e2K = Je1K ∪ Je2K

Figure 2.10: A denotational semantics for the addition language with nondeterministic choice.

but the REPL does not show transformed syntax. Fortunately, expand-syntax can show it:

> (expand-syntax #’(meaningof (add (add 4 5) 90)))
#’(+ (+ 4 5) 90))

Figure 2.10 defines a compositional function J·K : E → P N, which transforms the

addition language with nondeterministic choice into sets of natural numbers. For example,

the meaning of 4 is {4}, the meaning of choose 4 5 is {4} ∪ {5} = {4, 5}, and the meaning of

add (choose 4 5) 90 is

Jadd (choose 4 5) 90K = {v1 + v2 | v1 ∈ Jchoose 4 5K , v2 ∈ J90K}

= {v1 + v2 | v1 ∈ (J4K ∪ J5K), v2 ∈ J90K}

= {v1 + v2 | v1 ∈ ({4} ∪ {5}), v2 ∈ {90}}

= {v1 + v2 | v1 ∈ {4, 5}, v2 ∈ {90}}

= {4 + 90, 5 + 90}

= {94, 95}

(2.66)

We know that under “⇓,” add (choose 4 5) 90 reduces to both 94 and 95, so it appears J·K is

correct. It would be nice to know whether it is always correct. The following theorem states

correctness precisely in terms of “⇓,” and critically uses J·K’s compositionality in a proof by

induction on the structure of e.

Theorem 2.1 (correctness). For all v ∈ V and e ∈ E, v ∈ JeK ⇐⇒ e⇓ v.

Proof. Let v ∈ V and e ∈ E. The proof is by induction on the structure of e.

39

Base case e ∈ V . If e = v, then v ∈ JeK = {e} = {v} by definition of J·K, and e⇓ v by

the (val) rule. Similarly, if e 6= v, then v 6∈ JeK, and not e⇓ v.

Inductive case e = add e1 e2 for some e1 ∈ E and e2 ∈ E.

Suppose v ∈ Jadd e1 e2K. By definition of J·K, there exist v1 ∈ Je1K, v2 ∈ Je2K such that

v = v1 +v2. By the inductive hypothesis, e1 ⇓ v1 and e2 ⇓ v2. By the (add) rule, (add e1 e2)⇓ v.

Conversely, if (add e1 e2)⇓ v, by (add), there exist v1, v2 such that e1 ⇓ v1, e2 ⇓ v2 and

v = v1 + v2. By hypothesis, v1 ∈ Je1K and v2 ∈ Je2K. By definition of J·K, v ∈ Jadd e1 e2K.

Proof of the inductive case e = choose e1 e2 is similar to the preceding, though each

“⇐⇒” direction has an inner case for nondeterministic choice.

Now that we know J·K is correct, we can regard any implementation of it as an imple-

mentation of “⇓” as well. In general, it is easy to transfer theorems about “⇓” to a correct

J·K, and vice-versa.

What if we wanted to represent nondeterministic choices using lists instead of sets, or

model a different computational effect, such as mutation or probabilistic choice? We could

define a different semantic function for each model, but there is a more elegant way.

2.3.5 Categorical Semantics

When computer scientists from any area want to extend a fixed process without having to

repeat themselves more than necessary, they abstract: they decouple the desired varying

part from the fixed process, and parameterize the previously fixed process on the varying

part. This characterizes modular, object-oriented, functional, and even semantic abstraction.

To abstract a denotational semantics, we parameterize its semantic function on the

meaning it produces. The parameter takes the form of a category.6 In semantics, the

category is comprised of a collection of objects called computations (i.e. possible program

meanings) and operations on them called combinators.
6The word “category” comes from category theory, an alternative axiomatization of mathematics. Fortu-

nately, little knowledge of category theory is necessary to define or understand categorical semantics.

40

The appropriate category for the addition language with choose contains sets of numbers

as computations, or P N, and operations on them. While there are many possible collections

of combinators, one kind of collection that functional programmers and theorists have found

very useful are monads.7 The set monad operates on set-valued computations and is

defined by these two combinators:

returnset v = {v}

bindset A f =
⋃

v∈A

f v
(2.67)

Evidently, from a semantic function J·Ka parameterized on a monad a we should expect

JvKset = returnset v ≡ {v}. How to use bindset is less clear, however. It apparently applies f

to the objects in set A to yield a set for each, and collects these sets’ members in a big union.

Turning the set comprehension in the definition of Jadd e1 e2K into an indexed union (as in

bindset) makes its use clearer:

Jadd e1 e2K = {v1 + v2 | v1 ∈ Je1K , v2 ∈ Je2K}

=
⋃

v1∈Je1K

⋃
v2∈Je2K

{v1 + v2}

≡
⋃

v1∈Je1K

⋃
v2∈Je2K

returnset (v1 + v2)

≡
⋃

v1∈Je1K

bindset Je2K (λv2. returnset (v1 + v2))

≡ bindset Je1K (λv1. bindset Je2K (λv2. returnset (v1 + v2)))

(2.68)

Thus, we expect Jadd e1 e2Kset = bindset Je1Kset (λv1. bindset Je2Kset (λv2. returnset (v1 +v2))).

Finally, we need to extend the set monad with an operation for choose expressions. We define

mergeset A1 A2 = A1 ∪ A2 (2.69)

so that Jchoose e1 e2Kset = mergeset Je1Kset Je2Kset .

In Figure 2.11, guided by our expectations for J·Kset , we define a categorical semantics
7Strictly speaking, in category theory, they are strong monads.

41

J·Ka : E →Ma N

JvKa = returna v

Jadd e1 e2Ka = binda Je1Ka (λv1. binda Je2Ka (λv2. returna (v1 + v2)))
Jchoose e1 e2Ka = mergea Je1Ka Je2Ka

Figure 2.11: A categorical semantics for the addition language with nondeterministic choice.

for the addition language with choose, by defining a semantic function J·Ka parameterized

on a target monad a. The parameterized function Ma returns the monad’s computations.

If Mset X = P X, then J·Kset : E → Mset N is equivalent to J·K : E → P N as defined in

Figure 2.10, as expected.

Because Figure 2.11 does not refer to sets or set operations, it is abstract enough to

interpret programs as many different kinds of computations. For example, let Mlist X = [X],

where [X] denotes all the lists of X, and define the list monad extended with merge by

returnlist v = [v]

bindlist vs f = concat (map f vs)

mergelist vs1 vs2 = append vs1 vs2

(2.70)

Here, [v] is a list containing just v, map applies a function to every element in a list and

returns the list of results, and concat : [[X]] → [X] appends the elements in a list of lists.

Now J·Klist : E → [N] models nondeterminism with lists of numbers instead of sets of numbers.

For example, the meaning of choose 4 5 as a list of nondeterministic choices is

Jchoose 4 5Klist = mergelist J4Klist J5Klist

= mergelist (returnlist 4) (returnlist 5)

≡ mergelist [4] [5]

≡ append [4] [5]

≡ [4, 5]

(2.71)

42

The meaning of add (choose 4 5) (choose 4 5) is thus

Jadd (choose 4 5) (choose 4 5)Klist

≡ bindlist [4, 5] (λv1. bindlist [4, 5] (λv2. returnlist (v1 + v2)))

≡ concat (map (λv1. bindlist [4, 5] (λv2. returnlist (v1 + v2))) [4, 5])

≡ concat [bindlist [4, 5] (λv2. returnlist (4 + v2)),

bindlist [4, 5] (λv2. returnlist (5 + v2))]

(2.72)

≡ concat [concat (map (λv2. returnlist (4 + v2)) [4, 5]),

concat (map (λv2. returnlist (5 + v2)) [4, 5])]

≡ concat [concat [returnlist (4 + 4), returnlist (4 + 5)],

concat [returnlist (5 + 4), returnlist (5 + 5)]]

≡ concat [concat [[8], [9]], concat [[9], [10]]]

≡ concat [[8, 9], [9, 10]]

≡ [8, 9, 9, 10]

In contrast, Jadd (choose 4 5) (choose 4 5)Kset ≡ {8, 9, 10}.

The semantic function J·Ka can be parameterized not just on the set and list monads, but

any monad a for which mergea can be sensibly defined. This includes monads for any kind

of nondeterminism (e.g. all possibilities, angelic/demonic, random, probabilistic) with any

kind of encoding for nondeterministic values (e.g. sets, lists, worst/best choices, execution

paths, random values, probability distributions). It also includes monads that combine

nondeterminism with other effects, such as input/output or backtracking search. Abstracting

has granted the desired flexibility.

As evidenced by the long derivations in (2.71) and (2.72), like most other abstractions,

semantic abstraction increases complexity in return for its flexibility and generalization.

There are many ways to deal with this, including inferring the behavior of effects from

computation types, and classifying effectful behaviors as belonging to different categories.

43

The programming language Haskell benefits greatly from categorical semantics by using them

to hide the encodings of effects, which, being an implementation of an effect-free λ-calculus, it

cannot compute directly, by design. Its primary way to deal with the increase in complexity is

to use just one built-in, standard semantic function that targets any monad, which transforms

syntax that many Haskell programmers find (or learn to find) intuitive.

Besides increasing complexity, abstraction affects the semantics in another way that

we have only hinted at by using “≡” instead of “=” in some of our equations: it no longer

targets first-order set theory. Instead, the semantic function J·Ka targets a λ-calculus.

Targeting a λ-calculus restricts a denotational semantics to be directly implementable as

a syntax transformer. This restriction is generally regarded as good, because it makes the

proof of the direct implementation’s correctness trivial. However, we want to define semantic

functions for Bayesian notation, which often denotes uncountable things such as probability

distributions over R. The entire reason for the work in Chapter 4 is to define a λ-calculus

with a semantics that gives meaning to operations on infinite values of any size, so that we

can define categorical semantics for probabilistic languages in Chapter 6 and Chapter 8.

Categorical abstraction has affected the semantics in a third way. Compare the rule for

add in Figure 2.9a with the corresponding rule in Figure 2.11:

Jadd e1 e2K = {v1 + v2 | v1 ∈ Je1K , v2 ∈ Je2K}

Jadd e1 e2Ka = binda Je1Ka (λv1. binda Je2Ka (λv2. returna (v1 + v2)))
(2.73)

Because Jadd e1 e2K does not specify the order of evaluating Je1K and Je2K, an implementation

is free to choose the order, evaluate them in parallel, or let the host language decide. On the

other hand, Je1Klist must be evaluated first, because changing the evaluation order changes

the results:

bindlist [4, 5] (λv1. bindlist [1, 2, 3] (λv2. returnlist (v1 + v2))) ≡ [5, 6, 7, 6, 7, 8]

bindlist [1, 2, 3] (λv1. bindlist [4, 5] (λv2. returnlist (v1 + v2))) ≡ [5, 6, 6, 7, 7, 8]
(2.74)

In general, parameterizing a semantics on a monad allows certain monads to impose a total

44

order on evaluation, regardless of the host language’s evaluation order.

The combinators in a category must obey certain laws. For example, to define a monad,

returna and binda most obey these laws:

binda (returna x) f ≡ f x left identity

binda m returna ≡ m right identity

binda (binda m f) g ≡ binda m (λx. binda (f x) g) associativity

(2.75)

It is not necessary for readers to understand these laws deeply, just that they exist, are

expected to hold, are occasionally useful, and that we interpret them a little more broadly

than is typical. In particular, “≡” is almost always understood to be the default equivalence

for the λ-calculus in which the combinators are defined. When programming in Haskell, this

helpfully ensures that using the laws to transform programs maintains program equivalence.

When defining categorical semantics, however, there is no reason for “≡” to be defined so

narrowly. In fact, it is often useful to define equivalence per-category. For example, we might

say that two lists are equivalent when the sets of their elements are equal. In Chapter 4’s

limit monad, computations are infinite sequences, and are equivalent when they converge

to the same value. Chapter 8 defines a notion of equivalence for each of the categories it uses

to interpret probabilistic programs.

Two other kinds of categories besides monads are useful targets for categorical semantics:

idioms and arrows. Each kind of category has its own combinators, orderings, and laws.

We do not review them here because they are not as well-known in functional programming

theory as monads, so the chapters that use them also review them.

2.3.6 Abstract Interpretation

When we want to discover something about every evaluation of a program, we might do

it with abstract interpretation: evaluating by operating on just the properties of terms

instead of their actual values. Equivalently, we can think of an abstract interpretation as

45

LJ·K : E → N

LJvK = 1
LJadd e1 e2K = LJe1K · LJe2K

LJchoose e1 e2K = LJe1K + LJe2K

Figure 2.12: An abstract semantics for the addition language with nondeterministic choice.

operating on sets of values for which those properties hold. The properties or sets of values

are called abstract values. The actual values are called concrete values.

Perhaps the most common example of abstract interpretation is type checking. In this

case, the abstract values are types, which represent properties such as “is a number” or “is

a function from lists to natural numbers.” During abstract interpretation, expressions are

not evaluated on concrete values, but are checked to determine whether they preserve the

properties that concrete values should have.

As with concrete interpretation, abstract interpretation is specified by a semantics. As

with concrete semantics, any of a language’s abstract semantics can be defined using rules

or semantic functions. Type systems and type checkers are typically defined by rules with

premises and conclusions similar to reduction rules. Because Chapters 8 and 9 define abstract

interpretations using semantic functions, we give a small example of that approach here.

Figure 2.12 defines LJ·K, which defines an abstract semantics for the addition language

with choose. (The prefix L means nothing mathematically; it simply differentiates this

semantic function from the others we have defined.) The abstract values are the lengths of

lists or cardinalities of finite sets; i.e. natural numbers. The abstract meaning of a term is

an upper bound on the number of nondeterministic values it computes. For example, the

46

abstract meaning of add (choose 4 5) (choose 4 5) is

LJadd (choose 4 5) (choose 4 5)K = LJchoose 4 5K · LJchoose 4 5K

= (LJ4K + LJ5K) · (LJ4K + LJ5K)

= (1 + 1) · (1 + 1)

= 4

(2.76)

Indeed, Jadd (choose 4 5) (choose 4 5)Kset ≡ {8, 9, 10}, which is no more than 4 values.

This example demonstrates a pervasive fact about abstract semantics: almost every

abstract semantics trades precision to get efficiency, tractability, or even computability.

Certainly |{8, 9, 10}| 6= 4.

Usually, we need abstract interpretations to be sound, which roughly means that the

abstract values are always a conservative approximation of the concrete values. (There is a

way to formalize this notion using Galois connections, but that brings in more complexity

than we need.) When abstraction interpretations must be sound, the abstract semantics

must have a soundness theorem relating it to a concrete semantics, such as the following.

Theorem 2.2 (LJ·K soundness). For all e ∈ E, |JeKset| ≤ LJeK.

Proof. By structural induction on e.

A soundness theorem sometimes suggests how abstraction interpretations might be used.

For a type system, soundness implies that accepted programs never compute concrete values

with the wrong type, so operations on concrete values may be specialized in ways that would

otherwise be unsafe or incorrect. (A child class’s methods may be inlined, for example.) By

Theorem 2.2, we can use LJ·K to determine how much space to preallocate for results in a

less direct but faster implementation of J·Kset , and we will never allocate too little.

Sometimes the abstraction is both sound and precise, as LJ·K is with respect to J·Klist .

Theorem 2.3 (LJ·K soundness and precision). For all e ∈ E, length JeKlist = LJeK.

Proof. By structural induction on e.

47

Having both soundness and precision is unusual.

Abstract interpretation is often used for program analysis in which determining precise

properties is only semidecidable or is undecidable. An example is determining which functions

are applied at every application site in a program written in a λ-calculus. In these cases,

another concrete semantics is created, whose concrete interpretations—if they could be

evaluated on a computer—would collect the necessary information. An abstract semantics is

then created, whose abstract interpretations are computable, and which overapproximate the

necessary information.

Such analyses are sometimes said to “embrace the infinite.” In this work, we must do the

same to interpret Bayesian notation—but instead embrace the uncountably infinite. Doing so

with a concrete categorical semantics requires a powerful λ-calculus like the one we define in

Chapter 4.

48

Chapter 3

Related Work

Probabilistic languages can be approximately placed into two groups: those defined by

an implementation, and those defined by a semantics.

3.1 Implementations

Almost all of the languages defined by their implementations support conditional queries

and compute converging approximations. The reports on these languages generally describe

interpreters, compilers, and algorithms for sampling with probabilistic conditions. When they

work correctly, they are useful.

Koller and Pfeffer [44] efficiently compute exact, discrete distributions for the outputs of

programs in a Scheme-like language. BUGS [49] focuses on efficient approximate computation

for probabilistic theories with a finitely many statements, and uses approximation methods

that Bayesians typically use. BLOG [55] exists specifically to allow stating distributions over

countably infinite vectors. BLAISE [11] allows stating both distributions and approximation

methods for random variables. Church [31], a Scheme-like probabilistic language that carries

out approximate inference by sampling, focuses on expressiveness. Kiselyov and Shan [42]

embed a probabilistic language in O’Caml, using continuations to enumerate or sample random

variable values. The language has a fail construct for the complement of conditioning. The

sampler looks ahead for fail and can handle it efficiently.

Recent work in this group moves toward defining probabilistic languages semantically.

For example, Wingate et al [81] define the semantics of nonstandard interpretations that

49

enable efficient inference, but do not define languages. They also define a nonstandard

interpretation [82] much like our nonstandard interpretation in Chapter 9 (Figure 9.18). In

both theirs and ours, the interpretations assign unique indexes to random expressions based

on their fixed positions in each execution trace.

3.2 Semantics

Early work in probabilistic language semantics is not motivated by Bayesian concerns, and

thus does not address conditioning. Kozen [45] defines the meaning of bounded-space,

imperative “while” programs as functions from probability measures to probability measures.

Hurd [39] proves properties about programs with binary random choice by encoding programs

and portions of measure theory in HOL. Jones [40] develops a domain-theoretic account of

probability, and with it defines the probability monad, whose discrete version is a distribution-

valued variation of the set or list monad.

Ramsey and Pfeffer [65] define the probability monad measure-theoretically but imple-

ment a language with only finite probabilistic choice. Their work is most similar to ours

in its approach, in that it interprets a probabilistic language measure-theoretically, using a

categorical semantics.

Using inverse transform sampling, Park [60] extends a λ-calculus with probabilistic choice

according to any of a general class of probability measures. This is the same technique we use

in Chapter 9 to turn uniform probabilistic choice into choice according to other distributions,

though our abstract semantics enables efficient conditioning.

Recent work in this group defines probabilistic languages with conditioning. Pfeffer’s

IBAL [63] is the earliest λ-calculus with finite probabilistic choice that also defines conditional

queries. Borgström et al [12] develop Fun, a first-order functional language without recursion,

extended with probabilistic choice and conditioning. Its semantics interprets programs

as measure transformers by transforming expressions into arrow-like combinators. The

implementation generates a decomposition of the probability density represented by the

50

program, if it exists. Bhat et al [10] replaces Fun’s if with match, and interprets programs

more directly as probability density functions by compositionally transforming expressions

into an extension of the probability monad.

3.3 Somewhat Related Work

Any programming language research described by the words “bijective” or “reversible” might

seem to have much in common with ours. Unfortunately, when we look more closely, we

can usually draw only loose analogies and perhaps inspiration. An example is lenses [36],

which are transformations from X to Y that can be run forwards and backwards, in a way

that maintains some relationship between X and Y . Usually, a destructive, external process

is assumed, so that, for example, a change from y ∈ Y to y′ ∈ Y induces a corresponding

change from x ∈ X to some x′ ∈ X. When transformations lose information, lenses must

satisfy certain behavioral laws. In our work, no input or output is updated, and preimages

are always definable regardless of non-injectivity.

Many multi-paradigm languages [34], especially constraint functional languages, bear a

strong resemblance to our work. In fact, it is easy to add a fail expression to our semantics,

or to transform constraints into boolean program outputs. The most obvious difference is

evaluation strategy. The most important difference is that our evaluation of programs, to

be useful in Bayesian inference, returns distributions of constrained outputs, rather than

arbitrary single values that meet constraints.

51

Chapter 4

Computing in Cantor’s Paradise With λZFC

This chapter is derived from work published at the 11th International Symposium on

Functional and Logic Programming (FLOPS), 2012.

No one shall expel us from the Paradise that Cantor has created.

David Hilbert

4.1 Motivation

Georg Cantor first proved some of the surprising consequences of assuming infinite sets

exist. David Hilbert passionately defended Cantor’s set theory as a mathematical foundation,

coining the term “Cantor’s Paradise” to describe the universe of transfinite sets in which

most mathematics now takes place.

The calculations done in Cantor’s Paradise range from computable to unimaginably

uncomputable. Still, its inhabitants increasingly use computers to answer questions. We want

to make domain-specific languages (DSLs) for writing these questions, with implementations

that compute exact and approximate answers.

Such a DSL should have two meanings: an exact mathematical semantics, and an

approximate computational one. A traditional, denotational approach is to give the exact

as a transformation to first-order set theory, and because set theory is unlike any intended

implementation language, the approximate as a transformation to a λ-calculus. However,

52

deriving approximations while switching target languages is rife with opportunities to commit

errors.

A more certain way is to define the exact semantics in a proof assistant like HOL [46] or

Coq [9], prove theorems, and extract programs. The type systems confer an advantage: if

the right theorems are proved, the programs are certainly correct.

Unfortunately, reformulating and re-proving theorems in such an exacting way causes

significant delays. For example, half of Joe Hurd’s 2002 dissertation on probabilistic al-

gorithms [39] is devoted to formalizing early-1900s measure theory in HOL. Our work in

Bayesian inference would require at least three times as much formalization, even given the

work we could build on.

Some middle ground is clearly needed: something between the traditional, error-prone

way and the slow, absolutely certain way.

Instead of using a typed, higher-order logic, suppose we defined, in first-order set theory,

an untyped λ-calculus that contained infinite sets and operations on them. We could interpret

DSL terms exactly as uncomputable programs in this λ-calculus. But instead of redoing a

century of work to extract programs that compute approximations, we could directly reuse

first-order theorems to derive them from the uncomputable programs.

Conversely, set theory, which lacks lambdas and general recursion, is an awkward target

language for a semantics that is intended to be implemented. Suppose we extended set theory

with untyped lambdas (as objects, not quantifiers). We could still interpret DSL terms as

operations on infinite objects. But instead of leaping from infinite sets and operations on

them to implementations, we could replace those operations with computable approximations

a piece at a time.

If we had a λ-calculus with infinite sets as values, we could approach computability from

above in a principled way, gradually changing programs for Cantor’s Paradise until they can

be implemented in Church’s Purgatory.

We define that λ-calculus, λZFC, and a call-by-value, big-step reduction semantics. To

53

show that it is expressive enough, we code up the real numbers, arithmetic and limits, following

standard analysis. To show that it simplifies language design, we define the uncomputable

limit monad in λZFC, and derive a computable, directly implementable replacement monad by

applying standard topological theorems. When certain proof obligations are met, the outputs

of programs that use the computable monad converge to the same values as the outputs of

programs that use the uncomputable monad.

Readers interested only in probabilistic programming languages may skip to Chapter 5,

which reviews this chapter’s highlights, without missing important prerequisites.

4.2 Language Tower and Terminology

λZFC’s metalanguage is first-order set theory: first-order logic with equality extended

with ZFC, or the Zermelo Fraenkel axioms and Choice (equivalently well-ordering). We also

assume the existence of an inaccessible cardinal. Section 4.3 reviews the axioms, from which

we will derive λZFC’s primitives.

To help ensure λZFC’s definition conservatively extends set theory, we encode its terms

as sets. For example, ordered pairs of sets x and y are encoded as 〈x, y〉 = {{x}, {x, y}}, and

〈tP ,R〉 = {{tP}, {tP ,R}} encodes the expression that applies the powerset operator to R.

λZFC’s semantics reduces terms to terms; e.g. 〈tP ,R〉 reduces to the actual powerset of

R. Thus, λZFC contains infinite terms. Infinitary languages are useful and definable: the

infinitary λ-calculus [41] is an example, and Aczel’s broadly used work [4] on inductive sets

treats infinite inference rules explicitly.

For convenience, we define a language λ−ZFC of finite terms and a function FJ·K from

λ−ZFC to λZFC. We can then write P R, meaning FJP RK = 〈tP ,R〉.

Semantic functions like FJ·K and the interpretation of BNF grammars are defined in set

theory’s metalanguage, or the meta-metalanguage. Distinguishing metalanguages helps avoid

paradoxes of definition such as Berry’s paradox, which are particularly easy to stumble onto

when dealing with infinities.

54

We write λ−ZFC terms in sans serif font, and the metalanguage and meta-metalanguage in

math font. We write common keywords in bold and invented keywords in bold italics. We

abbreviate proofs for space.

4.3 Metalanguage: First-Order Set Theory

We assume readers are familiar with classical first-order logic with equality and its inference

rules, but not set theory. Hrbacek and Jech [37] is a fine introduction.

Set theory extends classical first-order logic with equality, which distinguishes between

truth-valued formulas φ and object-valued terms x. Set theory allows only sets as objects,

and quantifiers like “∀” may range only over sets.

We define predicates and functions using “:=”; e.g. nand(φ1,φ2) := ¬(φ1 ∧ φ2). They

must be nonrecursive so they can be exhaustively applied. Such definitions are conservative

extensions: they do not prove more theorems.

To develop set theory, we make proper extensions, which prove more theorems, by

adding symbols and axioms to first-order logic. For example, we first add “∅” and “∈”, and

the empty set axiom ∀x.x 6∈ ∅.

We use “:≡” to define syntax; e.g. ∀x ∈ A.P (x) :≡ ∀ x. (x ∈ A⇒ P (x)), where predi-

cate application P (x) represents a formula that may depend on x. We allow recursion in meta-

metalanguage definitions if substitution terminates, so ∀x1 x2 ...xn.φ :≡ ∀x1.∀x2 ...xn.φ

can bind any number of names.

We already have Axiom 0 (empty set). Now for the rest.

Axiom 1 (extensionality). Define A ⊆ B := ∀x ∈ A.x ∈ B and assume A = B if A and B

mutually are subsets; i.e. assume ∀A B. (A ⊆ B ∧B ⊆ A⇒ A = B).

The converse follows from substituting A for B or B for A.

Axiom 2 (foundation). Define A 6∩B := ∀x. (x ∈ A⇒ x 6∈ B) (“A and B are disjoint”)

and assume ∀A. (A = ∅) ∨ ∃x ∈ A.x 6∩A.

55

Foundation implies that the following nondeterministic procedure always terminates:

If input A = ∅, return A; otherwise restart with any A′ ∈ A. Thus, sets are roots of trees

in which every upward path is unbounded but finite. Foundation is analogous to “all data

constructors are strict.”

Axiom 3 (powerset). Add “P” and assume ∀A x. (x ∈ P(A) ⇐⇒ x ⊆ A).

A hereditarily finite set is finite and has only hereditarily finite members. Each such

set first appears in some P(P(...P(∅)...)). For example, after {x, ...} (literal set syntax) is

defined, {∅} ∈ P(P(∅)). {R} is not hereditarily finite.

Axiom 4 (union). Add “⋃” (“big” union) and assume arbitrary unions of sets of sets exist;

i.e. ∀A x. (x ∈ ⋃A ⇐⇒ ∃ y.x ∈ y ∧ y ∈ A).

For example, after {x, ...} is defined, ⋃{{x, y}, {y, z}} = {x, y, z}. Also, because all

objects are sets, “⋃” can extract the object in a singleton set: if A = {x}, then x = ⋃
A.

Axiom 5 (replacement schema). A binary predicate R can act as a function if it relates each

x to exactly one y; i.e. ∀x ∈ A.∃! y.R(x, y), where “∃!” means unique existence (read “there

exists exactly one”). We cannot quantify over predicates in first-order logic, but we can assume,

for each such definable R, that ∀ y. (y ∈ {y′ | x ∈ A ∧R(x, y′)} ⇐⇒ ∃x ∈ A.R(x, y)).

Roughly, treating R as a function, if R’s domain is a set, its image (range) is also a set.

An axiom schema represents countably many axioms. If R(n,m) ⇐⇒ m = n + 1,

for example, then there is an instance of Axiom 5 for R(n,m).

It is not hard to show by Axiom 5 that (after N is defined) {m | n ∈ N ∧R(n,m)}

increments every natural number, yielding the set of positive naturals. But the syntax is

cumbersome, so we define {F (x) | x ∈ A} :≡ {y | x ∈ A ∧ y = F (x)}, analogous to map F A,

for functional replacement. Now the more familiar {n + 1 | n ∈ N} is the positive naturals.

It might seem replacement should be defined functionally, but predicates allow powerful

nonconstructivism. Suppose Q(y) for exactly one y. The description operator

ι y.Q(y) :≡ ⋃{y | x ∈ P(∅) ∧Q(y)} (4.1)

56

finds “the y such that Q(y).”

From the six axioms so far, we can define A ∪ B (binary union), {x, ...} (literal finite

sets), 〈x, y, z, ...〉 (ordered pairs and lists), {x ∈ A | Q(x)} (bounded selection), A\B (relative

complement), ⋂A (“big” intersection), ⋃x∈A F (x) (indexed union), A×B (cartesian product),

and A→ B (total function spaces). For details, we recommend Paulson’s remarkably lucid

development in HOL [61].

4.3.1 The Gateway to Cantor’s Paradise: Infinity

From the six axioms so far, we cannot construct a set that is closed under unboundedly many

operations, such as the language of a recursive grammar.

Example 4.1 (interpreting a grammar). We want to interpret z ::= ∅ | 〈∅, z〉. It should

mean the least fixpoint of a function Fz, which, given a subset of z’s language, returns a

larger subset. To define Fz, replace “|” with “∪”, the terminal ∅ with {∅}, and the rule

〈∅, z〉 with functional replacement:

Fz(Z) := {∅} ∪ {〈∅, z〉 | z ∈ Z} (4.2)

We could define Z(0) := ∅, then Z(1) := Fz(Z(0)) = {∅, 〈∅,∅〉}, then Z(2) = Fz(Z(1)) =

{∅, 〈∅,∅〉, 〈∅,∅,∅〉}, and so on. The language should be the union of all the Z(n), but we

cannot construct it without a set of all n. ♦

We follow Von Neumann, defining 0 := ∅ as the first ordinal number and s(n) :=

n ∪ {n} to generate successor ordinals. Then 1 := s(0) = {0}, 2 := s(1) = {0, 1}, and

3 := s(2) = {0, 1, 2}, and so on, so that every ordinal is defined as the set of its predecessors.

The set of such numbers is the language of n ::= 0 | s(n), which should be the least fixpoint

of Fn(N) := {0} ∪ {s(n) | n ∈ N}, similar to (4.2). Before we can prove this set exists, we

must assume some fixpoint exists.

Axiom 6 (infinity). ∃ I . I = Fn(I).

57

I is a bounding set, so it may contain more than just finite ordinals. But Fn is monotone

in I , so by the Knaster-Tarksi theorem (suitably restricted [62]),

ω := ⋂{N ⊆ I | N = Fn(N)} (4.3)

is the least fixpoint of Fn: the finite ordinals, a model of the natural numbers.

Example 4.2 (interpreting a grammar). We build the language defined by z ::= ∅ | 〈∅, z〉

recursively:

Z(0) = ∅

Z(s(n)) = Fz(Z(n)), n ∈ ω

Z(ω) =
⋃

n∈ω
Z(n)

(4.4)

By induction, Z(n) exists for every n ∈ ω; therefore Z(ω) exists, so (4.4) is a conservative

extension of set theory. It is not hard to prove (also by induction) that Z(ω) is the set of all

finite lists of ∅, and that it is the least fixpoint of Fz. ♦

Similarly to building the language Z(ω) of z in (4.4), we can build the set V(ω) of all

hereditarily finite sets (see Axiom 3) by iterating P instead of Fz:

V(0) = ∅

V(s(n)) = P(V(n)), n ∈ ω

V(ω) =
⋃

n∈ω
V(n)

(4.5)

The set ω is not just a model of the natural numbers. It is also a number itself: the

first countable ordinal. Indeed, ω is strikingly similar to every finite ordinal in two ways.

First, it is defined as the set of its predecessors. Second, it has a successor s(ω) = ω ∪ {ω}.

(Imagine it as {0, 1, 2, ...,ω}.) However, unlike finite, nonzero ordinals, ω has no immediate

predecessor—it is a limit ordinal.

Defining more limit ordinals allows iterating P further. It is not hard to build ω + ω, ω2

58

and ωω as least fixpoints. The Von Neumann hierarchy generalizes (4.5):

V(0) = ∅

V(s(α)) = P(V (α)), ordinal α

V(β) =
⋃
α∈β
V(α), limit ordinal β

(4.6)

It is a theorem of ZFC that every set first appears in V(α) for some ordinal α.

Equations (4.4,4.5,4.6) demonstrate transfinite recursion, set theory’s unfold: defining

a function V on ordinals, with V (β) in terms of V (α) for every α ∈ β.

4.3.2 Every Set Can Be Sequenced: Well-Ordering

A sequence is a total function from an ordinal to a codomain; e.g. f ∈ 3→ A is a length-3

sequence of A’s elements. (An ordinal is comprised of its predecessors, so 3 = {0, 1, 2}.) A

well-order of A is a bijective sequence of A’s elements.

Axiom 7 (well-ordering). Suppose the predicate Ord identifies ordinals and B ↔ A is the

set of all bijective mappings from B to A. Assume ∀A.∃α f .Ord(α)∧ f ∈ α↔ A; i.e. every

set can be well-ordered.

Because the bijective sequence f is not unique, a well-ordering primitive could make

λZFC’s semantics nondeterministic. Fortunately, the existence of a cardinality operator is

equivalent to well-ordering [76], so we will give λZFC a cardinality primitive.

The cardinality of a set A is the smallest ordinal that can be put in bijection with A.

Formally, if F is the set of A’s well-orderings, then |A| = ⋂{domain(f) | f ∈ F}.

4.3.3 Infinity’s Infinity: An Inaccessible Cardinal

The set V(ω) of hereditarily finite sets is closed under powerset, union, replacement (with

predicates restricted to V(ω)), and cardinality. It is also transitive: if A ∈ V(ω), then

x ∈ V(ω) for all x ∈ A. These closure properties make it a Grothendieck universe: a set

that acts like a set of all sets.

59

e ::= n | v | e e | if e e e | e ∈ e | ⋃ e | take e | P e | image e e | card e

v ::= false | true | λ. e | ∅ | ω
n ::= 0 | 1 | 2 | · · ·

Figure 4.1: The definition of λ−ZFC, which represents countably many λZFC terms.

λZFC’s values should contain ω and be closed under its primitives. But a Grothendieck

universe containing ω cannot be proved from the typical axioms. If it exists, it must be equal

to V(κ) for some inaccessible cardinal κ.

Axiom 8 (inaccessible cardinal). Suppose GU (V) if and only if V is a Grothendieck universe.

Add “κ” and assume Ord(κ) ∧ (κ > ω) ∧GU (V(κ)).

We call the sets in V(κ) hereditarily accessible.

Inaccessible cardinals are not usually assumed but are widely believed consistent. Set

theorists regard them as no more dangerous than ω. Interpreting category theory with small

and large categories, second-order set theory, or CIC in first-order set theory requires at least

one inaccessible cardinal [7, 77, 80].

Constructing a set A 6∈ V(κ) requires assuming κ or an equivalent, so V(κ) easily contains

most mathematics. In fact, most can be modeled well within V(2ω); e.g. the model of R we

define in Section 4.7 is in V(ω + 11). Besides, if λZFC needed to contain large cardinals, we

could always assume even larger ones.

4.4 λZFC’s Grammar

We define λZFC’s terms in three steps. First, we define λ−ZFC, a language of finite terms with

primitives that correspond with the ZFC axioms. Second, we encode these terms as sets.

Third, guided by the first two steps, we define λZFC by defining its terms, most of which are

infinite, as sets in V(κ).

Figure 4.1 shows λ−ZFC’s grammar. Expressions e are typical: variables, values, applica-

tion, if, and domain-specific primitives, for membership, union, extraction (take), powerset,

60

Distinct tvar, tapp, tif , t∈, t∪, ttake, tP , timage, tcard, tset, tatom, tλ, tfalse, ttrue

FJnK := 〈tvar,n〉
FJef exK := 〈tapp,FJefK ,FJexK〉

FJex ∈ eAK := 〈t∈,FJexK ,FJeAK〉
· · ·

FJ∅K := set(∅) FJωK := set(ω)
FJfalseK := afalse afalse := 〈tatom, tfalse〉
FJtrueK := atrue atrue := 〈tatom, ttrue〉
set(A) = 〈tset, {set(x) | x ∈ A}〉

Figure 4.2: The semantic function FJ·K from λ−ZFC terms to λZFC terms.

functional replacement (image), and cardinality. Values v are also typical: booleans and

lambdas, and the domain-specific constants ∅ and ω.

In set theory, ⋃ {A} = A holds for all A, so ⋃ can extract the element from a singleton.

In λZFC, the encoding of ⋃ {A} reduces to A only if A is an encoded set. Therefore, the

primitives must include take, which extracts A from {A}. In particular, extracting a lambda

from an ordered pair requires take.

We use De Bruijn indexes with 0 referring to the innermost binding. Because we will

define λZFC terms as well-founded sets, by Axiom 2, countably many indexes is sufficient for

λZFC as well as λ−ZFC.

Figure 4.2 shows part of the meta-metalanguage function FJ·K that encodes λ−ZFC terms

as λZFC terms. It distinguishes sorts of terms in the standard way, by pairing them with tags;

e.g. if tset is the “set” tag, then 〈tset,∅〉 encodes ∅.

To recursively tag sets, we add the axiom set(A) = 〈tset, {set(x) | x ∈ A}〉. The well-

founded recursion theorem proves that for all A, set(A) exists, so this axiom is a

conservative extension. The actual proof is tedious, but in short, set is structurally recursive.

Now set(∅) = 〈tset,∅〉 and set(ω) encodes ω.

4.4.1 An Infinite Set Rule For Finite BNF Grammars

There is no sensible reduction relation for λ−ZFC. (For example, P ∅ cannot correctly reduce to

a value because no value in λ−ZFC corresponds to {∅}.) The easiest way to ensure a reduction

61

relation exists for λZFC is to include encodings of all the sets in V(κ) as values.

To define λZFC’s terms, we first extend BNF with a set rule: {y∗α}, where α is a cardinal

number. Roughly, it means sets comprised of no more than α terms from the language of y.

Formally, it means P<(Y ,α), where Y is a subset of y’s language generated while building a

least fixpoint, and the bounded powerset operation is defined by

P<(Y ,α) := {x ∈ P(Y) | |x| < α} (4.7)

meaning P<(Y ,α) returns all subsets of Y with cardinality less than α.

Example 4.3 (finite sets). The grammar h ::= {h∗ω} should represent all hereditarily finite

sets, or V(ω). Intuitively, the single rule for h should be equivalent to countably many rules

h ::= {} | {h} | {h,h} | {h,h,h} | · · · .

Its language is the least fixpoint of Fh(H) := P<(H,ω). Further on, we will prove that

Fh’s least fixpoint is V(ω) using a general theorem. ♦

Example 4.4 (accessible sets). The language of a ::= {a∗κ} is the least fixpoint of Fa(A) :=

P<(A,κ), which should be V(κ). ♦

The following theorem schemas will make it easy to find least fixpoints.

Theorem 4.5. Let F be a unary function. Define V by transfinite recursion:

V (0) = ∅

V (s(α)) = F (V (α))

V (β) =
⋃
α∈β

V (α), limit ordinal β

(4.8)

Let γ be an ordinal. If F is monotone on V (γ), V is monotone on γ, and V (γ) is a fixpoint

of F , then V (γ) is also the least fixpoint of F .

Proof. By induction: successor case by monotonicity; limit by a property of ⋃.

62

All the F s we define are monotone. In particular, the interpretations of {y∗α} rules are

monotone because P is monotone. Further, all the F s we define give rise to a monotone V .

Grammar terminals “seed” every iteration with singleton sets, and {y∗α} rules seed every

iteration with ∅.

From here on, we write Fα instead of V (α) to mean α iterations of F .

Theorem 4.6. Suppose a grammar with {y∗α} rules and iterating function F . The language

of the grammar, F ’s least fixpoint, is F γ, where γ is a regular cardinal not less than any α.

Proof. Fixpoint by Aczel [4, Theorem 1.3.4]; least fixpoint by Theorem 4.5.

Example 4.7 (finite sets). Because ω is regular, by Theorem 4.6, Fh’s least fixpoint is

F ω
h . Further, Fh(H) = P(H) for all hereditarily finite H, and V(ω) is closed under P, so

F ω
h = V(ω), the set of all hereditarily finite sets. ♦

Example 4.8 (accessible sets). By a similar argument, Fa’s least fixpoint is F κ
a = V(κ), the

set of all hereditarily accessible sets. ♦

Example 4.9 (encoded accessible sets). The language of v ::= 〈tset, {v∗κ}〉 is comprised of

the encodings of all the hereditarily accessible sets. ♦

4.4.2 The Grammar of Infinite, Encoded Terms

There are three main differences between λZFC’s grammar in Fig. 4.3 and λ−ZFC’s grammar in

Fig. 4.1. First, λZFC’s grammar defines a language of terms that are already encoded as sets.

Second, instead of the symbols ∅ and ω, it includes, as values, encoded sets of values. Most

of these value terms are infinite, such as the encoding of ω. Third, it includes encoded sets of

expressions.

The language of n is N := {〈tvar, i〉 | i ∈ ω}. The rules for e and v are mutually recursive.

63

e ::= n | v | 〈tapp, e, e〉 | 〈tif , e, e, e〉 | 〈t∈, e, e〉 | 〈t∪, e〉 | 〈ttake, e〉 | 〈tP , e〉 |
〈timage, e, e〉 | 〈tcard, e〉 | 〈tset, {e∗κ}〉

v ::= afalse | atrue | 〈tλ, e〉 | 〈tset, {v∗κ}〉
n ::= 〈tvar, 0〉 | 〈tvar, 1〉 | · · ·

Figure 4.3: λZFC’s grammar. Here, {e∗κ} means sets comprised of no more than κ terms from the language
of e.

Interpreted, but leaving out some of e’s rules, they are

Fe(E,V) := N ∪ V ∪ {〈tapp, ef , ex〉 | 〈ef , ex〉 ∈ E × E} ∪ · · · ∪ {〈tset, e〉 | e ∈ P<(E,κ)}

Fv(E,V) := {afalse, atrue} ∪ {〈tλ, e〉 | e ∈ E} ∪ {〈tset, v〉 | v ∈ P<(V ,κ)}
(4.9)

To use Theorem 4.6, we need to iterate a single function. Note that the language pair 〈E,V 〉 =

〈{e, ...}, {v, ...}〉 is isomorphic to the single set of tagged terms EV = {〈0, e〉, ..., 〈1, v〉, ...}.

Binary disjoint union, denoted E t V , creates such sets. We define Fev by Fev(E t V) =

Fe(E,V) t Fv(E,V). By Theorem 4.6, its least fixpoint is F κ
ev, so we define E and V by

E t V = F κ
ev.

To make well-founded substitution easy, we will use capturing substitution, which does

not capture when used on closed terms. Let Cl(e) indicate whether a term is closed—this is

structurally recursive. Then E ′ := {e ∈ E | Cl(e)} and V ′ := {v ∈ V | Cl(v)} contain only

closed terms. Lastly, we define λZFC := E ′.

4.5 λZFC’s Big-Step Reduction Semantics

We distinguish sets from other expressions using Eset and Vset, which merely check tags.

We also lift set constructors to operate on encoded sets. For example, for cardinality,

Ĉ(vA) := set(|snd(vA)|) extracts the tagged set from vA, applies | · |, and recursively tags the

64

v ⇓ v
(val) ef ⇓〈tλ, ey〉 ex ⇓ vx ey[0\vx]⇓ vy

〈tapp, ef , ex〉 ⇓ vy

(ap) ec ⇓ atrue et ⇓ vt

〈tif , ec, et, ef〉 ⇓ vt

ec ⇓ afalse ef ⇓ vf

〈tif , ec, et, ef〉 ⇓ vf

(if)

(a) Standard call-by-value reduction rules

eA ⇓ vA Vset(vA) ex ⇓ vx vx ∈ snd(vA)
〈t∈, ex, eA〉 ⇓ atrue

eA ⇓ vA Vset(vA) ex ⇓ vx vx 6∈ snd(vA)
〈t∈, ex, eA〉 ⇓ afalse

(in)

eA ⇓ vA Vset(vA) ∀ vx ∈ snd(vA).Vset(vx)
〈t∪, eA〉 ⇓

⋃̂(vA)
(union) eA ⇓ vA Vset(vA)

〈tP , eA〉 ⇓ P̂(vA)
(pow)

eA ⇓ vA Vset(vA) ef ⇓〈tλ, ey〉 Î (〈tλ, ey〉, vA)⇓ vy

〈timage, ef , eA〉 ⇓ vy

(image) eA ⇓ vA Vset(vA)
〈tcard, eA〉 ⇓ Ĉ(vA)

(card)

Eset(eA) ∀ ex ∈ snd(eA). ∃ vx. ex ⇓ vx

eA ⇓〈tset, {vx | ex ∈ snd(eA) ∧ ex ⇓ vx}〉
(set) eA ⇓〈tset, {vx}〉

〈ttake, eA〉 ⇓ vx

(take)

(b) λZFC-specific rules

Figure 4.4: Reduction rules defining λZFC’s big-step, call-by-value semantics.

resulting cardinal number. The rest are

P̂(vA) := 〈tset, {〈tset, vx〉 | vx ∈ P(snd(vA))}〉
⋃̂(vA) := 〈tset,

⋃{snd(vx) | vx ∈ snd(vA)}〉

Î (vf , vA) := 〈tset, {〈tapp, vf , vx〉 | vx ∈ snd(vA)}〉

(4.10)

All but Î return values. Sets returned by Î are intended to be reduced further.

We use e[n\v] for De Bruijn substitution. Because e and v are closed, it is easy to define

it using simple structural recursion on terms; it is thus conservative.

Figure 4.4 shows the reduction rules that define the reduction relation “⇓”. Figure 4.4a

has standard call-by-value rules: values reduce to themselves, and applications reduce by

substitution. Figure 4.4b has the λZFC-specific rules. Most simply use Vset to check tags

before applying a lifted operator. The (image) rule replaces each value vx in the set vA with

an application, generating a set expression, and the (set) rule reduces all the terms inside a

set expression.

65

To define “⇓” as a least fixpoint, we adapt Aczel’s treatment [4]. We first define a

bounding set for “⇓” using closed terms, or U := E ′ × V ′, so that ⇓ ⊆ U .

The rules in Fig. 4.4 can be used to define a predicate D(R, 〈e, v〉). This predicate

indicates whether some reduction rule, after replacing every “⇓” in its premise with the

approximation R, derives the conclusion e⇓ v.1 Using D, we define a function that derives

new conclusions from the known conclusions in R:

F⇓(R) := {c ∈ U | D(R, c)} (4.11)

For example, F⇓(∅) = {〈v, v〉 | v ∈ V }, by the (val) rule. F⇓(F⇓(∅)) includes all pairs of non-

value expressions and the values they reduce to in one derivation, as well as {〈v, v〉 | v ∈ V }.

Generally, (val) ensures that iterating F⇓ is monotone.

For F⇓ itself to be nonmonotone, for some R ⊆ R′ ⊆ U , there would have to be a

conclusion c ∈ F⇓(R) that is not in F⇓(R′). In other words, having more known conclusions

could falsify a premise. None of the rules in Fig. 4.4 can do so.

Because F⇓ is monotone and iterating it is monotone, we can define ⇓ := F γ
⇓ for some

ordinal γ. If λZFC had only finite terms, γ = ω iterations would reach a fixpoint. But a

simple countable term shows why “⇓” cannot be F ω
⇓ .

Example 4.10 (countably infinite term). If s is the successor function in λZFC, the term

t := 〈tset, {0, 〈tapp, s, 0〉, 〈tapp, s, 〈tapp, s, 0〉〉, ...}〉 should reduce to set(ω). The (set) rule’s

premises require each of t’s subterms to reduce—using at least F ω
⇓ because each subterm

requires a finite, unbounded number of (ap) derivations. Though F
s(ω)
⇓ reduces t, for larger

terms, we must iterate F⇓ much further. ♦

Theorem 4.11. ⇓ := F κ
⇓ is the least fixpoint of F⇓.

Proof. Fixpoint by Aczel [4, Theorem 1.3.4]; least fixpoint by Theorem 4.5.

Lastly, ZFC theorems that do not depend on κ can be applied to λZFC terms.
1D is definable in first-order logic, but its definition does not aid understanding much.

66

Theorem 4.12. λZFC’s set values and 〈t∈, ·, ·〉 are a model of ZFC-κ.

Proof. V(κ), a model of ZFC-κ, is isomorphic to v ::= 〈tset, {v∗κ}〉.

4.6 Syntactic Sugar and a Small Set Library

From here on, we write only λ−ZFC terms, assume FJ·K is applied, and no longer distinguish

λ−ZFC from λZFC.

We use names instead of De Bruijn indexes and assume names are converted. We get

alpha equivalence for free; for example, λx. x = 〈tλ, 〈tvar, 0〉〉 = λy. y.

λZFC does not contain terms with free variables. To get around this technical limitation,

we assume free variables are metalanguage names for closed terms.

We allow the primitives (∈),
⋃
, take, P, image and card to be used as if they were

functions. Enclosing infix operators in parentheses refers to them as functions, as in (∈). We

partially apply infix functions using Haskell-like sectioning rules, so (x ∈) means λA. x ∈ A

and (∈ A) means λx. x ∈ A.

We define first-order objects using “:=”, as in 0 := ∅, and syntax with “:≡”, as in

λx1 x2 ... xn. e :≡ λx1.λx2 ... xn. e to automatically curry. Function definitions expand to

lambdas (using fixpoint combinators for recursion); for example, x = y := x ∈ {y} and

(=) := λx y. x ∈ {y} equivalently define (=) in terms of (∈). We destructure pairs implicitly

in binding patterns, as in λ〈x, y〉. f x y.

To do anything useful, we need a small set library. The definitions are similar to the

metalanguage definitions we omitted in Section 4.3, and we similarly elide most of the λZFC

definitions. However, some deserve special mention.

Because λZFC has only functional replacement, we cannot define unbounded “∀” and

67

“∃”. But we can define bounded quantifiers in terms of bounded selection, or

select f A :=
⋃

(image (λx. if (f x) {x} ∅) A)

∀ x ∈ eA. ef :≡ (select (λx . ef) eA) = eA

∃ x ∈ eA. ef :≡ (select (λx . ef) eA) = ∅

(4.12)

We also define a bounded description operator using the filter-like select:

ι x ∈ eA. ef :≡ take (select (λx . ef) eA) (4.13)

Note ι x ∈ eA. ef reduces only if ef ⇓ true for exactly one x ∈ eA.

Unlike in first-order logic, converting a predicate to an object in λZFC requires a bounding

set as well as unique existence. For example, if

〈ex , ey〉 :≡ {{ex}, {ex , ey}} (4.14)

defines ordered pairs, then

fst p := ι x ∈ (
⋃

p).∃ y ∈ (
⋃

p). p = 〈x, y〉 (4.15)

takes the first element by identifying it in the bounding set
⋃

p using a predicate.

The set monad simulates nondeterministic choice. We define it by

returnset a := {a}

bindset A f :=
⋃

(image f A)
(4.16)

Using bind m f = join (lift f m), evidently liftset := image and joinset :=
⋃
. The proofs of the

monad laws follow the proofs for the list monad. We also define

{x ∈ eA}. ef :≡ bindset (λx . ef) eA (4.17)

68

read “choose x in eA, then ef .” For example, binary cartesian product is defined by

A× B := {x ∈ A}. {y ∈ B}. returnset 〈x, y〉 (4.18)

Every f ∈ A → B is shaped f = {〈x1, y1〉, 〈x2, y2〉, ...} and is total on A. To distinguish

these hash tables from lambdas, we call them mappings. Mappings can be applied by

ap f x := ι y ∈ (range f). 〈x, y〉 ∈ f, but we write just f x. We define

mapping f A := image (λx. 〈x, f x〉) A (4.19)

to convert a lambda to a mapping or to restrict a mapping to A. We usually use

λx ∈ eA. ey :≡ mapping (λx . ey) eA (4.20)

to define mappings.

A sequence of A is a mapping xs ∈ α → A for some ordinal α. For example, ns :=

λn ∈ ω. n is a countable sequence in ω → ω of increasing finite ordinals. We assume useful

sequence functions like map, map2 and drop are defined.

4.7 Example: The Reals From the Rationals

Here, we demonstrate that λZFC is computationally powerful enough to construct the real

numbers. For a clear, well-motivated, rigorous treatment in first-order set theory without

lambdas, we recommend Abbott’s excellent introductory text [3].

Assume we have a model Q,+Q,−Q,×Q,÷Q of the rationals and rational arithmetic.2

To get the reals, we close the rationals under countable limits.

We represent limits of rationals with sequences in ω → Q. To select only the converging

ones, we must define what convergence means. We start with convergence to zero and
2Though the λZFC development of Q is short and elegant, it does not fit in this paper.

69

equivalence. Given Q+, ‘<Q’ and | · |Q, define

conv-zero?R xs := ∀ ε ∈ Q+.∃N ∈ ω. ∀ n ∈ ω. (N ∈ n⇒ |xs n|Q <Q ε)

xs =R ys := conv-zero?R (map2 (−Q) xs ys)
(4.21)

So a sequence xs ∈ ω → Q converges to zero if, for any positive ε, there is some index N

after which all xs are smaller than ε. Two sequences are equivalent (=R) if their pointwise

difference converges to zero.

We should be able to drop finitely many elements from a converging sequence without

changing its limit. Therefore, a sequence of rationals converges to something when it is

equivalent to all of its suffixes. We thus define an equivalent to the Cauchy convergence test,

and use it to select the converging sequences:

conv?R xs := ∀ n ∈ ω. xs =R (drop n xs)

R := select conv?R (ω → Q)
(4.22)

But R (equipped with the equivalence relation =R) is not the real numbers as they are

normally defined: converging sequences in R may be equivalent but not equal. To decide real

equality using λZFC’s “=”, we partition R into disjoint sets of equivalent sequences—we make

a quotient space. Thus,

quotient A (=A) := image (λx. select (=A x) A) A

R := quotient R (=R)
(4.23)

defines the reals with extensional equality.

To define real arithmetic, we must lift rational arithmetic to sequences and then to sets

of sequences. The map2 function lifts, say, +Q to sequences, as in (+R) := map2 (+Q). To lift

+R to sets of sequences, note that sets of sequences are models of nondeterministic sequences,

suggesting the set monad. We define lift2set f A B := {a ∈ A}. {b ∈ B}. returnset (f a b) to lift

two-argument functions to the set monad. Now (+) := lift2set (+R), and similarly for the

other operators.

70

Using lift2set is atypical, so we prove that A + B ∈ R when A ∈ R and B ∈ R, and

similarly for the other operators. It follows from the fact that the rational operators lifted to

sequences are surjective morphisms, and this theorem:

Theorem 4.13. Suppose =X is an equivalence relation on X, and define its quotient X :=

quotient X (=X). If op is surjective on X and a binary morphism for =X, then (lift2set op A B) ∈

X for all A ∈ X and B ∈ X.

Proof. Reduce to an equality. Case “⊆” by morphism; case “⊇” by surjection.

Now for real limits. If R+, ‘<’, and | · | are defined, we can define conv-zero?R, which

is like (4.21) but operates on real sequences xs ∈ ω → R. We then define limitR xs :=

ι y ∈ R. conv-zero?R (map (− y) xs) to calculate their limits.

From here, it is not difficult to treat Q and R uniformly by redefining Q ⊂ R.

4.8 Example: Computable Real Limits

Exact real computation has been around since Turing’s seminal paper [75]. The novelty here

is how we do it. We define the limit monad in λZFC for expressing calculations involving

limits, with bindlim defined in terms of a general limit. We then derive a limit-free, computable

replacement bind′lim. Replacing bindlim with bind′lim in a λZFC term incurs proof obligations. If

they can be met, the computable λZFC term has the same limit as the original, uncomputable

term.

In other words, entirely in λZFC, we define uncomputable things, and gradually turn

them into computable, directly implementable approximations.

The proof obligations are related to topological theorems [56] that we will import as

lemmas. By Theorem 4.12, we are allowed to use them directly.

At this point, it is helpful to have a simple, informal type system, which we can easily

add to the untyped λZFC. A ⇒ B is a lambda or mapping type. A → B is the set of total

mappings from A to B. A set is a membership proposition.

71

4.8.1 The Limit Monad

We first need a universe U of values that is closed under sequencing; i.e. if A ⊂ U then

so is ω → A. Define U as the language of u ::= R | ω → u. A complete product metric

δ : U⇒ U⇒ R exists; therefore, a function limit : (ω → U)⇒ U similar to limitR exists that

calculates limits. These are all λZFC-definable.

The limit monad’s computations are of type ω → U. The type does not imply convergence,

which must be proved separately. Its run function is limit.

Example 4.14 (infinite series). Define partial-sums : (ω → R) ⇒ (ω → R) first by

partial-sums′ xs := λn. if (n = 0) (xs 0) ((xs n) + (partial-sums′ xs (n − 1))). (The se-

quence is recursively defined, so we cannot use λn ∈ ω. e to immediately create it.) Then

convert it to a mapping: partial-sums xs := mapping (partial-sums′ xs) ω.

Now
∑

n∈ω e :≡ limit (partial-sums λn ∈ ω. e), or the limit of partial sums. Even if xs

converges, partial-sums xs may not; e.g. if xs = λn ∈ ω. 1
n+1 . ♦

The limit monad’s returnlim : U⇒ (ω → U) creates constant sequences, and its bindlim :

(ω → U)⇒ (U⇒ (ω → U))⇒ (ω → U) simply takes a limit:

returnlim x := λn ∈ ω. x

bindlim xs f := f (limit xs)
(4.24)

The left identity and associativity monad laws hold using “=” for equivalence. However, right

identity holds only in the limit, so we define equivalence by xs =lim ys := limit xs = limit ys.

Example 4.15 (lifting). Define liftlim f xs := bindlim xs λx. returnlim (f x), as is typical.

Substituting bindlim and reducing reveals that f (limit xs) = limit (liftlim f xs). That is, using

liftlim pulls limit out of f’s argument. ♦

Example 4.16 (exponential). The Taylor series expansion of the exponential function is

exp-seq : R⇒ (ω → R), defined by exp-seq x := partial-sums λn ∈ ω. xnn! . It always converges,

72

so limit (exp-seq x) =
∑

n∈ω
xn
n! = exp x for x ∈ R. To exponentiate converging sequences,

define explim xs := bindlim xs exp-seq. ♦

4.8.2 The Computable Limit Monad

We derive the computable limit monad in two steps. In the first, longest step, we replace the

limit monad’s defining functions with those that do not use limit. But computations will still

have type ω → U, whose inhabitants are not directly implementable, so in the second step,

we give them a lambda type.

We define return′lim := returnlim. A drop-in, limit-free replacement for bindlim does not

exist, but there is one that incurs three proof obligations. Without imposing rigid constraints

on using bindlim, we cannot meet them automatically. But we can separate them by factoring

bindlim into liftlim and joinlim.

Limit-Free Lift. Substituting to get liftlim f xs = returnlim (f (limit xs)) exposes the use of

limit. Removing it requires continuity and definedness.

Lemma 4.17 (continuity in metric spaces). Let f : A⇒ B with A a metric space. Then f is

continuous at x ∈ A if and only if for all xs ∈ ω → A for which limit xs = x and f is defined

on all elements of xs, f (limit xs) = limit (map f xs).

So if f : U⇒ U is continuous at limit xs, and f is defined on all xs, then

limit (liftlim f xs) = limit (returnlim (f (limit xs)))

= limit (returnlim (limit (map f xs)))

= limit (map f xs)

(4.25)

Thus, liftlim f xs =lim map f xs, so lift′lim f xs := map f xs. Using liftlim f xs instead of lift′lim f xs

requires f to be continuous at limit xs and defined on all xs.

Limit-Free Join. Using the monad identity join xss = bind xss λxs. xs results in joinlim =

limit. Removing limit might seem hopeless—until we distribute it pointwise over xss.

73

Lemma 4.18 (limits of double sequences). Let xss ∈ ω → ω → A, where ω → A has a

product topology. Then limit xss = λn ∈ ω. limit (flip xss n), where flip f x y := f y x.

A countable product metric defines a product topology; therefore we have joinlim xss =

λn ∈ ω. limit (flip xss n). Now we can remove limit by placing conditions on joinlim’s argument.

Definition 4.19 (uniform convergence). A double sequence xss ∈ ω → ω → U converges

uniformly if ∀ ε ∈ R+.∃N ∈ ω.∀ n,m > N. (δ (xss n m) (limit (xss n))) < ε.

Lemma 4.20 (collapsing limits). If xss ∈ ω → ω → U converges uniformly, and r, s : ω ⇒ ω

increase, then limit λn ∈ ω. limit (xss n) = limit λn ∈ ω. xss (r n) (s n).

So if flip xss converges uniformly, then

limit (joinlim xss) = limit λn ∈ ω. limit (flip xss n)

= limit λn ∈ ω. flip xss (r n) (s n)
(4.26)

We define join′lim : (ω → ω → U) ⇒ (ω → U) by join′lim xss := λn ∈ ω. xss n n. Replacing

joinlim xss with join′lim xss requires that flip xss converge uniformly.

Limit-Free Bind. Define bind′lim xs f := join′lim (lift′lim f xs). It inherits obligations to prove

that f is continuous at limit xs and defined on all xs, and to prove that flip (map f xs) converges

uniformly.

Example 4.21 (exponential cont.). Define exp′lim by replacing bindlim by bind′lim in explim, so

exp′lim xs := bind′lim xs exp-seq. We now meet the proof obligations.

Lemma 4.22. Let f : A⇒ (ω → B). If ω → B has a product topology, then f is continuous

if and only if (flip f) n is continuous for every n ∈ ω.

We have a product topology, so for the first obligation, pointwise continuity is enough.

Let g := flip exp-seq. Every g n is a finite polynomial, and thus continuous. The second

obligation, that exp-seq is defined on all xs, is obvious. The third, that flip (map exp-seq xs)

converges uniformly, can be proved using the Weierstrass M test [3, Theorem 6.4.5]. ♦

74

Example 4.23 (π). The definition of arctanlim is like explim’s. Defining arctan′lim, including

proving correctness, is like defining exp′lim. To compute π, we use

πlim := ((returnlim 16)×lim (arctanlim (returnlim 1
5))) −lim

((returnlim 4)×lim (arctanlim (returnlim 1
239)))

(4.27)

where (·)lim are lifted arithmetic operators. Because (4.27) does not directly use bindlim,

defining the limit-free π′lim imposes no proof obligations. ♦

In general, using functions defined in terms of bind′lim requires little more work than

using functions on finite values. The implicit limits are pulled outward and collapse on their

own, hidden within monadic computations.

Computable Sequences. Lambdas are the simplest model of ω → U. After manipu-

lating some terms, we define the final, computable limit monad by return′lim x := λn. x and

bind′lim xs f := λn. f (xs n) n. Computations have type ω ⇒ U′, where U′ contains countable

sequences of rationals.

Implementation. We have transliterated return′lim, bind′lim, exp′lim, arctan′lim and π′lim into

Racket [27], using its built-in models of ω and Q. Even without optimizations, π′lim 141

yields a rational approximation in a few milliseconds that is correct to 200 digits. More

importantly, exp′lim, arctan′lim and π′lim are almost identical to their counterparts in the

uncomputable limit monad, and meet their proof obligations. The code is clean, short, correct

and reasonably fast, and resides in a directory named flops2012 at https://github.com/

ntoronto/plt-stuff/.

4.9 Related Work

O’Connor’s completion monad [58] is quite similar to the limit monad. Both operate on

general metric spaces and compute to arbitrary precision. O’Connor starts with computable

75

https://github.com/ntoronto/plt-stuff/
https://github.com/ntoronto/plt-stuff/

approximations and completes them using a monad. Implementing it in Coq took five months.

It is certainly correct.

We start with a monad for exact values and define a computable replacement. It was two

weeks from conception to implementation. Between directly using well-known theorems, and

deriving the computable monad from the uncomputable monad without switching languages,

we are as certain as we can be without mechanically verifying it. We have found our middle

ground.

Higher-order logics such as HOL [46], CIC [9], MT [8] (Map Theory) and EFL* [26]

continue Church’s programme to found mathematics on the λ-calculus. Like λZFC, interpreting

them in set theory seems to require a slightly stronger theory than plain ZFC. HOL and

CIC ensure consistency using types, and use the Curry-Howard correspondence to extract

programs.

MT and EFL* are more like λZFC in that they are untyped. MT ensures consistency

partly by making nontermination a truth value, and EFL* partly by tagging propositions.

Both support classical reasoning. MT and EFL* are interpreted in set theory using a

straightforward extension of Scott-style denotational semantics to κ-sized domains, while

λZFC is interpreted in set theory using a straightforward extension of operational semantics

to κ-sized relations.

The key difference between λZFC and these higher-order logics is that λZFC is not a logic.

It is a programming language with infinite terms, which by design includes a transitive model

of set theory (Theorem 4.12). Therefore, ZFC theorems can be applied to its set-valued terms

with only trivial interpretation, whereas the interpretation it takes to apply ZFC theorems to

lambda terms that represent sets in MT or EFL* can be nontrivial. Applying a ZFC theorem

in HOL or CIC requires re-proving it to the satisfaction of a type checker.

The infinitary λ-calculus [41] has “infinitely deep” terms. Although it exists for investi-

gating laziness, cyclic data, and undefinedness in finitary languages, it is possible to encode

uncomputable mathematics in it. In λZFC, such up-front encodings are unnecessary.

76

Hypercomputation [59] describes many Turing machine extensions, including completion

of transfinite computations. Much of the research is devoted to discovering the properties of

computation in physically plausible extensions. While λZFC might offer a civilized way to

program such machines, we do not think of our work as hypercomputation, but as approaching

computability from above.

4.10 Conclusions

We defined λZFC, which can express essentially anything constructible in contemporary

mathematics, in a way that makes it compatible with existing first-order theorems. We

demonstrated that it makes deriving computational meaning easier by defining the limit

monad in it, deriving a computable replacement, and computing real numbers to arbitrary

accuracy with acceptable speed.

Now that we have a suitably expressive target language for exact and approximating

categorical semantics, we can get back to defining languages for Bayesian modeling and

inference. But more generally, we no longer have to hold back when a set-theoretic construction

could be defined elegantly with untyped lambdas or recursion, or generalized precisely with

higher-order functions. If we can derive a computable replacement, we might help someone

in Cantor’s Paradise compute the apparently uncomputable.

77

Chapter 5

Using λZFC

The previous chapter defined λZFC, an untyped, call-by-value, operational λ-calculus.

It is designed for deriving implementable programs from programs that carry out infinite

computations. We will mostly use it as a target language for categorical semantics.

There are two reasonably accurate, short characterizations of λZFC. First, it can be

regarded as contemporary mathematics (Zermelo-Fraenkel set theory with the axiom of

Choice, or ZFC) with well-defined lambdas. Second, it can be regarded as a pure functional

programming language with infinite sets. The previous chapter defines λZFC in a way that

makes these characterizations absolutely precise.

Fortunately, understanding and writing λZFC code, and knowing how to prove λZFC code

correct, requires much less detail. We review the important details here.

5.1 Computations and Values

In λZFC, essentially every set is a value, as well as every lambda and every set of lambdas.

For example, these are all λZFC values:

{1, 2, 3}

{(λa. a), (λb. b + 1), (λc. {c, c + 1})}

N, Q, R, R× R, RN, RR

(5.1)

(We generally write λZFC terms in sans serif.) All primitive operations on values, including

operations on infinite sets, are assumed to complete instantly if they terminate.

78

Nonterminating λZFC programs are similar to nonterminating programs in any other

call-by-value λ-calculus. For example, a function that does not terminate on any input

because of runaway recursion (i.e. an infinite loop) is

count-from n := count-from (n + 1) (5.2)

We could say that count-from 0 does not terminate because it attempts “infinitely deep”

computation. Prohibiting infinitely deep computation is necessary; for example, it prevents

λZFC from having a program that solves its own halting problem, which would make its

definition inconsistent.

Infinite computations that terminate are “infinitely wide,” as in either of these equivalent

expressions:

image (λn. n + 1) N {n + 1 | n ∈ N} (5.3)

Both yield the set of all positive natural numbers. It is usually fine to think of terminating,

infinite computations as being run in parallel.

As in ZFC, in λZFC, all algebraic data structures are encoded as sets; e.g. the pair 〈x, y〉

can be encoded as {{x}, {x, y}}. Only the existence of encodings into sets is important, as it

means data structures inherit a defining characteristic of sets: strictness. More precisely, in

every data structure, every path between the root and a leaf must have finite length. Less

precisely, as with computations, values may be “infinitely wide,” such as N and R, but not

“infinitely deep,” such as infinite trees and infinite lists made from nested pairs.

5.2 Auxiliary Type Systems

Though λZFC is untyped, it often helps to define an auxiliary type system. When we use a

type system, we use a manually checked, polymorphic one characterized by these rules:

• A free type variable is universally quantified; if uppercase, it denotes a set.

• A set denotes a member of that set.

79

• x ⇒ y denotes a partial function.

• 〈x, y〉 denotes a pair of values with types x and y.

• Set x denotes a set with members of type x.

Because the type Set X denotes the same values as the set P X (i.e. subsets of the set X) we

regard them as equivalent types. Similarly, 〈X,Y〉 and X × Y are equivalent types.

All function arrows are right-associative. Recall that in a λ-calculus, application is

left-associative. This duality makes writing multi-argument function types easy. For example,

f : N ⇒ (N ⇒ N) denotes that function f returns a N ⇒ N function. If m : N and n : N

(equivalently m ∈ N and n ∈ N), then f can be applied twice using (f m) n. Alternatively, it

can be applied using f m n, and its type may be written f : N⇒ N⇒ N.

Other examples of types are those of the λZFC primitives powerset P : Set x ⇒ Set (Set x),

its left inverse, big union
⋃

: Set (Set x)⇒ Set x, and the map-like image : (x ⇒ y)⇒ Set x ⇒

Set y.

It is often helpful to create type aliases. For example, to avoid repeatedly writing “∪{⊥}”

we might define

X ⊥ Y ::= X⇒ Y ∪ {⊥} (5.4)

so that f : X ⊥ Y and f : X⇒ Y ∪ {⊥} are equivalent type-level statements.

5.3 Using ZFC Values and Theorems

Almost everything definable in ZFC can be defined by a finite λZFC program. The previous

chapter, for example, defined the real numbers, arithmetic, and limits. The only ZFC values

that cannot are those that must be defined nonconstructively: by proving existence and

uniqueness, without giving a bound (no matter how loose) on the length or cardinality of the

value. Mathematicians avoid such nonconstructive definitions, and most would consider that

definition of “nonconstructive” too liberal.1
1Constructivists would object to allowing the law of excluded middle, which is derivable from λZFC’s if,

and almost everyone else would object to allowing choice functions.

80

Almost all known ZFC theorems apply to λZFC’s set values without alteration.2 Proofs

about λZFC’s set values apply directly to ZFC sets.3

We often import well-known ZFC theorems as lemmas; for example:

Lemma 5.1 (set equality is extensional). For all A : Set x and B : Set x, A = B if and only

if A ⊆ B and B ⊆ A.

Or, A = B if and only if they contain the same members.

5.4 Internal Equality and External Equivalence

Any λZFC term e used as a truth statement means “e reduces to true” or “e evaluates to true.”

Therefore, the terms (λa. a) 1 and 1 are (externally) unequal, but (λa. a) 1 = 1.

Because of the way λZFC’s lambda terms are defined, lambda equality is alpha equivalence,

or equivalence up to renaming identifiers. For example, (λa. a) = (λb. b) reduces to true, but

(λa. 2) = (λa. 1 + 1) is false.

If e1 = e2, then e1 and e2 both terminate, and substituting one for the other in an

expression does not change its value. Substitution is also safe if both e1 and e2 do not

terminate, leading to a coarser notion of equivalence.

Definition 5.2 (observational equivalence). For terms e1 and e2, e1 ≡ e2 when e1 = e2, or

both e1 and e2 do not terminate.

It might seem helpful to define basic equivalence even more coarsely, so that we can

say λa. 2 is equivalent to λa. 1 + 1. However, we want internal equality and basic external

equivalence to be similar, and we want to be able to extend “≡” with type-specific rules.
2The only exceptions are theorems that rely critically on the existence of an inaccessible cardinal.
3Assuming the existence of an inaccessible cardinal, which is a modest assumption, as ZFC+κ is a smaller

theory than Coq’s [7].

81

5.5 Additional Functions and Syntactic Forms

We use heavily sugared syntax, with automatic currying (including primitive applications, so

image fst means λA. image fst A), binding forms such as indexed unions
⋃

x∈eA
e, destructuring

binds as in swap 〈a, b〉 := 〈b, a〉, and comprehensions like {a ∈ A | a ∈ B}. We assume logical

operators, bounded quantifiers, and typical set operations are defined. To refer to binary

operators as values, we enclose them in parentheses, as in (∈) and (⊆).

A less typical set operation we use is disjoint union:

(]) : Set x ⇒ Set x ⇒ Set x

A] B := if (A ∩ B = ∅) (A ∪ B) (take ∅)
(5.5)

The primitive take : Set x ⇒ x returns the element in a singleton set, and does not reduce

when applied to a non-singleton set. Thus, A] B is well-defined only when A and B are

disjoint.

Operator precedence is the same as in ordinary mathematics; e.g. a + b · c = a + (b · c).

Application has the highest precedence, so f a + g b = (f a) + (g b).

5.6 Extensional Functions

In mathematics, logic, and computer science, there are two general classes of functions:

• Extensional: functions whose equality, like that of sets, is determined only by their

external properties, and not by how they are defined or constructed.

• Intensional: functions whose equality is determined only by their internal properties,

or by how they are defined or constructed.

In λZFC, lambda equality is decided by comparing body expressions, so lambdas are intensional.

In ZFC and λZFC, function extensionality is achieved by encoding functions as sets

of input-output pairs. For example, the increment function for the natural numbers is

{〈0, 1〉, 〈1, 2〉, 〈2, 3〉, ...}. (It is fine to think of such encodings as infinite hash tables.) We call

these encodings mappings. We use function to mean either a lambda or a mapping, and

82

use adjacency (e.g. (f a) or f a) to apply either kind.

Syntax for constructing unnamed mappings is defined by

λxa ∈ eA. eb := mapping (λxa. eb) eA (5.6)

mapping : (X⇒ Y)⇒ Set X⇒ (X ⇀ Y)

mapping f A := image (λa. 〈a, f a〉) A
(5.7)

For symmetry with partial functions x ⇒ y, mapping returns a member of the set X ⇀ Y of

all partial mappings from X to Y; i.e. if g : X ⇀ Y, then g’s domain may be a subset of X.

Two common partial mapping operations we use in the next chapter are

domain : (X ⇀ Y)⇒ Set X

domain g := image fst g
(5.8)

preimage : (X ⇀ Y)⇒ Set Y ⇒ Set X

preimage g B := {a ∈ domain g | g a ∈ B}
(5.9)

The preimage function finds g’s inputs whose corresponding outputs are in B.

The set J→ X contains all the total mappings from J to X; equivalently, all the vectors of

X indexed by J, which may be infinite. We use infinite vectors of type J→ [0, 1] in Chapter 8

as infinite sources of uniformly random numbers.

In short, in addition to lambdas in λZFC, we have every necessary mathematical object

and theorem at our disposal.

83

Chapter 6

Countable Models and Implementation

This chapter is derived from work published at the 22nd Symposium on Implementation

and Application of Functional Languages (IFL), 2010.

An approximate answer to the right question is worth a good deal more than the

exact answer to an approximate problem.

John W. Tukey

6.1 Introduction

Bayesians write theories without regard to whether future calculations are closed-form or

tractable. They are loath to make simplifying assumptions. (If answering questions about

some probabilistic process involves an unsolvable integral, so be it.) When they must

approximate, they often create two theories: an “ideal” theory first, and a second that

approximates it.

Because they create theories without regard to future calculations, they usually must

accept approximate answers to queries about them. Typically, they adapt algorithms that

compute converging approximations in programming languages they are familiar with. The

process is tedious and error-prone, and involves much performance tuning and manual

optimization. It is by far the most time-consuming part of their work—and also the most

automatable part.

84

They follow this process to adhere to an overriding philosophy: an approximate answer

to the right question is worth more than an exact answer to an approximate question. Thus,

they put off approximating as long as possible.

We must also adhere to this philosophy because Bayesian practitioners are unlikely to

use a language that requires them to approximate early, or that approximates earlier than

they would. We have found that a good way to put the philosophy into practice in language

design is to create two semantics: an “ideal,” or exact semantics first, and a converging,

approximating semantics.

Approach Measure-theoretic probability is the most successful theory of probability in

precision, maturity, and explanatory power. In particular, it is believed to explain every

Bayesian theory. We therefore define the exact semantics as a transformation from Bayesian

notation to measure-theoretic calculations.

Measure theory treats finite, countably infinite, and uncountably infinite probabilistic

outcomes uniformly, but with significant complexity. Though there are relatively few impor-

tant Bayesian models that require countably many outcomes but not uncountably many, in

our preliminary work, we deal with only countable sets. This choice avoids most of measure

theory’s complexity while retaining its functional structure, and still requires approximation.

For three syntactic categories of Bayesian notation, we

1. Manually interpret an unambiguous subclass of common notation.

2. Mechanize the interpretation with a semantic function.

3. If necessary, create an approximation and prove convergence.

4. Implement the approximation in Racket [27].

This approach is most effective if the target language can express measure-theoretic calcula-

tions and is similar to Racket in structure and semantics. We therefore use λZFC.

The Bayesian notation we interpret falls into these syntactic categories:

• Expressions, which have no side effects, interpreted by RJ·K.

85

• Statements, which create side effects, interpreted byMJ·K.

• Queries, which observe side effects, interpreted by PJ·K and DJ·K.

We write Bayesian notation in italics, Racket in fixed width, common keywords in

bold and invented keywords in bold italics. We omit proofs for space.

6.2 The Expression Language

6.2.1 Background Theory: Random Variables

Most practitioners of probability understand random variables as free variables whose values

have ambient probabilities. But measure-theoretic probability defines a random variable X

as a total mapping

X : Ω → SX (6.1)

where Ω and SX are sets called sample spaces, with elements called outcomes. Random

variables define and limit what is observable about any outcome ω ∈ Ω, so we call outcomes

in SX observable outcomes.

Example 6.1. Suppose we want to encode, as a random variable E, the act of observing

whether the outcome of a die roll is even or odd.

A complicated way is to define Ω as the possible states of the universe. E : Ω →

{even, odd} must simulate the universe until the die is still, and then recognize the outcome.

Hopefully, the probability that E ω = even is close to 1
2 .

A tractable way defines Ω := {1, 2, 3, 4, 5, 6} and E : Ω → {even, odd} so that E ω =

even if ω ∈ {2, 4, 6}, otherwise odd. The probability that E ω = even is the sum of probabilities

of every even ω ∈ Ω, or 1
6 + 1

6 + 1
6 = 1

2 .

If we are interested in observing only evenness, we can define Ω := {even, odd}, each

with probability 1
2 , and E ω := ω. ♦

Random variables enable a kind of probabilistic abstraction. The example does it twice.

The first makes calculating the probability that E ω = even tractable. The second is an

86

optimization. In fact, redefining Ω, the random variables, and the probabilities of outcomes—

without changing the probabilities of observable outcomes—is the essence of measure-theoretic

optimization.

Defining random variables as functions is also a good factorization: it separates nonde-

terminism from assigning probabilities. It allows us to interpret expressions involving random

variables without considering probabilities at all.

6.2.2 Interpreting Random Variable Expressions As Computations

When random variables are regarded as free variables, arithmetic with random variables

is no different from deterministic arithmetic. Measure-theoretic probability uses the same

notation, but regards it as implicit pointwise lifting (as in vector arithmetic). For example,

if A,B,C : Ω → R are random variables, C := A + B means C ω := (A ω) + (B ω), and

B := 4 + A means B ω := 4 + (A ω).

Because we use λZFC, we can extend the class of random variables from Ω → SX to

Ω ⇒ SX. Including lambdas as well as mappings makes it easy to interpret unnamed random

variables: 4 + A, or in prefix form ((+) 4 A), means λω. ((+) 4 (A ω)). Lifting constants

allows us to interpret expressions uniformly: if we interpret (+) as Plus := λω. (+) and 4 as

Four := λω. 4, then ((+) 4 A) means

λω. ((Plus ω) (Four ω) (A ω)) (6.2)

We abstract lifting and application with these combinators:

purerv c := λω. c

ap∗rv F X1 ... Xn := λω. ((F ω) (X1 ω) ... (Xn ω))
(6.3)

87

RJXK :≡ X
RJxK :≡ purerv x
RJvK :≡ purerv v

RJef e1 ... enK :≡ ap∗rv RJef K RJe1K ... RJenK
RJλx1...xn. eK :≡ λω.λx1...xn. (RJeK ω)

purerv c := λω. c
ap∗rv F X1 ... Xn := λω. ((F ω) (X1 ω) ... (Xn ω))

Figure 6.1: Random variable expression semantics. The source and target language are both λZFC. Condi-
tionals and primitive operators are trivial special cases of application.

In terms of purerv and ap∗rv, 4 + A means

ap∗rv (purerv (+)) (purerv 4) A ≡ ap∗rv (λω. (+)) (λω. 4) A

≡ λω. ((λω. (+)) ω) ((λω. 4) ω) (A ω)

≡ λω. (+) 4 (A ω)

= λω. 4 + (A ω)

(6.4)

as desired. These combinators define an idiom [53], which is like a monad but can impose a

partial order on computations. The random variable idiom instantiates the environment

idiom with the type constructor I a ::= Ω ⇒ a for some Ω.

RJ·K (Figure 6.1), the semantic function that interprets random variable expressions,

targets this idiom. It does mechanically what we have done manually, and additionally

interprets lambdas. For simplicity, it follows probability convention by assuming single

uppercase letters are random variables. Figure 6.1 assumes syntactic sugar has been replaced;

e.g. that application is in prefix form.

RJ·K may return lambdas that do not terminate when applied to an ω. For now, we

assume they terminate for all ω ∈ Ω. (Chapter 8 deals with nonterminating programs.)

We will be able to recover mappings using the mapping function, which, given a domain,

converts a lambda or mapping to a mapping, as in mapping RJ4 + AK Ω.

88

(define-syntax (RV/kernel stx)
(syntax-parse stx

[(Xs:ids e:expr)
(syntax-parse #’e #:literal−sets (kernel-literals)

[X:id #:when (free-id-in? #’Xs #’X) #’X]
[x:id #’(pure x)]
[(quote c) #’(pure (quote c))]
[(%#plain-app e ...) #’(ap∗ (RV/kernel Xs e) ...)]
....)]))

(define-syntax (RV stx)
(syntax-parse stx

[(Xs:ids e:expr)
#‘(RV/kernel Xs #,(local-expand #’e ’expression empty))]))

Figure 6.2: A fragment of our implementation of RJ·K in Racket.

6.2.3 Implementation in Racket

Figure 6.2 shows RV and a snippet of RV/kernel, the macros that implement RJ·K. RV fully

expands expressions into Racket’s kernel language, allowing RV/kernel to transform any pure

Racket expression into a random variable. Both use Racket’s new syntax-parse library [18].

RV/kernel raises a syntax error on set!, but there is no way to disallow applying functions

that have effects.

Rather than differentiate between kinds of identifiers, RV takes a list of known random

variable identifiers as an additional argument. It wraps other identifiers with pure, allowing

arbitrary Racket values to be random variables.

6.3 The Query Language

It is best to regard statements in Bayesian theories as specifications for the results of later

observations. We therefore interpret queries before interpreting statements. First, however,

we must define the state objects that queries observe.

89

6.3.1 Background Theory: Probability Spaces

In practice, functions called distributions assign probabilities or probability densities to

observable outcomes. Practitioners state distributions for certain random variables, and then

calculate the distributions of others.

Measure-theoretic probability generalizes assigning probabilities and densities using

probability measures, which assign probabilities to sets of outcomes. There are typically

no special random variables: all random variable distributions are calculated from one global

probability measure.

It is generally not possible to assign meaningful probabilities to all subsets of a sample

space Ω—except when Ω is countable. We thus deal here with discrete probability

measures P : Set Ω → [0, 1], where Ω is countable. Any discrete probability measure is

uniquely determined by its value on singleton sets, or by a probability mass function

p : Ω → [0, 1]. It is easy to convert p to a probability measure:

sum p A :=
∑
ω∈A

p ω (6.5)

Then P = sum p. Converting the other direction is also easy: p e = P {e}.

A discrete probability space 〈Ω, p〉 embodies all probabilistic nondeterminism intro-

duced by theory statements. It is fine to think of Ω as the set of all possible states of a

write-once memory, with p assigning a probability to each state.

6.3.2 Background Theory: Queries

Any probability can be calculated from 〈Ω, p〉. For example, suppose we want to calculate,

as in Example 6.1, the probability of an even die outcome. We must apply P to the correct

subset of Ω. Suppose Ω := {1, 2, 3, 4, 5, 6} and that p := [1, 2, 3, 4, 5, 6 → 1
6] determines P.

The probability that E outputs even is

P {ω ∈ Ω | E ω = even} = P {2, 4, 6} = sum p {2, 4, 6} = 1
2 (6.6)

90

This is a probability query.

Alternatively, we could use a distribution query to calculate E’s distribution PE, and

then apply it to {even}. Measure-theoretic probability elegantly defines PE as P◦ (preimage E),

but for now we do not need a measure. We only need the probability mass function

pE : {even, odd} → [0, 1], defined by pE e = sum p (preimage E {e}). Applying it to even yields

pE even = sum p (preimage E {even}) = sum p {2, 4, 6} = 1
2 (6.7)

More abstractly, we can calculate discrete distribution queries using

dist X 〈Ω, p〉 := let SX := image X Ω

in λx ∈ SX. sum p (preimage (mapping X Ω) {x})
(6.8)

Now pE = dist E 〈Ω, p〉. Recall that the special syntax λx ∈ eA. e creates an unnamed

mapping with domain eA, and mapping X Ω converts X, which may be a lambda, to a

mapping with domain Ω, on which preimages are well-defined.

6.3.3 Interpreting Query Notation

When random variables are regarded as free variables, special notation Pr[·] replaces applying

the probability measure P and sets become propositions. For example, a common way to

write “the probability of an even die outcome” in practice is Pr[E = even].

The semantic function RJ·K turns propositions about random variables into predicates

on Ω. The set corresponding to the proposition is the preimage of {true}. For the proposition

E = even, for example, it is preimage (mapping RJE = evenK Ω) {true}. In general,

sum p (preimage (mapping RJeK Ω) {true}) = dist RJeK 〈Ω, p〉 true (6.9)

calculates Pr[e] when e is a proposition; i.e. when RJeK : Ω ⇒ {true, false}.

Although probability queries have common notation, there seems to be no common

notation that denotes distributions per se. The typical workarounds are to write implicit

formulas like Pr[E = e] and to give distributions suggestive names like pE . Some theorists

91

use L[·], with L for law, an obscure synonym of distribution. We define DJ·K in place of L[·].

Then DJEK denotes E’s distribution.

Though we could define semantic functions PJ·K and DJ·K right now, we are putting

them off until after interpreting statements.

6.3.4 Approximating Queries

Probabilities are real numbers. They remain real in the approximating semantics; we use

floating-point approximation and exact rationals in the implementation.

Arbitrary countable sets are not finitely representable. In the approximating semantics,

we restrict Ω to recursively enumerable sets. The implementation encodes them as lazy lists.

We trust users to not create “sets” with duplicates.

When A is infinite, sum p A is an infinite series. With A represented by a lazy list, it is

easy to compute a converging approximation—but then approximate answers to distribution

queries sum to values less than 1. Instead, we approximate Ω and normalize p, which makes

the sum finite and the distributions proper.

Suppose 〈ω1,ω2, ...〉 is an enumeration of Ω. Let z ∈ N+ be the length of the prefix

Ωz := {ω1, ...,ωz} and define pz : Ω → [0, 1] by pz ω = (p ω)/ (sum p Ωz) if ω ∈ Ωz; otherwise

0. Then pz converges to p pointwise. We define finitize 〈Ω, p〉 := 〈Ωz, pz〉 with z ∈ N as a free

variable.

6.3.5 Implementation in Racket

Figure 6.3 shows the implementations of finitize and dist in Racket. The free variable z

appears as a parameter appx-z: a variable with static scope but dynamic extent. The cotake

procedure returns the prefix of a lazy list as a finite list.

To implement dist, we need to represent mappings in Racket. The applicable struct type

mapping represents lazy mappings with possibly infinite domains. A mapping named f can be

applied with (f x). We do not ensure x is in the domain because checking is semidecidable

92

(struct mapping (domain proc)
#:property prop:procedure (λ (f x) ((mapping-proc f) x)))

(struct fmapping (default hash)
#:property prop:procedure
(λ (f x) (hash-ref (fmapping-hash f) x (fmapping-default f))))

(define appx-z (make-parameter +inf.0))
(define (finitize ps)

(match-let∗ ([(mapping Ω P) ps]
[Ωn (cotake Ω (appx-z))]
[qn (apply + (map P Ωn))])

(mapping Ωn (λ (ω) (/ (P ω) qn)))))

(define ((dist X) ps)
(match-define (mapping Ω P) ps)
(fmapping 0 (for/fold ([h (hash)]) ([ω (in-list Ω)])

(hash-set h (X ω) (+ (P ω) (hash-ref h (X ω) 0))))))

Figure 6.3: Implementation of finite approximation and distribution queries in Racket.

and nontermination is a terrible error message. For distributions, checking is not important;

the observable domain is.

However, we do not want dist to return lazy mappings. Doing so is inefficient: every

application of the mapping would filter Ω. Further, dist always receives a finitized

probability space. We therefore define fmapping for mappings that are constant on all but a

finite set. For these values, dist builds a hash table by computing the probabilities of all

preimages in one pass through Ω.

We do use mapping, but only for probability spaces and stated distributions.

6.4 Conditional Queries

For Bayesian practitioners, the most meaningful queries are conditional queries: those

conditioned on, or given, some random variable’s value. (For example, the probability an

email is spam given it contains words like “madam,” or the distribution over suspects given

security footage.) A probabilistic language without conditional queries is of little more use to

them than a general-purpose language with a random primitive.

93

Measure-theoretic conditional probability is too involved to accurately summarize here.

When P is discrete, however, the conditional probability of set A given set B (i.e. asserting

that ω ∈ B), simplifies to

Pr[A |B] = P (A ∩ B) / P B (6.10)

In theory and practice, Pr[· | ·] is special notation. As with Pr[·], practitioners apply Pr[· | ·]

to propositions, and define it with Pr[eA | eB] := Pr[eA ∧ eB]/Pr[eB].

Example 6.2. Extend Example 6.1 with random variable L : Ω → {low, high} defined by

L ω = if (ω ≤ 3) low high. The probability that E = even given L = low is

Pr[E = even |L = low] = Pr[E = even ∧ L = low]
Pr[L = low] =

∑
ω∈{2}

P ω∑
ω∈{1,2,3}

P ω
=

1
6
1
2

= 1
3 (6.11)

Similarly, Pr[E = odd |L = low] = 2
3 . Less precisely, there are proportionally fewer even

outcomes when L = low. ♦

Conditional distribution queries ask how one random variable’s output influences the

distribution of another. As with unconditional distribution queries, practitioners work around

a lack of common notation. For example, they might write the distribution of E given L as

Pr[E = e |L = l] or pE|L.

It is tempting to define PJ · | · K in terms of PJ·K, and DJ · | · K in terms of DJ·K. However,

defining conditioning as an operation on probability spaces instead of on queries is more

flexible. The following abstraction returns a discrete probability space in which Ω is restricted

to the subset where random variable Y returns y:

cond Y y 〈Ω, p〉 := let Ω′ := preimage (mapping Y Ω) {y}
p′ := λω ∈ Ω′. (p ω) / (sum p Ω′)

in 〈Ω′, p′〉

(6.12)

Then Pr[E = even |L = low] means dist E (cond L low 〈Ω, p〉) even.

We approximate cond by applying finitize to the probability space first. Its implementation

uses finite list procedures instead of set operators.

94

6.5 The Statement Language

Random variables influence each other through global probability spaces. However, because

practitioners regard random variables as free variables instead of as functions of a probability

space, they state facts about random variable distributions instead of facts about probability

spaces. Though they call such collections of statements models,1 to us they are probabilistic

theories. A model is a probability space and random variables that imply the stated facts.

Discrete conditional theories can always be written to conform to

ti ::≡ Xi ∼ ei ; ti+1 | Xi := ei ; ti+1 | ea = eb; ti+1 | ε (6.13)

Further, they can always be made well-formed: an ej may refer to some Xi only when

j > i (i.e. no circular bindings). We start by interpreting the most common kind of Bayesian

theories, which contain only distribution statements.

6.5.1 Interpreting Common Conditional Theories

Example 6.3. Suppose we want to know only whether a die outcome is even or odd, high or

low. If L’s distribution is pL := [low, high 7→ 1
2], then E’s distribution depends on L’s output.

Define pE|L : SL → SE → [0, 1] by pE|L low = [even 7→ 1
3 , odd 7→

2
3] and pE|L high =

[even 7→ 2
3 , odd 7→

1
3].

2 The conditional theory could be written

L ∼ pL; E ∼
(
pE|L L

)
(6.14)

If L is a measure-theoretic random variable,
(
pE|L L

)
does not typecheck: L : Ω → SL is

clearly not in SL. The intent is that pE|L specifies how E’s distribution depends on L. ♦

We can regard L ∼ pL as a constraint on models: dist L 〈Ω, p〉 must be pL for every

model 〈Ω, p, L〉. Similarly, E ∼
(
pE|L L

)
means E’s conditional distribution is pE|L. We have

been using the model Ω := {1, 2, 3, 4, 5, 6}, p := [1, 2, 3, 4, 5, 6 7→ 1
6], and the obvious E and L.

1In the colloquial sense, probably to emphasize their essential incompleteness.
2Usually, PE|L : SE × SL → [0, 1]. We reorder and curry to simplify interpretation.

95

It is not hard to verify that this is also a model:

Ω := {low, high} × {even, odd}

L 〈ω1,ω2〉 := ω1

E 〈ω1,ω2〉 := ω2

p := [〈low, even〉, 〈high, odd〉 7→ 1
6 , 〈low, odd〉, 〈high, even〉 7→

2
6]

(6.15)

The construction of Ω, L and E in (6.15) clearly generalizes, but p is trickier. Fully

justifying the generalization (including that it meets implicit independence assumptions that

we have not mentioned) is rather tedious, so we do not do it here. But, for the present

example, it is not hard to check these facts:

p = λω ∈ Ω. (pL (L ω)) ·
(
pE|L (L ω) (E ω)

)
= mapping R

q
(pL L) ·

((
pE|L L

)
E
)y

Ω

(6.16)

Let KL := RJpLK and KE := R
q
pE|L L

y
, which interpret (6.14)’s statements’ right-hand sides.

Then p = mapping RJ(KL L) · (KE E)K Ω. This can be generalized.

Definition 6.4 (discrete product model). Given a well-formed, discrete conditional theory

X1 ∼ e1; ...;Xn ∼ en, let Ki : Ω ⇒ Si → [0, 1], defined by Ki = RJeiK for each 1 ≤ i ≤ n. The

discrete product model of the theory is

Ω := S1 × ...× Sn

Xi 〈ω1, ...,ωi , ...,ωn〉 := ωi (1 ≤ i ≤ n)

p := mapping RJ(K1 X1) · ... · (Kn Xn)K Ω

(6.17)

Theorem 6.5 (semantic intent). The discrete product model induces the stated conditional

distributions and meets implicit independence assumptions.

When writing distribution statements, practitioners tend to apply first-order distributions

to simple random variables. But the discrete product model allows any λZFC term ei whose

interpretation is a discrete transition kernel RJeiK : Ω ⇒ Si → [0, 1]. In measure theory,

96

distps X 〈Ω, p〉 := let SX := image X Ω

pX := λx ∈ SX. sum p (preimage (mapping X Ω) {x})
in 〈Ω, p, pX〉

condps Y y 〈Ω, p〉 := let Ω′ := preimage (mapping Y Ω) {y}
p′ := λω ∈ Ω′. (p ω) / (sum p Ω′)

in 〈Ω′, p′, 〉

extendps K 〈Ω, p〉 := let S′ ω := domain (K ω)
Ω′ := (ω ∈ Ω)× (S′ ω)

X ω := ωj (where j is the length of any ω ∈ Ω)
p′ := mapping RJp · (K X)K Ω′

in 〈Ω′, p′,X〉

emptyps := 〈{〈〉},λω ∈ {〈〉}. 1〉

runps m := let 〈Ω, p, x〉 := m emptyps
in x

Figure 6.4: State monad functions that represent queries and statements. The state is probability-space-valued.

transition kernels are used to build product spaces such as 〈Ω, p〉. Thus, RJ·K links

Bayesian practice to measure theory and represents an increase in expressive power in

specifying distributions, by turning properly typed λZFC terms into precisely what measure

theory requires.

6.5.2 Interpreting Statements as Monadic Computations

Some conditional theories state more than just distributions [51, 74]. Interpreting theories

with different kinds of statements requires recursive, rather than whole-theory, interpretation.

Fortunately, well-formedness amounts to lexical scope, making it straightforward to interpret

statements as monadic computations.

We use the state monad with probability-space-valued state: computations are functions

from probability spaces to probability spaces paired with a statement-specific value. The

97

probability space monad’s return and bind are defined as

returnps x 〈Ω, p〉 := 〈Ω, p, x〉

bindps m f 〈Ω, p〉 := let 〈Ω′, p′, x〉 := m 〈Ω, p〉
in f x 〈Ω′, p′〉

(6.18)

Figure 6.4 shows the additional distps, condps and extendps. The first two simply reimplement

dist and cond. But extendps, which interprets statements, needs more explanation.

According to (6.17), interpreting Xi ∼ ei results in Ωi = Ωi−1 × Si , with Si extracted

from Ki : Ωi−1 ⇒ Si → [0, 1]. A more precise type for Ki is the dependent type (ω : Ωi−1)⇒

(S′i ω)→ [0, 1], which reveals a complication. To extract Si , we first must extract the random

variable S′i : Ωi−1 → Set Si . So let S′i ω = domain (Ki ω); then Si =
⋃

(image S′i Ωi−1).

But this makes query implementation inefficient: if the union has little overlap or is

disjoint, p will assign 0 to most ω. In more general terms, we actually have a dependent

cartesian product (ω ∈ Ωi−1)× (S′i ω), a generalization of the cartesian product.3 To extend

Ω, extendps calculates this product instead.

Dependent cartesian products are elegantly expressed using the set monad:

returnset a := {a}

bindset A f :=
⋃

(image f A)
(6.19)

Then (a ∈ A)× (B a) = bindset A λa. bindset (B a) λb. returnset 〈a, b〉.

Figure 6.5 defines MJ·K, which interprets conditional theories containing definition,

distribution, and conditioning statements as probability space monad computations. After it

exhausts the statements, it returns the random variables. Returning their names as well would

be an obfuscating complication, which we avoid by implicitly extracting them from the theory

before interpretation. (However, the implementation explicitly extracts and returns names.)

Figure 6.5 also defines semantic functions for queries. DJeK expands to a distribution-valued

computation and runs it with a probability space with the single outcome 〈〉. DJeX | eY K
3The dependent cartesian product also generalizes disjoint union to arbitrary index sets. It is often called

a dependent sum and denoted Σa : A.(B a).

98

MJXi := ei ; ti+1K :≡ bindps (returnps RJeiK) λXi .MJti+1K
MJXi ∼ ei ; ti+1K :≡ bindps (extendps RJeiK) λXi .MJti+1K
MJea = eb; ti+1K :≡ bindps (condps RJeaK RJebK) λ .MJti+1K

MJεK :≡ returnps 〈X1, ...,Xn〉

DJeK m :≡ runps (bindps m λ〈X1, ...,Xn〉. distps RJeK)
DJeX | eY K m :≡ λy.DJeXK (bindps m λ〈X1, ...,Xn〉.MJeY = yK)

PJeK m :≡ DJeK m true
PJeA | eBK m :≡ DJeA | eBK m true true

Figure 6.5: The conditional theory and query semantic functions.

conditions the probability space and hands off to DJeXK. PJ·K is defined in terms of DJ·K.

6.5.3 Approximating Models and Queries

We compute dependent cartesian products of sets represented by lazy lists in a way similar

to enumerating N × N. (It cannot be done with a monad as in the exact semantics, but

we do not need it to.) The approximating versions of distps and condps apply finitize to the

probability space.

6.5.4 Implementation in Racket

MJ·K’s implementation is MDL. Like RV, it passes random variable identifiers; unlike RV, MDL

accumulates them. For example, (MDL [] ([X ∼ Px])) expands to

([X] (bind/ps (extend/ps (RV [] Px)) (λ (X) (ret/ps (list X)))))

where [X] is the updated list of identifiers and the rest is a model computation.

We store theories in transformer bindings so queries can expand them later. For example,

(define-model die-roll [L ∼ Pl] [E ∼ (Pe/l L)]) expands to

(define-syntax die-roll #’(MDL [] ([L ∼ Pl] [E ∼ (Pe/l L)])))

99

The macro with-model introduces a scope in which a theory’s variables are visible. For

example, (with-model die-roll (Dist L E)) looks up die-roll and expands it into its

identifiers and computation. Using the identifiers as lambda arguments, Dist (the imple-

mentation of DJ·K) builds a query computation as in Figure 6.5, and runs it with (mapping

(list empty) (λ (ω) 1)), the empty probability space.

Using these identifiers would break hygiene, except that Dist replaces the lambda

arguments’ lexical context. This puts the theory’s exported identifiers in scope, even when

the theory and query are defined in separate modules. Because queries can access only the

exported identifiers, it is safe.

Aside from passing identifiers and monkeying with hygiene, the macros are almost

transcribed from the semantic functions.

6.5.5 Examples

Consider a conditional distribution with the first-order definition

(define (Geometric p)
(mapping N1 (λ (n) (∗ p (expt (- 1 p) (- n 1))))))

where N1 is a lazy list of natural numbers starting at 1. Nahin gives a delightfully morbid

use for Geometric in his book of probability puzzlers [57].

Two idiots duel with one gun. They put only one bullet in it, and take turns spinning

the chamber and firing at each other. They know that if they each take one shot at a time,

player one usually wins. Therefore, player one takes one shot, and after that, the next player

takes one more shot than the previous player, spinning the chamber before each shot. How

probable is player two’s demise?

The distribution over the number of shots when the gun fires is (Geometric 1/6). Using

this procedure to determine whether player one fires shot n:

100

(define (p1-fires? n [shots 1])
(cond [(n . <= . 0) #f]

[else (not (p1-fires? (- n shots) (add1 shots)))]))

we compute the probability that player one wins with

(with-model (model [winning-shot ∼ (Geometric 1/6)])
(Pr (p1-fires? winning-shot)))

Nahin computes 0.5239191275550995247919843—25 decimal digits—with custom MATLAB

code. At appx-z ≥ 321, our solution computes the same digits. (Though it appends the

digits 9..., so Nahin should have rounded up.) Implementing it took about five minutes. But

the problem is not Bayesian.

This is: suppose player one slyly suggests a single coin flip to determine whether they

spin the chamber before each shot. You do not see the duel, but learn that player two won.

What is the probability they spun the chamber?

Suppose that the well-known Bernoulli and discrete Uniform conditional distributions

are defined. Using these first-order conditional distributions and Racket’s cond, we can state

a fairly direct theory of the duel:

(define-model half-idiot-duel
[spin? ∼ (Bernoulli 1/2)]
[winning-shot ∼ (cond [spin? (Geometric 1/6)]

[else (Uniform 1 6)])])

Then (Pr spin? (not (p1-fires? winning-shot))) converges to about 0.588.

Bayesian practitioners would normally create a new first-order conditional distribution

WinningShot, and then state [winning-shot ∼ (WinningShot spin?)]. Most would like to

state something more direct—such as the above theory, which plainly shows how spin?’s

value affects winning-shot’s distribution. However, without a semantics, they cannot be sure

that using the value of a cond (or of any if-like expression) as a distribution is well-defined.

That winning-shot has a different range for each value of spin? makes things more uncertain.

101

As specified by RJ·K, our implementation interprets (cond ...) above as a stochastic

transition kernel. As specified by MJ·K, it builds the probability space using dependent

cartesian products. Thus, the direct theory really is well-defined.

6.6 Why Separate Statements and Queries?

Whether queries should be allowed inside theories is a decision with subtle effects.

Theories are sets of facts. Well-formedness imposes a partial order, but every linearization

should be interpreted equivalently. Thus, we can determine whether two kinds of statements

can coexist in theories by determining whether they can be exchanged without changing the

interpretation. This is equivalent to determining whether the corresponding monad functions

commute.

The following definitions suppose a conditional theory t1; ...; tn in which exchanging some

ti and ti+1 (where i < n) is well-formed. Applying semantic functions in the definitions yields

definitions that are independent of syntax but difficult to read, so we give the syntactic

versions.

Definition 6.6 (commutativity). We say that ti and ti+1 commute when

MJt1; ...; ti ; ti+1; ...; tnK 〈Ω0, p0〉 = MJt1; ...; ti+1; ti ; ...; tnK 〈Ω0, p0〉.

Unfortunately, this notion of commutativity is usually too strong: distribution statements

could never commute with each other. We need a weaker test than equality, based on observable

outcomes.

Definition 6.7 (equivalence in distribution). Suppose X1, ...,Xk are defined in t1, ..., tn. Let

m :=MJt1, ..., tnK, and m′ be a (usually different) probability space monad computation. We

write m ≡D m′ and call m and m′ equivalent in distribution when DJX1, ...,XkK m =

DJX1, ...,XkK m′.

The following theorem says ≡D is like observational equivalence with query contexts:

102

Theorem 6.8 (context). DJeX | eY K m = DJeX | eY K m′ for all random variables RJeXK

and RJeY K if and only if m ≡D m′.

Definition 6.9 (commutativity in distribution). We say ti and ti+1 commute in distribu-

tion whenMJt1; ...; ti ; ti+1; ...; tnK ≡D MJt1; ...; ti+1; ti ; ...; tnK.

Theorem 6.10. The following table summarizes commutativity of condps, distps and extendps

in the probability space monad:

condps =
extendps = ≡D

distps 6≡D = =
condps extendps distps

By Thm. 6.10, if we are to maintain the idea that theories are sets of facts, we cannot

allow both conditioning and query statements.

6.7 Conclusions

For discrete Bayesian theories, we explained a large subclass of notation as measure-theoretic

calculations by transformation into λZFC. There is now at least one precisely defined set of

expressions that denote discrete conditional distributions in conditional theories, and it is

very large and expressive. We gave a converging approximating semantics and implemented

it in Racket.

We could have interpreted notation as first-order set theory, in which measure theory

is developed. Defining the exact semantics compositionally would have been difficult, and

deriving an implementation from the semantics would have involved much hand-waving.

By targeting λZFC instead, the path from notation to exact meaning to approximation to

implementation is clear.

103

Chapter 7

Interlude: Uncountable Outcomes and Recursion

Now that we are satisfied that using λZFC as a target language for categorical semantics

of constructive theories and queries works, we turn our attention to uncountable sample

spaces and theories with general recursion.

It seems that, having followed measure-theoretic structure so far, the extension to

uncountable sample spaces should be fairly smooth. Discrete probability spaces, probability

mass functions, summation, conditioning, and discrete transition kernels all have uncountable

analogues that can be composed in much the same way. The probability space monad thus

has an uncountable analogue that can be used as a target for a categorical semantics for

Bayesian notation. There are two difficulties, however.

The first difficulty is practical. As with the discrete probability space monad, we

would like to derive an implementable semantics by approximating the target category.

Unfortunately, this is complicated by the fact that the uncountable computations have large

cardinalities. For example, a general probability space on R is defined as a triple 〈R,Σ,P〉,

where Σ is a subset of P R and P : Σ → [0, 1].

The second difficulty is theoretical. Suppose we define the following recursive function

in a language with probabilistic choice, which counts the number of times random < p:

geometric p := if (random < p) 0 (1 + geometric p) (7.1)

To interpret geometric p using the uncountable probability space monad, we must interpret

both branches of the if as probability spaces and merge them. Unfortunately, doing so

104

naïvely results in nontermination, as geometric p is applied in the else branch at every

recurrence. Dealing with nontermination requires complicated fixpoint constructions, which,

with uncountable probability spaces, would put us on the frontier of research in mathematics

instead of in computer science.

Fortunately, we can take a hint from measure-theoretic probability’s general approach

to infinite processes: define them with respect to a canonical, infinite-dimensional probability

space, and encode branching and other complexities into the random variables. The next

chapter takes this approach by interpreting whole programs as random variables in which

every random expression indexes an infinite, uniformly random tree.

105

Chapter 8

Preimage Computation Theory: Running Programs Backwards

I am so in favor of the actual infinite that instead of admitting that Nature abhors

it, as is commonly said, I hold that Nature makes frequent use of it everywhere,

in order to show more effectively the perfections of its Author.

Georg Cantor

8.1 Introduction

Measure-theoretic probability [43] is widely believed to be able to define every reasonable

distribution, including distributions arising from discontinuous transformations and distri-

butions on infinite spaces. It mainly does this by assigning probabilities to sets instead of

points. Functions that do so are probability measures.

If a probability measure P assigns probabilities to subsets of X and g : X→ Y, then the

distribution over subsets of Y is defined by

Pr[B] = P (preimage g B) (8.1)

where preimage g B = {a ∈ domain g | g a ∈ B} is the subset of X for which g yields a value

in B. It is well-defined for any g and B.

Measure-theoretic probability supports any kind of condition. If Pr[B] > 0, the probability

of B′ ⊆ Y given B ⊆ Y is

Pr[B′ |B] = Pr[B′ ∩ B] / Pr[B] (8.2)

106

If Pr[B] = 0, conditional probabilities can be calculated as the limit of Pr[B′ |Bn] for certain

positive-probability B1 ⊇ B2 ⊇ B3 ⊇ · · · whose intersection is B [67]. For example, if

Y = R × R, the distribution of 〈x, y〉 ∈ Y given x + y = 0 can be calculated using the

descending sequence Bn = {〈x, y〉 ∈ Y | |x + y| < 2−n}.

Only special families of measurable sets can be assigned probabilities. Proving mea-

surability, taking limits, and other complications tend to make measure-theoretic probability

less attractive, even though it is strictly more powerful.

8.1.1 Measure-Theoretic Semantics

Most purely functional languages allow only nontermination as a side effect, and not probabilis-

tic choice. Programmers therefore encode probabilistic programs as functions from random

sources to outputs. Monads and other categorical classes such as idioms (i.e. applicative

functors) can make doing so easier [39, 72].

It seems this approach should make it easy to interpret probabilistic programs measure-

theoretically. For a probabilistic program g : X → Y, the probability measure on output

sets B ⊆ Y should be defined by preimages of B under g and the probability measure on X.

Unfortunately, it is difficult to turn this simple-sounding idea into a compositional semantics,

for the following reasons.

1. Preimages are definable only for functions with observable domains, which excludes

lambdas.

2. If subsets of X and Y must be measurable, taking preimages under g must preserve

measurability (we say g itself is measurable). Proving the conditions under which this

is true is difficult, especially if g may not terminate.

3. It is difficult to define useful probability measures for arbitrary spaces of measurable

functions [6].

Implementing a language based on such a semantics is complicated because

4. Contemporary mathematics is unlike any implementation’s host language.

107

5. It requires running Turing-equivalent programs backwards, efficiently, on possibly

uncountable sets of outputs.

We address 1 and 4 by developing our semantics in λZFC [73], a λ-calculus with infinite sets,

and both extensional and intensional functions. We address 5 by deriving and implementing

a conservative approximation of the semantics.

There seems to be no way to simplify difficulty 2, so we work through a proof of

measurability. The outcome is worth it: all probabilistic programs are measurable, regardless

of the inputs on which they do not terminate. This includes uncomputable programs; for

example, those that contain real equality tests and limits. We believe this result is the first of

its kind, and is general enough to apply to almost all past and future work on probabilistic

programming languages. To maintain the flow of this chapter, we put it off until Appendix A.

For difficulty 3, we have discovered that the “first-orderness” of arrows [38] is a perfect

fit for the “first-orderness” of measure theory.

8.1.2 Arrow Solution Overview

Using arrows, we define an exact semantics and an approximating semantics. The exact

semantics includes

• A semantic function which, like the arrow calculus semantic function [48], transforms

first-order programs into the computations of an arbitrary arrow.

• Arrows for evaluating expressions in different ways.

This commutative diagram describes the relationships among the six arrows used to define

the exact semantics:

X ⊥ Y
liftmap−−−→ X map Y

liftpre−−−→ X pre Y
η⊥∗

y yηmap∗

yηpre∗
X ⊥* Y −−−−→liftmap∗

X map* Y −−−→liftpre∗
X pre* Y

(8.3)

At the top-left, X ⊥ Y computations (or “bottom arrow computations”) are intensional

functions that may raise errors (i.e. return ⊥, which is read “bottom”). From bottom arrow

108

computations, the liftmap combinator produces X map Y computations, which create equivalent

extensional functions, or mappings. From mapping arrow computations, the liftpre combinator

produces X pre Y computations, which compute preimages.

Instances of arrows in the bottom row are like those in the top row, except they thread

an infinite store of random values, and can be constructed to always terminate.

Most of our correctness theorems rely on proofs that every combinator in (8.3) is a

homomorphism; for example, that liftmap distributes over all bottom arrow combinators.

The approximating semantics uses the same semantic function, but its arrows X pre ′ Y

and X pre* ′ Y compute conservative approximations. Given a library for representing and

operating on rectangular sets, it is directly implementable.

8.2 Arrows and First-Order Semantics

Like monads [79] and idioms [53], arrows [38] thread effects through computations in a way

that imposes structure. But arrow computations are always

• Function-like: An arrow computation of type x a y must behave like a corresponding

function of type x ⇒ y (in a sense we explain shortly).

• First-order: There is no way to derive a computation appa : 〈x a y, x〉 a y from the

arrow a’s minimal definition, so it is not possible for an arrow computation to apply

another arrow computation.

The first property makes arrows a good fit for a compositional translation from expressions

to pure functions that operate on random sources. The second property makes arrows a good

fit for a measure-theoretic semantics in particular, as it is difficult to define useful measurable

sets of functions that make app’s corresponding function measurable [6].

8.2.1 Alternative Arrow Definitions and Laws

To make applying measure-theoretic theorems easier, and to simplify interpreting let-calculus

expressions as arrow computations, we do not give typical minimal arrow definitions. For

109

each arrow a, instead of firsta, we define (&&&a). This combinator is typically called fanout,

but its use will be clearer if we call it pairing. One way to strengthen an arrow a is to define

an additional combinator lefta, which can be used to choose an arrow computation based on

the result of another. Again, we define a different combinator, iftea (“if-then-else”).

In a nonstrict λ-calculus, defining a choice combinator allows writing recursive functions

using nothing but arrow combinators and lifted, pure functions. However, a strict λ-calculus

needs an extra combinator lazy for deferring conditional branches. For example, define the

function arrow with choice, in which x y ::= x ⇒ y:

arr f := f lift

f1 >>> f2 := λa. f2 (f1 a) composition

f1 &&& f2 := λa. 〈f1 a, f2, a〉 pairing

ifte f1 f2 f3 := λa. if (f1 a) (f2 a) (f3 a) if-then-else

lazy f := λa. f 0 a laziness

(8.4)

and try to define the following recursive function:

halt-on-true : Bool Bool (i.e. halt-on-true : Bool⇒ Bool)

halt-on-true := ifte (arr id) (arr id) halt-on-true

≡ ifte id id (ifte (arr id) (arr id) halt-on-true)

≡ ifte id id (ifte id id (ifte (arr id) (arr id) halt-on-true))

(8.5)

In a strict λ-calculus, the defining expression does not terminate. But the following is

110

well-defined in λZFC, and loops only when applied to false:

halt-on-true := ifte (arr id) (arr id) (lazy λ0. halt-on-true)

≡ ifte id id (λa. (λ0. halt-on-true) 0 a)

≡ λa. if (id a) (id a) ((λa. (λ0. halt-on-true) 0 a) a)

≡ λa. if a a ((λa. halt-on-true a) a)

≡ λa. if a a (halt-on-true a)

(8.6)

All of our arrows are arrows with choice and lazy, so we simply call them arrows.

Definition 8.1 (arrow). Let 1 := {0} (Section 4.3.1). A binary type constructor (a) and

arra : (x ⇒ y)⇒ (x a y) lift

(>>>a) : (x a y)⇒ (y a z)⇒ (x a z) composition

(&&&a) : (x a y)⇒ (x a z)⇒ (x a 〈y, z〉) pairing

iftea : (x a Bool)⇒ (x a y)⇒ (x a y)⇒ (x a y) if-then-else

lazya : (1⇒ (x a y))⇒ (x a y) laziness

(8.7)

define an arrow if certain monoid, homomorphism, and structural laws hold.

The arrow homomorphism laws can be put in terms of more general homomorphism

properties that deal with distributing an arrow-to-arrow lift, which we use extensively to

prove correctness.

Definition 8.2 (arrow homomorphism). A function liftb : (x a y) ⇒ (x b y) is an

arrow homomorphism from arrow a to arrow b if the following distributive laws hold for

111

appropriately typed f, f1, f2 and f3:

liftb (arra f) ≡ arrb f (8.8)

liftb (f1 >>>a f2) ≡ (liftb f1) >>>b (liftb f2) (8.9)

liftb (f1 &&&a f2) ≡ (liftb f1) &&&b (liftb f2) (8.10)

liftb (iftea f1 f2 f3) ≡ ifteb (liftb f1) (liftb f2) (liftb f3) (8.11)

liftb (lazya f) ≡ lazyb λ0. liftb (f 0) (8.12)

The arrow homomorphism laws state that arra : (x ⇒ y) ⇒ (x a y) must be a

homomorphism from the function arrow (8.4) to arrow a. Roughly, arrow computations that

do not use additional combinators can be transformed into arra applied to a pure computation.

They must be function-like.

Only a few of the other arrow laws play a role in our semantics and its correctness. We

need associativity of (>>>a) and a pair extraction law:

(f1 >>>a f2) >>>a f3 ≡ f1 >>>a (f2 >>>a f3) (8.13)

(arra f1 &&&a f2) >>>a arra snd ≡ f2 (8.14)

and distribution of pure computations over effectful:

arra f1 >>>a (f2 &&&a f3) ≡ (arra f1 >>>a f2) &&&a (arra f1 >>>a f3) (8.15)

arra f1 >>>a iftea f2 f3 f4 ≡ iftea (arra f1 >>>a f2)
(arra f1 >>>a f3)
(arra f1 >>>a f4)

(8.16)

arra f1 >>>a lazya f2 ≡ lazya λ0. arra f1 >>>a f2 0 (8.17)

Equivalence between different arrow representations is usually proved in a strongly nor-

malizing λ-calculus [47, 48], in which every function is free of effects, including nontermination.

Such a λ-calculus has no need for lazya, so we could not derive (8.17) from existing arrow laws.

We follow Hughes’s reasoning [38] for the original arrow laws: it is a function-like property

112

(i.e. it holds for the function arrow), and it cannot not lose, reorder or duplicate effects.

The pair extraction law (8.14), which can be derived from existing arrow laws, is a more

problematic, in nonstrict λ-calculii as well as λZFC. If f1 does not always terminate, using (8.14)

to transform a computation can turn a nonterminating expression into a terminating one, or

vice-versa. We could require f1 in the pair extraction law to always terminate. Instead, we

require every argument to arra to terminate, which simplifies more proofs.

Rather than prove each arrow law for each arrow, we prove arrows are epimorphic to

arrows for which the laws are known to hold. (Isomorphism is sufficient but not necessary.)

Definition 8.3 (arrow epimorphism). An arrow homomorphism liftb : (x a y)⇒ (x b y)

that has a right inverse is an arrow epimorphism from a to b.

Theorem 8.4 (epimorphism implies arrow laws). If liftb : (x a y)⇒ (x b y) is an arrow

epimorphism and the combinators of a define an arrow, then the combinators of b define an

arrow.

Proof. Let lift−1
b be liftb’s right inverse. For the pair extraction law (8.14),

(arrb f1 &&&b f2) >>>b arrb snd (8.18)

≡ (liftb (arra f1) &&&b (liftb (lift−1
b f2))) >>>b liftb (arra snd) Rewrite with liftb

≡ liftb (arra f1 &&&a lift−1
b f2) >>>b liftb (arra snd) Homomorphism (8.10)

≡ liftb ((arra f1 &&&a lift−1
b f2) >>>a arra snd) Homomorphism (8.9)

≡ liftb (lift−1
b f2) Pair extraction (8.14)

≡ f2 Right inverse

The proofs for every other law are similar.

8.2.2 First-Order Let-Calculus Semantics

Figure 8.1 defines a transformation from a first-order let-calculus to arrow computations for

any arrow a. A program is a sequence of definition statements followed by a final expression.

113

p ::≡ x := e; ... ; e
e ::≡ x e | let e e | env n | 〈e, e〉 | fst e | snd e | if e e e | v
v ::≡ [first-order constants]

Jx := e; ... ; ebKa :≡ x := JeKa ; ... ; JebKa

Jx eKa :≡ J〈e, 〈〉〉Ka >>>a x
J〈e1, e2〉Ka :≡ Je1Ka &&&a Je2Ka

Jfst eKa :≡ JeKa >>>a arra fst
Jsnd eKa :≡ JeKa >>>a arra snd

JvKa :≡ arra (const v)

id := λa. a
const b := λa. b

Jlet e ebKa :≡ (JeKa &&&a arra id) >>>a JebKa
Jenv 0Ka :≡ arra fst

Jenv (n + 1)Ka :≡ arra snd >>>a Jenv nKa
Jif ec et ef Ka :≡ iftea JecKa Jlazy etKa Jlazy ef Ka

Jlazy eKa :≡ lazya λ0. JeKa

subject to JpKa : 〈〉 a y for some y

Figure 8.1: Interpretation of a let-calculus with first-order definitions and De-Bruijn-indexed bindings as
arrow a computations.

The semantic function J·Ka transforms each defining expression and the final expression into

arrow computations. Functions are named, but local variables and arguments are not. Instead,

variables are referred to by De Bruijn indexes, with 0 referring to the innermost binding.

We call this style of interpretation stack-passing style. The final expression has type

〈〉 a y, where y is the type of the program’s output and 〈〉 denotes the empty stack. A let

expression uses pairing (&&&a) to push a value onto the stack and composition (>>>a) to pass

the resulting stack to its body. First-order functions have type 〈x, 〈〉〉 a y where x is the

argument type and y is the return type. Application passes a stack with just an x using

pairing and composition.

We generally regard programs as if they were their final expressions. Thus, the following

definition applies to both programs and expressions.

Definition 8.5 (well-defined expression). An expression e is well-defined under arrow a if

JeKa : x a y for some x and y, and JeKa terminates.

From here on, we assume all expressions are well-defined. (The arrow a will be clear from

context.) Well-definedness does not guarantee that running an interpretation terminates. It

114

just simplifies statements about expressions, such as the following theorem, on which most of

our semantic correctness results rely.

Theorem 8.6 (homomorphisms distribute over expressions). Let liftb : (x a y)⇒ (x b y)

be an arrow homomorphism. For all e, JeKb ≡ liftb JeKa.

Proof. By structural induction. Base cases proceed by expansion and using arrb ≡ liftb ◦

arra (8.8). For example, for constants:

JvKb ≡ arrb (const v) Def of J·Kb (8.19)

≡ liftb (arra (const v)) Homomorphism (8.8)

≡ liftb JvKa Def of J·Ka

Inductive cases proceed by expansion, applying the inductive hypothesis on subterms, and

applying distributive laws (8.9)–(8.12). For example, for pairing:

J〈e1, e2〉Kb ≡ Je1Kb &&&b Je2Kb Def of J·Kb (8.20)

≡ (liftb Je1Ka) &&&b (liftb Je2Ka) Ind hypothesis

≡ liftb (Je1Ka &&&a Je2Ka) Homomorphism (8.10)

≡ liftb J〈e1, e2〉Ka Def of J·Ka

It is not hard to check the remaining cases.

If we assume liftb defines correct behavior for arrow b in terms of arrow a, and prove

that liftb is a homomorphism, then by Theorem 8.6, J·Kb is correct.

115

X ⊥ Y ::= X⇒ Y⊥

arr⊥ : (X⇒ Y)⇒ (X ⊥ Y)
arr⊥ f := f

(>>>⊥) : (X ⊥ Y)⇒ (Y ⊥ Z)⇒ (X ⊥ Z)
(f1 >>>⊥ f2) a := if (f1 a = ⊥) ⊥ (f2 (f1 a))

(&&&⊥) : (X ⊥ Y1)⇒ (X ⊥ Y2)⇒ (X ⊥〈Y1,Y2〉)
(f1 &&&⊥ f2) a := let b1 := f1 a

b2 := f2 a
in if (b1 = ⊥ or b2 = ⊥) ⊥ 〈b1, b2〉

ifte⊥ : (X ⊥ Bool)⇒ (X ⊥ Y)⇒ (X ⊥ Y)⇒ (X ⊥ Y)
ifte⊥ f1 f2 f3 a := case f1 a

true −→ f2 a
false −→ f3 a
⊥ −→ ⊥

lazy⊥ : (1⇒ (X ⊥ Y))⇒ (X ⊥ Y)
lazy⊥ f a := f 0 a

Figure 8.2: Bottom arrow definitions.

8.3 The Bottom Arrow

Using the diagram in (8.3) as a sort of map, we start in the upper-left corner:

X ⊥ Y
liftmap−−−→ X map Y

liftpre−−−→ X pre Y
η⊥∗

y yηmap∗

yηpre∗
X ⊥* Y −−−−→liftmap∗

X map* Y −−−→liftpre∗
X pre* Y

(8.21)

Through Section 8.6, we move across the top to X pre Y.

To use Theorem 8.6 to prove correct the interpretations of expressions as preimage arrow

computations, we need the preimage arrow to be homomorphic to a simpler arrow with

easily understood behavior. The function arrow (8.4) is an obvious candidate. However, we

will need to explicitly handle nontermination as an error value, so we need a slightly more

complicated arrow.

Figure 8.2 defines the bottom arrow. Its computations have type X ⊥ Y ::= X⇒ Y⊥,

where Y⊥ ::= Y ∪ {⊥} and ⊥ is a distinguished error value. The type Bool⊥, for example,

denotes the members of Bool ∪ {⊥} = {true, false,⊥}.

To prove the arrow laws, we need a coarser notion of equivalence.

Definition 8.7 (bottom arrow equivalence). Two computations f1 : X ⊥ Y and f2 : X ⊥ Y

are equivalent, or f1 ≡ f2, when f1 a ≡ f2 a for all a ∈ X.

116

Theorem 8.8. arr⊥, (&&&⊥), (>>>⊥), ifte⊥ and lazy⊥ define an arrow.

Proof. The bottom arrow is epimorphic to (in fact, isomorphic to) the maybe monad’s Kleisli

arrow.

8.4 Deriving the Mapping Arrow

Computing preimages requires an observable domain, which lambdas do not have. Further,

theorems about functions in set theory tend to be about mappings, not about lambdas that

may raise errors. As an intermediate step, then, we need an arrow whose computations

produce mappings or are mappings themselves.

It is tempting to try to make the mapping arrow’s computations mapping-valued; i.e.

X map Y ::= X ⇀ Y. Unfortunately, we could not define arrmap : (X⇒ Y)⇒ (X ⇀ Y): to define

a mapping, we need a domain, but lambdas’ domains are unobservable.

To parameterize mapping arrow computations on a domain, we define the mapping

arrow computation type as

X map Y ::= Set X⇒ (X ⇀ Y) (8.22)

The absence of ⊥ in Set X⇒ (X ⇀ Y), and the fact that type parameters X and Y denote

sets, will make it easier to apply well-known theorems from measure theory, which know

nothing of lambda types and propagating error values.

To use Theorem 8.6 to prove that expressions interpreted using J·Kmap behave correctly

with respect to J·K⊥, we need to define correctness using a lift from the bottom arrow to the

mapping arrow. It is helpful to have a standalone function domain⊥ that computes the subset

of A on which f does not return ⊥. We define that first, and then define liftmap in terms of it:

domain⊥ : (X ⊥ Y)⇒ Set X⇒ Set X

domain⊥ f A := {a ∈ A | f a 6= ⊥}
(8.23)

117

range : (X ⇀ Y)⇒ Set Y
range g := image snd g

(◦map) : (Y ⇀ Z)⇒ (X ⇀ Y)⇒ (X ⇀ Z)
g2 ◦map g1 := let A := preimage g1 (domain g2)

in λa ∈ A. g2 (g1 a)

〈·, ·〉map : (X ⇀ Y1)⇒ (X ⇀ Y2)⇒ (X ⇀ Y1 × Y2)
〈g1, g2〉map := let A := domain g1 ∩ domain g2

in λa ∈ A. 〈g1 a, g2 a〉

(]map) : (X ⇀ Y)⇒ (X ⇀ Y)⇒ (X ⇀ Y)
g1]map g2 := let A := domain g1] domain g2

in λa ∈ A. if (a ∈ domain g1) (g1 a) (g2 a)

Figure 8.3: Additional operations on partial mappings.

X map Y ::= Set X⇒ (X ⇀ Y)

arrmap : (X⇒ Y)⇒ (X map Y)
arrmap := liftmap ◦ arr⊥

(>>>map) : (X map Y)⇒ (Y map Z)⇒ (X map Z)
(g1 >>>map g2) A := let g′1 := g1 A

g′2 := g2 (range g′1)
in g′2 ◦map g′1

(&&&map) : (X map Y1)⇒ (X map Y2)⇒ (X map〈Y1,Y2〉)
(g1 &&&map g2) A := 〈g1 A, g2 A〉map

iftemap : (X map Bool)⇒ (X map Y)⇒ (X map Y)⇒ (X map Y)
iftemap g1 g2 g3 A := let g′1 := g1 A

g′2 := g2 (preimage g′1 {true})
g′3 := g3 (preimage g′1 {false})

in g′2]map g′3

lazymap : (1⇒ (X map Y))⇒ (X map Y)
lazymap g A := if (A = ∅) ∅ (g 0 A)

liftmap : (X ⊥ Y)⇒ (X map Y)
liftmap f A := {〈a, b〉 ∈ mapping f A | b 6= ⊥}

Figure 8.4: Mapping arrow definitions.

liftmap : (X ⊥ Y)⇒ (X map Y)

liftmap f A := mapping f (domain⊥ f A)
(8.24)

So liftmap f A is like mapping f A, except the domain does not contain inputs that produce

errors—a good notion of correctness.

If liftmap is to be a homomorphism, mapping arrow computation equivalence needs to be

more extensional.

Definition 8.9 (mapping arrow equivalence). Two computations g1 : X map Y and g2 : X map Y

are equivalent, or g1 ≡ g2, when g1 A ≡ g2 A for all A ⊆ X.

Clearly arrmap := liftmap ◦ arr⊥ meets the first homomorphism law (8.8). The remainder

of this section derives (&&&map), (>>>map), iftemap and lazymap from bottom arrow combinators,

in a way that ensures liftmap is an arrow homomorphism. Figure 8.3 defines the additional

118

necessary mapping operations range, composition, pairing, and disjoint union, and Figure 8.4

contains the resulting mapping arrow combinators.

8.4.1 Composition

Starting with the left side of (8.9), we expand definitions, simplify f by restricting it to a set

for which f1 a 6= ⊥:

liftmap (f1 >>>⊥ f2) A (8.25)

≡ let f := λa. if (f1 a = ⊥) ⊥ (f2 (f1 a))
A′ := domain⊥ f A

in mapping f A′

Def of liftmap, (>>>⊥)

≡ let f := λa. f2 (f1 a)
A′ := domain⊥ f (domain⊥ f1 A)

in mapping f A′

Simplify f

≡ let A′ := {a ∈ domain⊥ f1 A | f2 (f1 a) 6= ⊥}
in λa ∈ A′. f2 (f1 a)

Def of domain⊥, mapping

We finish by converting bottom arrow computations to the mapping arrow and rewriting in

terms of mapping composition (◦map):

≡ let g1 := liftmap f1 A
A′ := preimage g1 (domain⊥ f2 (range g1))

in λa ∈ A′. f2 (g1 a)

Rewrite with liftmap

≡ let g1 := liftmap f1 A
g2 := liftmap f2 (range g1)
A′ := preimage g1 (domain g2)

in λa ∈ A′. g2 (g1 a)

Rewrite with liftmap

≡ let g1 := liftmap f1 A
g2 := liftmap f2 (range g1)

in g2 ◦map g1

Rewrite with (◦map)

Substituting g1 for liftmap f1 and g2 for liftmap f2 gives a definition for (>>>map) (Figure 8.4)

for which (8.9) holds.

119

8.4.2 Pairing

Starting with the left side of (8.10), we expand definitions, and simplify f by restricting it to

a set for which f1 a 6= ⊥ and f2 a 6= ⊥:

liftmap (f1 &&&⊥ f2) A (8.26)

≡ let f := λa. let b1 := f1 a
b2 := f2 a

in if (b1 = ⊥ or b2 = ⊥) ⊥ 〈b1, b2〉
A′ := domain⊥ f A

in mapping f A′

Def of liftmap, (&&&⊥)

≡ let f := λa. 〈f1 a, f2 a〉
A′ := domain⊥ f1 A ∩ domain⊥ f2 A

in mapping f A′

Simplify f

≡ let A′ := domain⊥ f1 A ∩ domain⊥ f2 A
in λa ∈ A′. 〈f1 a, f2 a〉

Def of mapping

We finish by converting bottom arrow computations to the mapping arrow and rewriting in

terms of 〈·, ·〉map:

≡ let g1 := liftmap f1 A
g2 := liftmap f2 A
A′ := domain g1 ∩ domain g2

in λa ∈ A′. 〈g1 a, g2 a〉

Rewrite with liftmap

≡ 〈liftmap f1 A, liftmap f2 A〉map Rewrite with 〈·, ·〉map

Substituting g1 for liftmap f1 and g2 for liftmap f2 gives a definition for (&&&map) (Figure 8.4) for

which (8.10) holds.

120

8.4.3 Conditional

Starting with the left side of (8.11), we expand definitions, and simplify f by restricting it to

a domain for which f1 a 6= ⊥:

liftmap (ifte⊥ f1 f2 f3) A (8.27)

≡ let f := λa. case f1 a
true −→ f2 a
false −→ f3 a
⊥ −→ ⊥

A′ := domain⊥ f A
in mapping f A′

Def of liftmap, ifte⊥

≡ let f := λa. if (f1 a) (f2 a) (f3 a)
g1 := mapping f1 (domain⊥ f1 A)
A2 := preimage g1 {true}
A3 := preimage g1 {false}
A′ := domain⊥ f2 A2] domain⊥ f3 A3

in mapping f A′

Simplify f

≡ let g1 := mapping f1 (domain⊥ f1 A)
A2 := preimage g1 {true}
A3 := preimage g1 {false}
A′ := domain⊥ f2 A2] domain⊥ f3 A3

in λa ∈ A′. if (f1 a) (f2 a) (f3 a)

Def of mapping

We finish by converting bottom arrow computations to the mapping arrow and rewriting in

terms of (]map):

≡ let g1 := liftmap f1 A
g2 := liftmap f2 (preimage g1 {true})
g3 := liftmap f3 (preimage g1 {false})
A′ := domain g2] domain g3

in λa ∈ A′. if (a ∈ domain g2) (g2 a) (g3 a)

Rewrite with liftmap

≡ let g1 := liftmap f1 A
g2 := liftmap f2 (preimage g1 {true})
g3 := liftmap f3 (preimage g1 {false})

in g2]map g3

Rewrite with (]map)

121

Substituting g1 for liftmap f1, g2 for liftmap f2, and g3 for liftmap f3 gives a definition for iftemap

(Figure 8.4) for which (8.11) holds.

8.4.4 Laziness

Starting with the left side of (8.12), we expand definitions:

liftmap (lazy⊥ f) A ≡ let A′ := domain⊥ (λa. f 0 a) A
in mapping (λa. f 0 a) A′

(8.28)

It appears we need an η rule to continue, which λZFC does not have (i.e. λx. e x 6≡ e

because e may not terminate). Fortunately, we can use weaker facts. If A 6= ∅, then

domain⊥ (λa. f 0 a) A ≡ domain⊥ (f 0) A. Further, it terminates if and only if mapping (f 0) A′

terminates. Therefore, if A 6= ∅, we can replace λa. f 0 a with f 0. If A = ∅, then

liftmap (lazy⊥ f) A = ∅ (the empty mapping), so

liftmap (lazy⊥ f) A ≡ if (A = ∅) ∅ (mapping (f 0) (domain⊥ (f 0) A)) (8.29)

≡ if (A = ∅) ∅ (liftmap (f 0) A)

Substituting g 0 for liftmap (f 0) gives a lazymap (Figure 8.4) for which (8.12) holds.

8.4.5 Correctness

Theorem 8.10 (mapping arrow correctness). liftmap is a homomorphism.

Proof. By construction.

Corollary 8.11 (semantic correctness). For all e, JeKmap ≡ liftmap JeK⊥.

Without restrictions, mapping arrow computations can be quite unruly. For example,

the following computation is well-typed, but returns the identity mapping on Bool when

122

applied to an empty domain, and the empty mapping when applied to any other domain:

nonmonotone : Bool map Bool

nonmonotone A := if (A = ∅) (λa ∈ Bool. a) ∅
(8.30)

It would be nice if we could be sure that every X map Y is not only monotone, but acts as if it

returned restricted mappings. The following equivalent property is easier to state, and makes

proving the arrow laws simple.

Definition 8.12 (mapping arrow law). Let g : X map Y. If there exists an f : X ⊥ Y such

that g ≡ liftmap f, then g obeys the mapping arrow law.

By homomorphism of liftmap, mapping arrow combinators preserve this law. It is therefore

safe to assume that the mapping arrow law holds for all g : X map Y.

Theorem 8.13. liftmap is an arrow epimorphism.

Proof. Follows from Theorem 8.10 and restriction of X map Y to instances for which the mapping

arrow law (Definition 8.12) holds.

Corollary 8.14. arrmap, (&&&map), (>>>map), iftemap and lazymap define an arrow.

8.5 Lazy Preimage Mappings

On a computer, we do not often have the luxury of testing each function input to see whether

it belongs to a preimage set. Even for finite domains, doing so is often intractable.

If we wish to compute with infinite sets in the language implementation, we will need

an abstraction that makes it easy to replace computation on points with computation on

sets whose representations allow efficient operations. Therefore, in the preimage arrow, we

confine computation on points to instances of

X ⇀pre Y ::= 〈Set Y, Set Y ⇒ Set X〉 (8.31)

123

X ⇀pre Y ::= 〈Set Y, Set Y ⇒ Set X〉

pre : (X map Y)⇒ (X ⇀pre Y)
pre g := 〈range g,λB. preimage g B〉

appre : (X ⇀pre Y)⇒ Set Y ⇒ Set X
appre 〈Y′, p〉 B := p (B ∩ Y′)

domainpre : (X ⇀pre Y)⇒ Set X
domainpre 〈Y′, p〉 := p Y′

rangepre : (X ⇀pre Y)⇒ Set Y
rangepre 〈Y′, p〉 := Y′

〈·, ·〉pre : (X ⇀pre Y1)⇒ (X ⇀pre Y2)⇒ (X ⇀pre Y1 × Y2)
〈〈Y′1, p1〉, 〈Y′2, p2〉〉pre := let Y′ := Y′1 × Y′2

p := λB.
⋃

〈b1,b2〉∈B
p1 {b1} ∩ p2 {b2}

in 〈Y′, p〉

(◦pre) : (Y ⇀pre Z)⇒ (X ⇀pre Y)⇒ (X ⇀pre Z)
〈Z′, p2〉 ◦pre h1 := 〈Z′,λC. appre h1 (p2 C)〉

(]pre) : (X ⇀pre Y)⇒ (X ⇀pre Y)⇒ (X ⇀pre Y)
h1]pre h2 := let Y′ := rangepre h1 ∪ rangepre h2

p := λB. appre h1 B] appre h2 B
in 〈Y′, p〉

Figure 8.5: Lazy preimage mappings and operations.

with the intention to replace X ⇀pre Y instances with an approximation further on. Like a

mapping, an X ⇀pre Y has an observable domain—but computing the input-output pairs is

delayed. We therefore call these lazy preimage mappings.

Converting a mapping to a lazy preimage mapping requires constructing a delayed

application of preimage:

pre : (X ⇀ Y)⇒ (X ⇀pre Y)

pre g := 〈range g,λB. preimage g B〉
(8.32)

To apply a preimage mapping to some B, we intersect B with its range and apply its

preimage-computing function:

appre : (X ⇀pre Y)⇒ Set Y ⇒ Set X

appre 〈Y′, p〉 B := p (B ∩ Y′)
(8.33)

Preimage arrow correctness depends on this fact: that using appre to compute preimages

is the same as computing them from a mapping using preimage.

Lemma 8.15. Let g : X ⇀ Y. For all B ⊆ Y and Y′ such that range g ⊆ Y′ ⊆ Y,

preimage g (B ∩ Y′) = preimage g B.

124

Theorem 8.16 (appre computes preimages). Let g : X ⇀ Y. For all B ⊆ Y, appre (pre g) B =

preimage g B.

Proof. Expand definitions and apply Lemma 8.15 with Y′ = range g.

Figure 8.5 defines more operations on preimage mappings, including pairing, composition,

and disjoint union operations corresponding to the mapping operations in Figure 8.3. To

prove them correct, we need preimage mappings to be equivalent when they compute the

same preimages.

Definition 8.17 (preimage mapping equivalence). h1 : X ⇀pre Y and h2 : X ⇀pre Y are equivalent,

or h1 ≡ h2, when appre h1 B ≡ appre h2 B for all B ⊆ Y.

Similarly to proving arrows correct, we prove the operations in Figure 8.5 are correct by

proving that pre is a homomorphism (though not an arrow homomorphism): it distributes

over mapping operations to yield preimage mapping operations. The remainder of this section

states these distributive properties as theorems and proves them. We will use these theorems

to derive the preimage arrow from the mapping arrow.

8.5.1 Composition

To prove pre distributes over mapping composition, we can make more or less direct use of

the fact that preimage distributes over mapping composition.

Lemma 8.18 (preimage distributes over (◦map)). Let g1 : X ⇀ Y and g2 : Y ⇀ Z. For all

C ⊆ Z, preimage (g2 ◦map g1) C = preimage g1 (preimage g2 C).

Theorem 8.19 (pre distributes over (◦map)). Let g1 : X ⇀ Y and g2 : Y ⇀ Z. Then

pre (g2 ◦map g1) ≡ (pre g2) ◦pre (pre g1).

Proof. Let 〈Z′, p2〉 := pre g2 and C ⊆ Z. Starting from the right-hand side of the equivalence,

appre ((pre g2) ◦pre (pre g1)) C (8.34)

≡ let p := λC. appre (pre g1) (p2 C)
in p (C ∩ Z′)

Def of appre, (◦pre)

125

≡ appre (pre g1) (p2 (C ∩ Z′)) Def of p

≡ appre (pre g1) (appre (pre g2) C) Rewrite with appre

≡ preimage g1 (preimage g2 C) Theorem 8.16

≡ preimage (g2 ◦map g1) C Lemma 8.18

≡ appre (pre (g2 ◦map g1)) C Theorem 8.16

8.5.2 Pairing

We have less luck with pairing than with composition, because preimage does not distribute

over pairing. Fortunately, preimage distributes over unions, and over pairing and cartesian

product together.

Lemma 8.20 (preimage distributes over 〈·, ·〉map and (×)). Let g1 : X ⇀ Y1 and g2 : X ⇀

Y2. For all B1 ⊆ Y1 and B2 ⊆ Y2, preimage 〈g1, g2〉map (B1 × B2) = (preimage g1 B1) ∩

(preimage g2 B2).

Lemma 8.21 (preimage distributes over union). Let g : X ⇀ Y and B : J ⇒ Set Y be an

indexed collection of subsets of Y. Then

⋃
j∈J

preimage g (B j) = preimage g
⋃
j∈J

B j (8.35)

Theorem 8.22 (pre distributes over 〈·, ·〉map). Let g1 : X ⇀ Y1 and g2 : X ⇀ Y2. Then

pre 〈g1, g2〉map ≡ 〈pre g1, pre g2〉pre.

Proof. Let 〈Y′1, p1〉 := pre g1, 〈Y′2, p2〉 := pre g2 and B ⊆ Y1×Y2. Starting from the right-hand

side of the equivalence,

appre 〈pre g1, pre g2〉pre B (8.36)

≡ let p := λB.
⋃

〈y1,y2〉∈B
p1 {y1} ∩ p2 {y2}

in p (B ∩ (Y′1 × Y′2))

Def of appre, 〈·, ·〉pre

126

≡
⋃

〈y1,y2〉∈B∩(Y′1×Y′2)
p1 {y1} ∩ p2 {y2} Def of p

≡
⋃

〈y1,y2〉∈B∩(Y′1×Y′2)
preimage g1 {y1} ∩ preimage g2 {y2} Theorem 8.16

≡
⋃

〈y1,y2〉∈B∩(Y′1×Y′2)
preimage 〈g1, g2〉map ({y1} × {y2}) Lemma 8.20

≡
⋃

〈y1,y2〉∈B∩(Y′1×Y′2)
preimage 〈g1, g2〉map {〈y1, y2〉} Def of (×)

≡ preimage 〈g1, g2〉map (B ∩ (Y′1 × Y′2)) Lemma 8.21

≡ preimage 〈g1, g2〉map B Lemma 8.15

≡ appre (pre 〈g1, g2〉map) B Theorem 8.16

We have an unmet proof obligation from using Lemma 8.15: that range 〈g1, g2〉map ⊆ Y′1 × Y′2.

Let b ∈ range 〈g1, g2〉map. By definition of 〈·, ·〉map, there exists a ∈ domain g1∩ domain g2

such that b = 〈g1 a, g2 a〉. Thus, b ∈ Y′1 × Y′2 if and only if g1 a ∈ Y′1 and g2 a ∈ Y′2.

By definition of pre, Y′1 = range g1 and Y′2 = range g2. Because a ∈ domain g1,

g1 a ∈ range g1 = Y′1. Because a ∈ domain g2, g2 a ∈ range g2 = Y′2.

8.5.3 Disjoint Union

Like proving pre distributes over composition, the proof that it distributes over disjoint union

simply lifts a lemma about preimage to lazy preimage mappings.

Lemma 8.23 (preimage distributes over (]map)). Let g1 : X ⇀ Y and g2 : X ⇀ Y have

disjoint domains. For all B ⊆ Y, preimage (g1]map g2) B = (preimage g1 B)] (preimage g2 B).

Theorem 8.24 (pre distributes over (]map)). Let g1 : X ⇀ Y and g2 : X ⇀ Y have disjoint

domains. Then pre (g1]map g2) ≡ (pre g1)]pre (pre g2).

Proof. Let Y′1 := range g1, Y′2 := range g2 and B ⊆ Y. Starting from the right-hand side of

127

the equivalence,

appre ((pre g1)]pre (pre g2)) B (8.37)

≡ let p := λB. appre (pre g1) B] appre (pre g2) B
in p (B ∩ (Y′1 ∪ Y′2))

Def of appre, (]pre)

≡ appre (pre g1) (B ∩ (Y′1 ∪ Y′2))] appre (pre g2) (B ∩ (Y′1 ∪ Y′2)) Def of p

≡ preimage g1 (B ∩ (Y′1 ∪ Y′2))] preimage g2 (B ∩ (Y′1 ∪ Y′2)) Theorem 8.16

≡ preimage (g1]map g2) (B ∩ (Y′1 ∪ Y′2)) Lemma 8.23

≡ preimage (g1]map g2) B Lemma 8.15

≡ appre (pre (g1]map g2)) B Theorem 8.16

We have an unmet proof obligation from using Lemma 8.15: that range (g1]map g2) ⊆ Y′1∪Y′2.

Let b ∈ range (g1]map g2). By definition of (]map), there exists a ∈ domain g1]domain g2

such that if a ∈ domain g1 then b = g1 a so b ∈ range g1 = Y′1, and if a ∈ domain g2 then

b = g2 a so b ∈ range g2 = Y′2. Thus b ∈ Y′1 ∪ Y′2.

8.6 Deriving the Preimage Arrow

Now we can define an arrow that runs expressions backwards on sets of outputs. Its

computations should produce preimage mappings or be preimage mappings.

As with the mapping arrow and mappings, we cannot have X pre Y ::= X ⇀pre Y: we run

into trouble trying to define arrpre because a preimage mapping needs an observable range.

To get one, it is easiest to parameterize preimage computations on a Set X; therefore the

preimage arrow type constructor is

X pre Y ::= Set X⇒ (X ⇀pre Y) (8.38)

or Set X⇒ 〈Set Y, Set Y ⇒ Set X〉. To deconstruct the type, a preimage arrow computation

computes a range first, and returns the range and a lambda that computes preimages.

128

Figure 8.6: Comparison of arrows used as target categories. Computations f : X ⊥ Y may return an error
value ⊥. Computations g : X map Y produce partial mappings on a given A ⊆ X, leaving out inputs for which f
returns ⊥. Computations h : X pre Y produce lazy preimage mappings; i.e. h A computes preimages under g A.

Figure 8.6 illustrates this as a circuit diagram.

To use Theorem 8.6, we need to define correctness using a lift from the mapping arrow

to the preimage arrow. A simple candidate with the right type is

liftpre : (X map Y)⇒ (X pre Y)

liftpre g A := pre (g A)
(8.39)

By definition of liftpre and Theorem 8.16, for all g : X map Y, and A ⊆ X and B ⊆ Y,

appre (liftpre g A) B ≡ appre (pre (g A)) B

≡ preimage (g A) B
(8.40)

Thus, lifted mapping arrow computations correctly compute preimages under restricted

mappings, exactly as we should expect them to.

To derive the preimage arrow’s combinators in a way that makes liftpre a homomorphism,

we need preimage arrow equivalence to mean “computes the same preimages.”

Definition 8.25 (preimage arrow equivalence). Two computations h1 : X pre Y and h2 : X pre Y

are equivalent, or h1 ≡ h2, when h1 A ≡ h2 A for all A ⊆ X.

As with arrmap, defining arrpre as a composition meets (8.8). The remainder of this section

derives (&&&pre), (>>>pre), iftepre and lazypre from mapping arrow combinators, in a way that

ensures liftpre is an arrow homomorphism from the mapping arrow to the preimage arrow.

129

X pre Y ::= Set X⇒ (X ⇀pre Y)

arrpre : (X⇒ Y)⇒ (X pre Y)
arrpre := liftpre ◦ arrmap

(>>>pre) : (X pre Y)⇒ (Y pre Z)⇒ (X pre Z)
(h1 >>>pre h2) A := let h′1 := h1 A

h′2 := h2 (rangepre h′1)
in h′2 ◦pre h′1

(&&&pre) : (X pre Y)⇒ (X pre Z)⇒ (X pre Y × Z)
(h1 &&&pre h2) A := 〈h1 A, h2 A〉pre

iftepre : (X pre Bool)⇒ (X pre Y)⇒ (X pre Y)⇒ (X pre Y)
iftepre h1 h2 h3 A := let h′1 := h1 A

h′2 := h2 (appre h′1 {true})
h′3 := h3 (appre h′1 {false})

in h′2]pre h′3

lazypre : (1⇒ (X pre Y))⇒ (X pre Y)
lazypre h A := if (A = ∅) (pre ∅) (h 0 A)

liftpre : (X map Y)⇒ (X pre Y)
liftpre g A := pre (g A)

Figure 8.7: Preimage arrow definitions.

Figure 8.7 contains the resulting definitions.

8.6.1 Composition

Starting with the left-hand side of (8.9),

appre (liftpre (g1 >>>map g2) A) C (8.41)

≡ let g′1 := g1 A
g′2 := g2 (range g′1)

in appre (pre (g′2 ◦map g′1)) C

Def of liftpre, (>>>map)

≡ let g′1 := g1 A
g′2 := g2 (range g′1)

in appre ((pre g′1) ◦pre (pre g′2)) C

Theorem 8.19

≡ let h1 := liftpre g1 A
h2 := liftpre g2 (rangepre h1)

in appre (h2 ◦pre h1) C

Rewrite with liftpre

Substituting h1 for liftpre g1 and h2 for liftpre g2, and removing the application of appre from

both sides of the equivalence gives a definition of (>>>pre) (Figure 8.7) for which (8.9) holds.

130

8.6.2 Pairing

Starting with the left-hand side of (8.10),

appre (liftpre (g1 &&&map g2) A) B (8.42)

≡ appre (pre 〈g1 A, g2 A〉map) B Def of liftpre, (&&&map)

≡ appre 〈pre (g1 A), pre (g2 A)〉pre B Theorem 8.22

≡ appre 〈liftpre g1 A, liftpre g2 A〉pre B Rewrite with liftpre

Substituting h1 for liftpre g1 and h2 for liftpre g2, and removing the application of appre from

both sides of the equivalence gives a definition of (&&&pre) (Figure 8.7) for which (8.10) holds.

8.6.3 Conditional

Starting with the left-hand side of (8.11),

appre (liftpre (iftemap g1 g2 g3) A) B (8.43)

≡ let g′1 := g1 A
g′2 := g2 (preimage g′1 {true})
g′3 := g3 (preimage g′1 {false})

in appre (pre (g′2]map g′3)) B

Def of liftpre, iftemap

≡ let g′1 := g1 A
g′2 := g2 (preimage g′1 {true})
g′3 := g3 (preimage g′1 {false})

in appre ((pre g′2)]pre (pre g′3)) B

Theorem 8.24

≡ let g′1 := g1 A
g′2 := g2 (appre (pre g′1) {true})
g′3 := g3 (appre (pre g′1) {false})

in appre ((pre g′2)]pre (pre g′3)) B

Theorem 8.16

≡ let h1 := liftpre g1 A
h2 := liftpre g2 (appre h1 {true})
h3 := liftpre g3 (appre h1 {false})

in appre (h2]pre h3) B

Rewrite with liftpre

131

Substituting h1, h2 and h3 for liftpre g1, liftpre g2 and liftpre g3, and removing the application of

appre from both sides of the equivalence gives a definition of iftepre (Figure 8.7) for which (8.11)

holds.

8.6.4 Laziness

Starting with the left-hand side of (8.12),

appre (liftpre (lazymap g) A) B (8.44)

≡ let g′ := if (A = ∅) ∅ (g 0 A)
in appre (pre g′) B

Def of liftpre, lazymap

≡ let h := if (A = ∅) (pre ∅) (pre (g 0 A))
in appre h B

Dist pre over if

≡ let h := if (A = ∅) (pre ∅) (liftpre (g 0) A)
in appre h B

Rewrite with liftpre

Substituting h 0 for liftpre (g 0) and removing the application of appre from both sides of the

equivalence gives a definition for lazypre (Figure 8.7) for which (8.12) holds.

8.6.5 Correctness

Theorem 8.26 (preimage arrow correctness). liftpre is a homomorphism.

Proof. By construction.

Corollary 8.27 (semantic correctness). For all e, JeKpre ≡ liftpre JeKmap.

As with the mapping arrow, preimage arrow computations can be unruly. We would like

to assume that each h : X pre Y acts as if it computes preimages under restricted mappings.

The following equivalent property is easier to state, and makes proving the arrow laws simple.

Definition 8.28 (preimage arrow law). Let h : X pre Y. If there exists a g : X map Y such that

h ≡ liftpre g, then h obeys the preimage arrow law.

132

By homomorphism of liftpre, preimage arrow combinators preserve this law. It is therefore

safe to assume that the preimage arrow law holds for all h : X pre Y.

Theorem 8.29. liftpre is an arrow epimorphism.

Proof. Follows from Theorem 8.26 and restriction of X pre Y to instances for which the preimage

arrow law (Definition 8.28) holds.

Corollary 8.30. arrpre, (&&&pre), (>>>pre), iftepre and lazypre define an arrow.

8.7 Preimages Under Partial, Probabilistic Functions

We have defined everything on the top of our roadmap:

X ⊥ Y
liftmap−−−→ X map Y

liftpre−−−→ X pre Y
η⊥∗

y yηmap∗

yηpre∗
X ⊥* Y −−−−→liftmap∗

X map* Y −−−→liftpre∗
X pre* Y

(8.45)

and proved that liftmap and liftpre are homomorphisms. At this point, we can interpret an

expression e in three ways using the same semantic function for first-order programs:

1. As JeK⊥ : X ⊥ Y, an intensional function that may raise errors.

2. As JeKmap : X map Y, which produces mappings, or extensional functions, on a restricted

domain (correct by homomorphism of liftmap).

3. As JeKpre : X pre Y, which computes preimages under mappings produced by JeKmap

(correct by homomorphism of liftpre).

These interpretations have two shortcomings:

1. They do not pass an implicit random source through e’s subexpressions.

2. Using them requires knowing the set of inputs on which e terminates. If JeK⊥ does

not terminate on just one input in A ⊆ X, neither JeKmap A nor JeKpre A terminates.

In this section, we define the arrows on the bottom of the roadmap (8.45) by transforming the

arrows on the top into arrows that pass an implicit random source and always terminate. Their

133

correctness again comes down to proving that the lifts between them are homomorphisms,

though guaranteed termination needs special treatment.

8.7.1 Motivation

Probabilistic functions that may not terminate, but do so with probability 1, are common.

For example, suppose random retrieves numbers in [0, 1] from an implicit random source. The

following probabilistic function defines the well-known geometric distribution by counting

the number of times random < p:

geometric p := if (random < p) 0 (1 + geometric p) (8.46)

For any p > 0, geometric p may not terminate, but the probability of never taking the “else”

branch is (1− p) · (1− p) · (1− p) · · · · = 0. Thus, geometric p terminates with probability 1.

Suppose we interpret geometric p as h : Ω pre N, a preimage arrow computation from

random sources ω ∈ Ω to naturals, and we have a probability measure P : Set Ω ⇀ [0, 1].

The probability of N ⊆ N is then P (appre (h Ω) N). To compute this, we must

• Ensure appre (h Ω) N terminates.

• Ensure each ω ∈ Ω contains enough random numbers.

• Determine how random indexes numbers in ω.

Ensuring appre (h Ω) N terminates is the most difficult, but doing the other two will provide

structure that makes it much easier.

8.7.2 Threading and Indexing

To ensure random sources contain enough numbers, they should be infinite.

Typically, to thread a random source ω ∈ Ω through computations, ω is made an infinite

stream. Each computation receives and returns an ω. The interpretation of random as a

computation takes ω’s head and returns its tail. Combinators pass ω unchanged to one

subcomputation, and pass the resulting ω′ unchanged to the next. This is typically done

134

with a monad, and it imposes a total order on evaluation.

A little-used alternative that imposes only a partial order makes ω an infinite binary

tree. Each computation receives an ω but does not return one. The interpretation of random

as a computation simply returns ω’s root value. Combinators ignore the root, split ω into a

left subtree ωleft and a right subtree ωright, and pass each to their subcomputations.

Arrows can thread a stream or a tree in the same manner, but the resulting combinators

have large definitions, and are conceptually difficult and hard to manipulate. Fortunately, it

is relatively easy to assign each arrow computation a unique index into a tree-shaped random

source and pass the random source unchanged. To do this, we need an indexing scheme.

Definition 8.31 (binary indexing scheme). Let J be an index set, j0 ∈ J a distinguished

element, and left : J ⇒ J and right : J ⇒ J be total, injective functions. If for all j ∈ J,

j = next j0 for some finite composition next of left and right, then J, j0, left and right define a

binary indexing scheme.

For example, let J be the set of lists of {0, 1}, j0 := 〈〉, and left j := 〈0, j〉 and right j := 〈1, j〉.

Alternatively, let J be the set of dyadic rationals in (0, 1) (i.e. those with power-of-two

denominators), j0 := 1
2 and

left (p/q) := (p− 1
2) / q

right (p/q) := (p + 1
2) / q

(8.47)

With this alternative, left-to-right evaluation order can be made to correspond with the

natural order (<) over J.

In any case, J is countable, and can be thought of as a set of indexes into an infinite

binary tree. Values of type J → A encode such trees of values in A as total mappings (i.e.

infinite vectors).

8.7.3 Applicative, Associative Store Transformer

We thread infinite binary trees through bottom, mapping, and preimage arrow computations

by defining an arrow transformer: a type constructor that receives and produces an

135

x a∗ y ::= AStore s (x a y) ::= J⇒ (〈s, x〉 a y)

arra∗ : (x ⇒ y)⇒ (x a∗ y)
arra∗ := ηa∗ ◦ arra

(>>>a∗) : (x a∗ y)⇒ (y a∗ z)⇒ (x a∗ z)
(k1 >>>a∗ k2) j :=
(arra fst &&&a k1 (left j)) >>>a k2 (right j)

(&&&a∗) : (x a∗ y1)⇒ (x a∗ y2)⇒ (x a∗ 〈y1, y2〉)
(k1 &&&a∗ k2) j := k1 (left j) &&&a k2 (right j)

iftea∗ : (x a∗ Bool)⇒ (x a∗ y)⇒ (x a∗ y)⇒ (x a∗ y)
iftea∗ k1 k2 k3 j := iftea (k1 (left j))

(k2 (left (right j)))
(k3 (right (right j)))

lazya∗ : (1⇒ (x a∗ y))⇒ (x a∗ y)
lazya∗ k j := lazya λ0. k 0 j

ηa∗ : (x a y)⇒ (x a∗ y)
ηa∗ f j := arra snd >>>a f

Figure 8.8: AStore (associative store) arrow transformer definitions.

arrow type, and combinators for arrows of the produced type. The applicative store arrow

transformer’s type constructor takes a store type s and an arrow type x a y:

AStore s (x a y) ::= J⇒ (〈s, x〉 a y) (8.48)

Reading the type, we see that computations receive an index j ∈ J and produce a computation

that receives a store as well as an x. The lift from x a y to AStore s (x a y) extracts the x

from the input pair and sends it on to the original computation, ignoring j:

ηa∗ : (x a y)⇒ AStore s (x a y)

ηa∗ f j := arra snd >>>a f
(8.49)

Figure 8.8 defines the remaining combinators. Each subcomputation receives left j, right j,

or some other unique binary index. We thus think of programs interpreted as AStore arrows

as being completely unrolled into an infinite binary tree, with each subcomputation labeled

with its tree index.

8.7.4 Partial, Probabilistic Programs

To interpret probabilistic programs, we put an infinite random tree in the store.

Definition 8.32 (random source). Let Ω := J→ [0, 1]. A random source is any infinite

136

j0

0.07552...

left j0

0.88581...

right j0

0.89752...

left (left j0)

0.37930...

right (left j0)

0.98702...

left (right j0)

0.81977...

right (right j0)

0.62864...

Figure 8.9: An ω ∈ Ω is an infinite binary tree of random values encoded as a total mapping from tree
indexes in J to real numbers in [0, 1].

binary tree ω ∈ Ω.

Figure 8.9 illustrates a single ω ∈ Ω.

To interpret partial programs, we need to ensure termination. One ultimately im-

plementable way is to have the store dictate which branch of each conditional, if any, is

taken.

Definition 8.33 (branch trace). A branch trace is any t : J→ Bool⊥ such that t j = true

or t j = false for no more than finitely many j ∈ J.

Let T ⊂ J→ Bool⊥ be the largest set of branch traces.

Now X a∗ Y ::= AStore (Ω×T) (X a Y) is an AStore arrow type whose computations

thread both random stores and branch traces.

For probabilistic programs, we define a combinator randoma∗ that returns the number

at its tree index in the random source, and extend J·Ka∗ for arrows a∗ for which randoma∗ is

137

defined:

randoma∗ : X a∗ [0, 1]

randoma∗ j := arra (fst >>> fst >>> π j)

JrandomKa∗ :≡ randoma∗

(8.50)

Here, π j projects its argument onto the argument’s jth coordinate, and is defined by

π : J⇒ (J→ X)⇒ X

π j f := f j
(8.51)

So π j is analogous to fst and snd for pairs, but for vectors at index j.

For partial programs, we define a combinator that reads branch traces, and an if-then-else

combinator that ensures its test expression agrees with the trace:

brancha∗ : X a∗ Bool

brancha∗ j := arra (fst >>> snd >>> π j)

ifte⇓a∗ : (x a∗ Bool)⇒ (x a∗ y)⇒ (x a∗ y)⇒ (x a∗ y)

ifte⇓a∗ k1 k2 k3 j := iftea ((k1 (left j) &&&a brancha∗ j) >>>a arra agrees)
(k2 (left (right j)))
(k3 (right (right j)))

(8.52)

where agrees 〈b1, b2〉 := if (b1 = b2) b1 ⊥. Thus, if the branch trace does not agree with the

test expression, it returns an error. We define a new semantic function J·K⇓a∗ by replacing the

if rule in J·Ka∗ :

Jif ec et ef K⇓a∗ :≡ ifte⇓a∗ JecK⇓a∗ Jlazy etK⇓a∗ Jlazy ef K⇓a∗ (8.53)

To have an AStore computation k compute something meaningful, we must either run

k on every branch trace in T and filter out ⊥, or somehow find inputs 〈〈ω, t〉, a〉 for which

agrees never returns ⊥. Preimage AStore arrows do the former by first computing an image,

and the latter by computing preimages of sets that cannot contain ⊥.

138

Definition 8.34 (terminating, probabilistic arrows). Define

X ⊥* Y ::= AStore (Ω × T) (X ⊥ Y)

X map* Y ::= AStore (Ω × T) (X map Y)

X pre* Y ::= AStore (Ω × T) (X pre Y)

(8.54)

as the type constructors for the bottom*, mapping* and preimage* arrows.

8.7.5 Correctness

We have two arrow lifts to prove homomorphic: one from pure computations to effectful (i.e.

from those that do not access the store to those that do), and one from effectful computations

to effectful. For both, we need AStore arrow equivalence to be more extensional.

Definition 8.35 (AStore arrow equivalence). Two AStore arrow computations k1 and k2 are

equivalent, or k1 ≡ k2, when k1 j ≡ k2 j for all j ∈ J.

Pure Expressions

Proving ηa∗ is a homomorphism proves J·Ka∗ correctly interprets pure expressions. Because

AStore accepts any arrow type x a y, we can do so using only the arrow laws. From here

on, we assume every AStore arrow’s base type’s combinators obey the arrow laws listed in

Section 8.2.1.

Theorem 8.36 (pure AStore arrow correctness). ηa∗ is a homomorphism.

Proof. Defining arra∗ as a composition clearly meets the first homomorphism law (8.8). For

homomorphism laws (8.9)–(8.11), start from the right side, expand definitions, and use arrow

laws (8.14)–(8.16) to factor out arra snd.

For (8.12), additionally β-reduce within the outer thunk, then use the lazy distributive

law (8.17) to extract arra snd.

Corollary 8.37 (pure semantic correctness). For all pure e, JeKa∗ ≡ ηa∗ JeKa.

139

Effectful Expressions

To prove all interpretations of effectful expressions correct, we need a lift between AStore

arrows. Let x a∗ y ::= AStore s (x a y) and x b∗ y ::= AStore s (x b∗ y). Define

liftb∗ : (x a∗ y)⇒ (x b∗ y)

liftb∗ f j := liftb (f j)
(8.55)

where liftb : (x a y) ⇒ (x b y). A commutative diagram shows the relationships more

clearly:

x a y
liftb−−−→ x b y

ηa∗

y yηb∗
x a∗ y −−−→

liftb∗
x b∗ y

(8.56)

At minimum, we should expect to produce equivalent x b∗ y computations from x a y

computations whether a lift or an η is done first.

Theorem 8.38 (natural transformation). If liftb is an arrow homomorphism, then (8.56)

commutes.

Proof. Expand definitions and apply homomorphism laws (8.9) and (8.8) for liftb:

liftb∗ (ηa∗ f) ≡ λ j. liftb (arra snd >>>a f) (8.57)

≡ λ j. liftb (arra snd) >>>b liftb f

≡ λ j. arrb snd >>>b liftb f

≡ ηb∗ (liftb f)

Theorem 8.39 (effectful AStore arrow correctness). If liftb is an arrow homomorphism from

a to b, then liftb∗ is an arrow homomorphism from a∗ to b∗.

Proof. For each homomorphism property (8.8)–(8.12), expand the definitions of liftb∗ and the

combinator, distribute liftb, rewrite in terms of liftb∗ , and rewrite using the definition of the

140

combinator. For example, for distribution over pairing:

liftb∗ (k1 &&&a∗ k2) j ≡ liftb ((k1 &&&a∗ k2) j) (8.58)

≡ liftb (k1 (left j) &&&a k2 (right j))

≡ liftb (k1 (left j)) &&&b liftb (k2 (right j))

≡ (liftb∗ k1) (left j) &&&b (liftb∗ k2) (right j)

≡ (liftb∗ k1 &&&b∗ liftb∗ k2) j

The remaining properties are similar, though distributing liftb∗ over lazya∗ requires defining

an extra thunk in the last step.

Corollary 8.40 (effectful semantic correctness). If liftb is an arrow homomorphism, then

for all expressions e, JeKb∗ ≡ liftb∗ JeKa∗ and JeK⇓b∗ ≡ liftb∗ JeK⇓a∗.

Corollary 8.41 (mapping* and preimage* arrow correctness). The following diagram com-

mutes:

X ⊥ Y
liftmap−−−→ X map Y

liftpre−−−→ X pre Y
η⊥∗

y yηmap∗

yηpre∗
X ⊥* Y −−−−→liftmap∗

X map* Y −−−→liftpre∗
X pre* Y

(8.59)

Further, liftmap∗ and liftpre∗ are arrow homomorphisms.

As with the correctness of interpretations using the mapping and preimage arrows, the

correctness of interpretations using the mapping* and preimage* arrows follows from liftmap∗

and liftpre∗ being arrow homomorphisms, and Theorem 8.6.

Corollary 8.42 (effectful semantic correctness). For all expressions e,

JeKpre∗ ≡ liftpre∗ (liftmap∗ JeK⊥∗)

JeK⇓pre∗ ≡ liftpre∗ (liftmap∗ JeK⇓⊥∗)
(8.60)

Unfortunately, because a statement such as “k1 ≡ k2” implies k1 terminates if and only

if k2 terminates, we cannot use the same tactics to prove an asymmetric statement such as

141

“k2 terminates with the correct answer whenever k1 terminates; otherwise returns ⊥.” For

these kinds of termination theorems, we need to reason about the interaction of programs

with their supplied branch traces.

8.7.6 Termination

Here, we relate JeK⇓a∗ computations, which are interpreted using ifte⇓a∗ and should always

terminate, with JeKa∗ computations, which are interpreted using iftea∗ and may not terminate.

To do so, we need to find the largest domain on which JeK⇓a∗ and JeKa∗ should agree.

Definition 8.43 (maximal domain). A computation’s maximal domain is the largest A∗

for which

• For f : X ⊥ Y, domain⊥ f A∗ = A∗.

• For g : X map Y, domain (g A∗) = A∗.

• For h : X pre Y, domainpre (h A∗) = A∗.

The maximal domain of k : X a∗ Y is that of k j0.

Because the above statements imply termination, A∗ is a subset of the largest domain

for which the computations terminate. It is not too hard to show (but is a bit tedious) that

lifting computations preserves the maximal domain; e.g. the maximal domain of liftmap f is

the same as f’s, and the maximal domain of liftpre∗ g is the same as g’s.

To ensure maximal domains exist, we need the domain operations above to have certain

properties. For the mapping arrow, we must first make the intuition that computations “act

as if they return restricted mappings” more precise. First, mapping restriction is defined by

restrict : (X ⇀ Y)⇒ Set X⇒ (X ⇀ Y)

restrict g A := λa ∈ (A ∩ domain g). g a
(8.61)

Theorem 8.44 (mapping arrow restriction). Let g : X map Y, and A⇓ ⊆ X be the largest for

which g A⇓ terminates. For all A ⊆ A⇓, g A = restrict (g A⇓) A.

142

Proof. By the mapping arrow law (Definition 8.12) there is an f : X ⊥ Y such that g ≡ liftmap f.

Thus,

restrict (g A⇓) A ≡ restrict (liftmap f A⇓) A (8.62)

≡ restrict ({〈a, b〉 ∈ mapping f A⇓ | b 6= ⊥}) A

≡ {〈a, b〉 ∈ mapping f A | b 6= ⊥}

≡ liftmap f A

≡ g A

Theorem 8.45 (domain closure operators). If f : X ⊥ Y, g : X map Y and h : X pre Y, then

domain⊥ f, domain ◦ g, and domainpre ◦ h are monotone, decreasing, and idempotent in the

subdomains on which they terminate.

Proof. These properties follow from the same properties of selection, restriction, and of

preimages of images.

Now we can relate JeK⇓⊥∗ computations to JeK⊥∗ computations. First, for any input for

which JeK⊥∗ terminates, there should be a branch trace for which JeK⇓⊥∗ returns the correct

output; it should otherwise return ⊥.

Theorem 8.46. Let f := JeK⊥∗ : X ⊥* Y with maximal domain A∗, and f ′ := JeK⇓⊥∗. For all

〈〈ω, t〉, a〉 ∈ A∗, there exists a T′ ⊆ T such that

• If t′ ∈ T′ then f ′ j0 〈〈ω, t′〉, a〉 = f j0 〈〈ω, t〉, a〉.

• If t′ ∈ T\T′ then f ′ j0 〈〈ω, t′〉, a〉 = ⊥.

Proof. Define T′ as the set of all t′ ∈ J → Bool⊥ such that t′ j = z if the subcomputation

with index j is an if whose test returns z. Because f j0 〈〈ω, t〉, a〉 terminates, t′ j 6= ⊥ for at

most finitely many j, so each t′ ∈ T.

Let t′ ∈ T′. Because the test of every if subcomputation at index j agrees with t′ j and f

ignores branch traces, f ′ j0 〈〈ω, t′〉, a〉 = f j0 〈〈ω, t〉, a〉.

143

Let t′ ∈ T\T′. There exists an if subexpression with a test that does not agree with t′;

therefore f ′ j0 〈〈ω, t′〉, a〉 = ⊥.

Next, for any input for which JeK⊥∗ does not terminate or returns ⊥, JeK⇓⊥∗ should return

⊥. Proving this is a little easier if we first identify subsets of J that correspond with finite

prefixes of an infinite binary tree.

Definition 8.47 (index prefix/suffix). A finite J′ ⊂ J is an index prefix if J′ = {j0} or, for

some index prefix J′′ and j ∈ J′′, J′ = J′′] {left j} or J′ = J′′] {right j}. The corresponding

index suffix is J\J′.

It is not hard to show that every index suffix is closed under left and right.

For a given t ∈ T, an index prefix J′ serves as a convenient bounding set for the finitely

many indexes j for which t j 6= ⊥. Applying left and/or right repeatedly to any j ∈ J′ eventually

yields a j′ ∈ J\J′, for which t j′ = ⊥.

Theorem 8.48. Let f := JeK⊥∗ : X ⊥* Y with maximal domain A∗, and f ′ := JeK⇓⊥∗. For all

a ∈ ((Ω × T)× X)\A∗, f ′ j0 a = ⊥.

Proof. Let t := snd (fst a) be the branch trace element of a.

Suppose f j0 a terminates. If an if subcomputation’s test does not agree with t, then

f ′ j0 a = ⊥. If every if’s test agrees, f ′ j0 a = f j0 a = ⊥.

Suppose f j0 a does not terminate. The set of all indexes j for which t j 6= ⊥ is contained

within an index prefix J′. By hypothesis, there is an if subcomputation at some index j′ such

that j′ ∈ J\J′. Because t j′ = ⊥, f ′ j0 a = ⊥.

Corollary 8.49. For all e, the maximal domain of JeK⇓⊥∗ is a subset of that of JeK⊥∗.

Corollary 8.50. Let f ′ := JeK⇓⊥∗ : X ⊥* Y with maximal domain A∗, and f := JeK⊥∗. For all

a ∈ A∗, f ′ j0 a = f j0 a.

144

Corollary 8.51 (correct computation everywhere). Let JeK⇓⊥∗ : X ⊥* Y have maximal domain

A∗, and X′ := (Ω × T)× X. For all a ∈ X′, A ⊆ X′ and B ⊆ Y,

JeK⇓⊥∗ j0 a = if (a ∈ A∗) (JeK⊥∗ j0 a) ⊥

JeK⇓map∗ j0 A = JeKmap∗ j0 (A ∩ A∗)

appre (JeK⇓pre∗ j0 A) B = appre (JeKpre∗ j0 (A ∩ A∗)) B

(8.63)

In other words, preimages computed using J·K⇓pre∗ always terminate, never include inputs

that give rise to errors or nontermination, and are correct.

8.8 Output Probabilities and Measurability

Typically, for g : Ω ⇀ Y, the probability of B ⊆ Y is P (preimage g B), where P : Set Ω ⇀ [0, 1]

assigns probabilities to subsets of Ω.

A mapping* computation’s domain is (Ω × T)× X, not Ω. We assume each ω ∈ Ω is

randomly chosen, but not each t ∈ T nor each x ∈ X; therefore, neither T nor X should affect

the probabilities of output sets. We clearly must measure projections of preimage sets, or

P (image (fst >>> fst) A) for preimage sets A ⊆ (Ω × T)× X.

Not all preimage sets have sensible measures. Sets that do are called measurable.

Computing preimages and projecting them onto Ω must preserve measurability.

Our main results are the best we could hope for. First, the interpretations of all

expressions are measurable, regardless of nontermination.

Theorem 8.52. For all expressions e, JeK⇓map∗ is measurable.

Second, projecting a program’s preimages onto Ω results in a measurable set.

Theorem 8.53. If A ⊆ (Ω×T)×{〈〉} is measurable, then image (fst >>> fst) A is measurable.

The proofs of these theorems are in Appendix A.

145

idpre A := 〈A,λB.B〉
constpre b A := 〈{b},λB. if (B = ∅) ∅ A〉

fstpre A := 〈proj1 A, unproj1 A〉
sndpre A := 〈proj2 A, unproj2 A〉
πpre j A := 〈proj j A, unproj j A〉

proj : J⇒ Set (J→ X)⇒ Set X
proj j A := image (π j) A

unproj : J⇒ Set (J→ X)⇒ Set X⇒ Set (J→ X)
unproj j A B := preimage (mapping (π j) A) B

≡ A ∩
∏

i∈J if (j = i) B (proj j A)

proj1 : Set 〈X1,X2〉 ⇒ Set X1

proj1 := image fst

proj2 : Set 〈X1,X2〉 ⇒ Set X2

proj2 := image snd

unproj1 : Set 〈X1,X2〉 ⇒ Set X1 ⇒ Set 〈X1,X2〉
unproj1 A A1 := preimage (mapping fst A) A1

≡ A ∩ (A1 × proj2 A)

unproj2 : Set 〈X1,X2〉 ⇒ Set X2 ⇒ Set 〈X1,X2〉
unproj2 A A2 := preimage (mapping snd A) A2

≡ A ∩ (proj1 A× A2)

Figure 8.10: Preimage arrow lifts needed to interpret probabilistic programs.

8.9 Approximating Semantics

If we were to confine preimage computation to finite sets, we could implement the preimage

arrow directly. But we would like something that works efficiently on infinite sets, even if

it means approximating. We focus on a specific method: approximating product sets with

covering rectangles.

8.9.1 Implementable Lifts

We would like to be able to compute preimages of uncountable sets, such as real intervals—but

preimage (g A) B is uncomputable for most mappings g and uncountable sets A and B no

matter how cleverly they are represented. Further, because pre, liftpre and arrpre are ultimately

defined in terms of preimage, we cannot implement them.

Fortunately, we need to apply arrpre only to certain functions. Figure 8.1 (which defines

J·Ka) lifts id, const b, fst and snd. Section 8.7.4, which defines the combinators used to interpret

partial, probabilistic programs, lifts π j and agrees. Measurable functions made available as

language primitives, such as arithmetic, must be lifted to the preimage arrow—though to

maintain generality, we put off lifting arithmetic functions until Chapter 9.

Figure 8.10 gives explicit definitions for arrpre id, arrpre fst, arrpre snd, arrpre (const b) and

146

arrpre (π j). (We will deal with agrees separately.) To implement them, we must model sets

in a way that ensures A = ∅ is decidable, and the following are representable and finitely

computable:

• A ∩ B, ∅, {true}, {false} and {b} for every const b

• A1 × A2, proj1 A and proj2 A

• J→ X, proj j A and unproj j A B

(8.64)

Before addressing representation and computability, we need to define families of sets under

which these operations are closed.

Definition 8.54 (rectangular family). Rect X denotes the rectangular family of subsets

of X. Rect X must contain ∅ and X, and be closed under finite intersections. Products must

satisfy the following rules:

Rect 〈X1,X2〉 = (Rect X1)� (Rect X2) (8.65)

Rect (J→ X) = (Rect X)�J (8.66)

where the following operations lift cartesian products to sets of sets:

A1 �A2 := {A1 × A2 | A1 ∈ A1,A2 ∈ A2} (8.67)

A�J :=
⋃

J′⊂J finite

{∏
j∈J Aj

∣∣∣ Aj ∈ A, j ∈ J′ ⇐⇒ Aj ⊂
⋃
A
}

(8.68)

We additionally define Rect Bool ::= P Bool. It is easy to show the collection of all

rectangular families is closed under products, projections, and unproj.

Further, all of the operations in (8.64) can be exactly implemented if finite sets are

modeled directly, sets in ordered spaces (such as R) are modeled by intervals, and sets in

Rect 〈X1,X2〉 are modeled by pairs of type 〈Rect X1,Rect X2〉. By (8.68), sets in Rect (J→ X)

have no more than finitely many projections that are proper subsets of X. They can be

modeled by finite binary trees, where unrepresented projections are implicitly X. Figure 8.11

illustrates a model of a member of Rect (J→ [0, 1]); i.e. a rectangular subset of Ω.

147

j0

[0,¼)

left j0

(¾,1]
Ω

Ω Ω

Figure 8.11: A finite binary tree model of unproj (left j0) (unproj j0 Ω [0, 1
4)) (3

4 , 1]. Because of Ω’s self-
similarity, and because rectangles of J→ [0, 1] are defined so that only finitely many projections are not [0, 1],
every rectangular subset of Ω has a finite binary tree model.

The set of branch traces T is nonrectangular, but we can model T subsets by J→ Bool⊥

rectangles, implicitly intersected with T.

Theorem 8.55 (T model). If T′ ∈ Rect (J→ Bool⊥) and j ∈ J, then proj j T′ = proj j (T′∩T).

If B ⊆ Bool⊥, then unproj j (T′ ∩ T) B = unproj j T′ B ∩ T.

Proof. Subset case is by projection monotonicity. For superset, let b ∈ proj j T′. Define t by

t j′ = b if j′ = j; t j′ = ⊥ if ⊥ ∈ proj j′ T′; otherwise t j′ ∈ proj j′ T′.

By construction, t ∈ T′. For no more than finitely many j′ ∈ J, t j′ 6= ⊥, so t ∈ T. Thus,

there exists a t ∈ T′ ∩ T such that t j = b, so b ∈ proj j (T′ ∩ T).

The statement about unproj is an easy corollary.

8.9.2 Approximate Preimage Mapping Operations

Implementing lazypre (defined in Figure 8.7) requires computing pre, but only for the empty

mapping, which is trivial: pre ∅ ≡ 〈∅,λB.∅〉. Implementing the other combinators requires

(◦pre), 〈·, ·〉pre and (]pre).

From the preimage mapping definitions (Figure 8.5), we see that appre is defined using

148

(∩) and that (◦pre) is defined using appre, so (◦pre) is directly implementable. Unfortunately,

we hit a snag with 〈·, ·〉pre: it loops over possibly uncountably many members of B in a big

union. At this point, we need to approximate.

Theorem 8.56 (pair preimage approximation). Let g1 : X ⇀ Y1 and g2 : X ⇀ Y2. For all

B ⊆ Y1 × Y2, preimage 〈g1, g2〉map B ⊆ preimage g1 (proj1 B) ∩ preimage g2 (proj2 B).

Proof. By monotonicity of preimages and projections, and by Lemma 8.20.

It is not hard to use Theorem 8.56 to show that

〈·, ·〉′pre : (X ⇀pre Y1)⇒ (X ⇀pre Y2)⇒ (X ⇀pre Y1 × Y2)

〈〈Y′1, p1〉, 〈Y′2, p2〉〉′pre := 〈Y′1 × Y′2,λB. p1 (proj1 B) ∩ p2 (proj2 B)〉
(8.69)

computes covering rectangles of preimages under pairing.

For (]pre), we need an approximating replacement for (∪) under which rectangular

families are closed. In other words, we need a lattice join (∨) with respect to (⊆), with the

following additional properties:

(A1 × A2) ∨ (B1 × B2) = (A1 ∨ B1)× (A2 ∨ B2)

(
∏

j∈J Aj) ∨ (
∏

j∈J Bj) =
∏

j∈J Aj ∨ Bj

(8.70)

If for every nonproduct type X, Rect X is closed under (∨), then rectangular families are

clearly closed under (∨). Further, for any A and B, A ∪ B ⊆ A ∨ B.

Replacing each union in (]pre) with join yields the overapproximating (]′pre):

(]′pre) : (X ⇀pre Y)⇒ (X ⇀pre Y)⇒ (X ⇀pre Y)

h1]′pre h2 := let Y′ := rangepre h1 ∨ rangepre h2

p := λB. appre h1 B ∨ appre h2 B
in 〈Y′, p〉

(8.71)

To interpret programs that may not terminate, or that terminate with probability 1,

we need to approximate ifte⇓pre∗ (8.52), which is defined in terms of agrees. Defining its

approximation in terms of an approximation of agrees would not allow us to preserve the fact

149

that expressions interpreted using ifte⇓pre∗ always terminate. The best approximation of the

preimage of Bool under agrees (as a mapping) is Bool× Bool, which contains 〈true, false〉 and

〈false, true〉, and thus would not constrain the test to agree with the branch trace.

A lengthy (elided) sequence of substitutions to the defining expression for ifte⇓pre∗ results

in an agrees-free equivalence:

ifte⇓pre∗ k1 k2 k3 j A ≡ let 〈Ck, pk〉 := k1 j1 A
〈Cb, pb〉 := branchpre∗ j A

C2 := Ck ∩ Cb ∩ {true}
C3 := Ck ∩ Cb ∩ {false}
A2 := pk C2 ∩ pb C2

A3 := pk C3 ∩ pb C3

in k2 j2 A2]pre k3 j3 A3

(8.72)

where j1 = left j and so on. Unfortunately, a straightforward approximation of this would still

take unnecessary branches, when A2 or A3 overapproximates ∅.

Cb is the branch trace projection at j (with ⊥ removed). The set of indexes for which

Cb is either {true} or {false} is finite, so it is bounded by an index prefix, outside of which

branch trace projections are {true, false}. Therefore, if the approximating ifte⇓′pre∗ takes no

branches when Cb = {true, false}, but approximates with a finite computation, expressions

interpreted using ifte⇓′pre∗ will always terminate.

We need an overapproximation for the non-branching case. In the exact semantics,

the returned preimage mapping’s range is a subset of Y, and it returns subsets of A2] A3.

Therefore, ifte⇓′pre∗ may return 〈Y,λB.A2 ∨ A3〉 when Cb = {true, false}. We cannot refer

to the type Y in the function definition, so we represent it using > in the approximating

semantics. Implementations can model it by a singleton “universe” instance for every Rect Y.

Figure 8.12b defines the final approximating preimage arrow. This arrow, the lifts in

Figure 8.10, and the semantic function J·Ka in Figure 8.1 define an approximating semantics

for partial, probabilistic programs.

150

X ⇀′pre Y ::= 〈Rect Y,Rect Y ⇒ Rect X〉

∅′pre := 〈∅,λB.∅〉

ap′pre : (X ⇀′pre Y)⇒ Rect Y ⇒ Rect X
ap′pre 〈Y′, p〉 B := p (B ∩ Y′)

(◦′pre) : (Y ⇀′pre Z)⇒ (X ⇀′pre Y)⇒ (X ⇀′pre Z)
〈Z′, p2〉 ◦′pre h1 := 〈Z′,λC. ap′pre h1 (p2 C)〉

〈·, ·〉′pre : (X ⇀′pre Y1)⇒ (X ⇀′pre Y2)⇒ (X ⇀′pre Y1 × Y2)
〈〈Y′1, p1〉, 〈Y′2, p2〉〉′pre :=
〈Y′1 × Y′2,λB. p1 (proj1 B) ∩ p2 (proj2 B)〉

(]′pre) : (X ⇀′pre Y)⇒ (X ⇀′pre Y)⇒ (X ⇀′pre Y)
〈Y′1, p1〉]′pre 〈Y′2, p2〉 :=
〈Y′1 ∨ Y′2,λB. ap′pre 〈Y′1, p1〉 B ∨ ap′pre 〈Y′2, p2〉 B〉

(a) Definitions for preimage mappings that compute rectangular covers.

X pre
′ Y ::= Rect X⇒ (X ⇀′pre Y)

(>>>′pre) : (X pre
′ Y)⇒ (Y pre

′ Z)⇒ (X pre
′ Z)

(h1 >>>′pre h2) A := let h′1 := h1 A
h′2 := h2 (range′pre h′1)

in h′2 ◦′pre h′1

(&&&′pre) : (X pre
′ Y1)⇒ (X pre

′ Y2)⇒ (X pre
′〈Y1,Y2〉)

(h1 &&&′pre h2) A := 〈h1 A, h2 A〉′pre

ifte′pre : (X pre
′ Bool)⇒ (X pre

′ Y)⇒ (X pre
′ Y)⇒ (X pre

′ Y)
ifte′pre h1 h2 h3 A := let h′1 := h1 A

h′2 := h2 (ap′pre h′1 {true})
h′3 := h3 (ap′pre h′1 {false})

in h′2]′pre h′3

lazy′pre : (1⇒ (X pre
′ Y))⇒ (X pre

′ Y)
lazy′pre h A := if (A = ∅) ∅′pre (h 0 A)

(b) Approximating preimage arrow, defined using approximating preimage mappings.

X pre*
′ Y ::= AStore (Ω × T) (X pre

′ Y)

random′pre∗ : X pre*
′[0, 1]

random′pre∗ j :=
fstpre >>>′pre fstpre >>>′pre πpre j

branch′pre∗ : X pre*
′ Bool

branch′pre∗ j :=
fstpre >>>′pre sndpre >>>′pre πpre j

fst′pre∗ := η′pre∗ fstpre; · · ·

ifte⇓′pre∗ : (X pre*
′ Bool)⇒ (X pre*

′ Y)⇒ (X pre*
′ Y)⇒ (X pre*

′ Y)

ifte⇓′pre∗ k1 k2 k3 j :=
let 〈Ck, pk〉 := k1 (left j) A
〈Cb, pb〉 := branchpre∗ j A

C2 := Ck ∩ Cb ∩ {true}
C3 := Ck ∩ Cb ∩ {false}
A2 := pk C2 ∩ pb C2

A3 := pk C3 ∩ pb C3

in case Cb
{true, false} −→ 〈>,λB.A2 ∨ A3〉
{true} −→ k2 (left (right j)) A2

{false} −→ k3 (right (right j)) A3

(c) Preimage* arrow combinators for probabilistic choice and guaranteed termination. Figure 8.8 (AStore
arrow transformer) defines η′pre∗ , (>>>′pre∗), (&&&

′
pre∗), ifte′pre∗ and lazy′pre∗ .

Figure 8.12: Implementable arrows that approximate preimage arrows. Specific lifts such as fstpre := arrpre fst
are computable (see Figure 8.10), but arr′pre is not.

8.9.3 Correctness

From here on, J·K⇓
′
pre∗ interprets programs as approximating preimage* arrow computations

using ifte⇓′pre∗ . The following theorems assume h := JeK⇓pre∗ : X pre* Y and h′ := JeK⇓′pre∗ : X pre* ′ Y

151

for some expression e.

To use structural induction on the interpretation of e, we need a theorem that allows

representing it as a finite expression (Definition A.28). Because ifte⇓′pre∗ does not branch

when either branch could be taken, an equivalent finite expression exists for each rectangular

domain subset A.

Theorem 8.57 (equivalent finite expression). For all A ∈ Rect 〈〈Ω,T〉,X〉, there exists a

finite expression e′ for which, if h′′ := Je′K⇓′pre∗, then ap′pre (h′′ j0 A) B = ap′pre (h′ j0 A) B for

all B ∈ Rect Y.

Proof. Let T′ := proj2 (proj1 A), and let the index prefix J′ contain every j′ for which

(proj j′ T′)\{⊥} is either {true} or {false}. To construct e′, exhaustively apply first-order

functions in e, but replace any if e1 e2 e3 whose index is not in J′ with the equivalent

expression if e1 ⊥ ⊥. Because e is well-defined, recurrences must be guarded by if, so this

process terminates after finitely many applications.

Corollary 8.58 (terminating). For all A ∈ Rect 〈〈Ω,T〉,X〉 and B ∈ Rect Y, ap′pre (h′ j0 A) B

terminates.

Theorem 8.59 (sound). For all A ∈ Rect 〈〈Ω,T〉,X〉 and B ∈ Rect Y, appre (h j0 A) B ⊆

ap′pre (h′ j0 A) B.

Proof. By construction and Corollary 8.58 (recall non-“≡” statements imply termination).

Theorem 8.60 (monotone). ap′pre (h′ j0 A) B is monotone in both A and B.

Proof. Lattice operators (∩) and (∨) are monotone, as is (×). Therefore, idpre and the

other lifts in Figure 8.10 are monotone, and each approximating preimage arrow combinator

preserves monotonicity. Approximating preimage* arrow combinators, which are defined

in terms of approximating preimage arrow combinators (Figure 8.12b) likewise preserve

monotonicity, as does η′pre∗ ; therefore idpre∗ and other lifts are monotone.

152

The definition of ifte⇓′pre∗ can be written in terms of lattice operators and approximating

preimage arrow combinators for any A for which Cb = {true} or Cb = {false}, and thus

preserves monotonicity in those cases. If Cb = {true, false}, which is an upper bound for Cb,

the returned value is an upper bound.

For monotonicity in A, suppose A1 ⊆ A2. Apply Theorem 8.57 with A1 to yield e′;

clearly, it is also an equivalent finite expression for A2. Monotonicity follows from structural

induction on the interpretation of e′.

For monotonicity in B, apply Theorem 8.57 with a fixed A.

Theorem 8.61 (decreasing). If A ∈ Rect 〈〈Ω,T〉,X〉 and B ∈ Rect Y, ap′pre (h′ j0 A) B ⊆ A.

Proof. Because they compute exact preimages of rectangular sets under restriction to rectan-

gular domains, idpre and the other lifts in Figure 8.10 are decreasing.

By definition and applying basic lattice properties,

ap′pre ((h1 >>>′pre h2) A) B ≡ ap′pre (h1 A) B′ for some B′ (8.73)

ap′pre ((h1 &&&′pre h2) A) B ≡ ap′pre (h1 A) (proj1 B) ∩ ap′pre (h2 A) (proj2 B)

ap′pre (ifte′pre h1 h2 h3 A) B ≡ let A2 := ap′pre (h1 A) {true}
A3 := ap′pre (h1 A) {false}

in ap′pre (h2 A2) B ∨ ap′pre (h3 A3) B

ap′pre (lazy′pre h A) B ≡ if (A = ∅) ∅ (ap′pre (h 0 A) B)

Thus, approximating preimage arrow combinators return decreasing computations when given

decreasing computations. This property transfers trivially to approximating preimage* arrow

combinators. Apply Theorem 8.57 and use structural induction.

8.9.4 Preimage Refinement Algorithm

Given these properties, we might try to compute exact preimages of B by computing preimages

with respect to increasingly fine discretizations of A.

153

Definition 8.62 (preimage refinement algorithm). Let B ∈ Rect Y and

refine : Rect 〈〈Ω,T〉,X〉 ⇒ Rect 〈〈Ω,T〉,X〉

refine A := ap′pre (h′ j0 A) B
(8.74)

Define split : Rect 〈〈Ω,T〉,X〉 ⇒ Set (Rect 〈〈Ω,T〉,X〉) to produce positive-measure, disjoint

rectangles, and define

refine∗ : Set (Rect 〈〈Ω,T〉,X〉)⇒ Set (Rect 〈〈Ω,T〉,X〉)

refine∗ A := image refine
(⋃

A∈A split A
) (8.75)

For any positive-measure A0 ∈ Rect 〈〈Ω,T〉,X〉, iterate refine∗ on {A0}.

Figure 8.13 illustrates the preimage refinement algorithm.

Theorem 8.61 (decreasing) guarantees refine A is never larger than A. Theorem 8.60

(monotone) guarantees refining a partition of A never does worse than refining A itself.

Theorem 8.59 (sound) guarantees the algorithm is sound: the exact preimage of B is always

contained in the covering partition refine∗ returns.

We would like it to be precise in the limit, up to null sets: covering partitions’ measures

should converge to the true measure. Unfortunately, preimage refinement appears to compute

the Jordan outer measure of a preimage, which is not always its measure. A counterex-

ample is the expression rational? random, where rational? returns true when its argument is

rational and loops otherwise. (This is definable using a (≤) primitive.) The preimage of

{true} (the rational numbers) has measure 0, but its Jordan outer measure is 1.

We conjecture that a minimal requirement for preimage refinement’s measures to converge

is that the program must terminate with probability 1. There are certainly other requirements.

We leave these and proof of convergence of measures for future work.

For now, we use algorithms that depend only on soundness.

154

(a) Exact preimage of B (b) Initial partition A0 := {A0} (c) A′0 :=
⋃

A∈A0
split A

(d) A1 := image refine A′0 (e) A′1 :=
⋃

A∈A1
split A (f) A2 := image refine A′1

(g) Further preimage refinements A3 := refine∗ A2, A4 := refine∗ A3 and A5 := refine∗ A4

Figure 8.13: Preimage refinement algorithm on 〈〈Ω,T〉,X〉. Only two dimensions of Ω are shown. In this
example, the covering partition appears to converge in measure to the exact. (In the worst case, 9.14a
represents an open set, which in the limit, preimage refinement overapproximates only on the boundary.)

155

8.10 Implementations

We have four implementations: one of the exact semantics, two direct implementations of

the approximating semantics, and a less direct but more efficient implementation of the

approximating semantics, which we call Dr. Bayes.

If sets are restricted to be finite, the arrows used as translation targets in the exact

semantics, defined in 8.2, 8.4, 8.5, 8.7 and 8.8, can be implemented directly in any practical

λ-calculus. Computing exact preimages is very inefficient, even under the interpretations of

very small programs. Still, we have found our Typed Racket [71] implementation useful for

finding theorem candidates and counterexamples.

Given a rectangular set library, the approximating preimage arrows defined in Figures 8.10

and 8.12b can be implemented with few changes in any practical λ-calculus. We have done

so in Typed Racket and Haskell [1]. Both implementations’ arrow combinator definitions

are almost line-for-line transliterations from the figures. They are at https://github.com/

ntoronto/drbayes in the direct subdirectory.

Making the rectangular set type polymorphic seems to require the equivalent of a typeclass

system. In Haskell, it also requires multi-parameter typeclasses or indexed type families [14]

to associate set types with the types of their members. Using indexed type families, the only

significant differences between the Haskell implementation and the approximating semantics

are type contexts, newtype wrappers for arrow types, and using Maybe types as bottom arrow

return types.

Typed Racket has no typeclass system on top of its type system, so the rectangular

set type is monomorphic; thus, so are the arrow types. The lack of type variables in the

combinator types is the only significant difference between the implementation and the

approximating semantics.

Chapter 9 details the implementation of Dr. Bayes.

156

https://github.com/ntoronto/drbayes
https://github.com/ntoronto/drbayes

8.11 Conclusions

To allow recursion and arbitrary conditions in probabilistic programs, we combined the power

of measure theory with the unifying elegance of arrows. We

1. Defined a transformation from first-order programs to arbitrary arrows.

2. Defined the bottom arrow as the standard interpretation.

3. Derived the uncomputable preimage arrow as a nonstandard interpretation.

4. Derived a sound, computable approximation of the preimage arrow, and enough

computable lifts to transform programs.

Critically, the preimage arrow’s lift from the bottom arrow distributes over bottom arrow

computations. Our semantics thus generalizes this process to all programs: 1) encode a

program as a bottom arrow computation; 2) lift this computation to get an uncomputable

function that computes preimages; 3) distribute the lift; and 4) replace uncomputable

expressions with sound approximations.

Using arrows drastically simplifies the correctness proofs. Almost every semantic cor-

rectness theorem proceeds from a proof that a lift distributes over five combinators. There

are seven theorems in total corresponding to the morphisms in our roadmap (8.3), but the

three center morphisms (pointing downward) are done in one proof, as are the two bottom

morphisms (pointing rightward). In total, there are 20 cases, plus 11 for the original (and

very simple) proof by induction that arrow homomorphisms distribute over program terms.

In contrast, the corresponding theorems with separate semantic functions would require

seven proofs by structural induction over at least 11 rules (12 for programs that access the

random store), for a total of at least 77 cases. This reduction in complexity by semantic

abstraction would have been difficult without targeting λZFC, which allows such arrows to

carry out uncountably infinite computations.

Further, because the approximating semantics targets a computable λZFC sublanguage,

it is directly implementable. The next chapter details creating a practical implementation.

157

Chapter 9

Preimage Computation Implementation

9.1 Introduction

To maintain generality, the preceding chapter leaves out some details; in particular, how to

1. Represent and compute with abstract sets.

2. Compute approximate preimages under real functions.

3. Use preimage refinement to compute conditional probabilities efficiently.

Figure 9.1 puts these in a dependency graph in which nodes are modules in an implementation.

The boxes with dotted outlines are the subject of this chapter.

Arrow
Combinators

Semantic
Function

Abstract
Sets

Inference
Algorithms

Real Function
Arrows

Programs

Figure 9.1: The components in an implementation, with dependence represented by arrows.

158

class Eq s => Set s where
type Member s -- type of members of s
empty :: s -- lattice bottom
univ :: s -- lattice top
(/\) :: s -> s -> s -- intersection
(\/) :: s -> s -> s -- join
singleton :: Member s -> s -- singleton set
member :: Member s -> s -> Bool -- membership test

Figure 9.2: A Haskell typeclass for rectangular sets.

9.2 Abstract Sets and Concrete Values

While any kind of abstract sets with finite representations and computable operations would

do, we use rectangles for their efficiency and simplicity, especially emptiness checking.

In a host language such as Haskell with sufficiently advanced typeclasses or an equivalent,

it is possible to use polymorphism to represent rectangles in an extensible way. For each

required value type X, we need to define, in the host language,

• A type of rectangles of X with an associated type of members of X.

• Representations of the sets ∅ and X (i.e. > in Figure 8.12c).

• Intersection (∩) and join (∨).

• A singleton constructor and a membership test.

The membership test is used in sampling algorithms, to determine whether points sampled

from the rectangular cover of a preimage set lie within the preimage set.

Figure 9.2 shows the definition of a Haskell typeclass Set that encapsulates these types,

values and operations. Set uses a type family Member to associate with each rectangle type s

a value type Member s. Each required Rect X is represented by a type instance of Set. For

example, the code in Figure 9.3 represents Rect 〈X1,X2〉 using the data type PairSet s1 s2,

and declares it as an instance of Set by defining Member (PairSet s1 s2) to be a 2-tuple

type, and defining the empty pair set, the universal pair set, and the required operations.

In a language without typeclasses and type families, or equally expressive type-level fea-

159

data PairSet s1 s2 = EmptyPairSet | UnivPairSet | PairSet s1 s2
deriving(Show, Eq)

prod :: (Set s1, Set s2) => s1 -> s2 -> PairSet s1 s2
prod a1 a2 | a1 == empty || a2 == empty = EmptyPairSet

| a1 == univ && a2 == univ = UnivPairSet
| otherwise = PairSet a1 a2

instance (Set s1, Set s2) => Set (PairSet s1 s2) where
type Member (PairSet s1 s2) = (Member s1, Member s2)

empty = EmptyPairSet
univ = UnivPairSet

EmptyPairSet /\ _ = EmptyPairSet
_ /\ EmptyPairSet = EmptyPairSet
UnivPairSet /\ a = a
a /\ UnivPairSet = a
PairSet a1 a2 /\ PairSet b1 b2 = prod (a1 /\ b1) (a2 /\ b2)

EmptyPairSet \/ a = a
a \/ EmptyPairSet = a
UnivPairSet \/ _ = UnivPairSet
_ \/ UnivPairSet = UnivPairSet
PairSet a1 a2 \/ PairSet b1 b2 = prod (a1 \/ b1) (a2 \/ b2)

member EmptyPairSet _ = False
member UnivPairSet _ = True
member (x1,x2) (PairSet a1 a2) = member x1 a1 && member x2 a2

singleton (x1,x2) = prod (singleton x1) (singleton x2)

Figure 9.3: An instance of Set, representing rectangular sets Rect 〈X1,X2〉.

tures, the representation is best done monomorphically:1 all required value types X1,X2, ...,Xn

are considered as one universal type X :=
⋃n

i=1 Xi. The same types, values and operations are

necessary; i.e. the type of rectangles of X and of values of X, representations of ∅ and X,

intersection, join, singleton, and membership.

Of course, it is good factorization to have separate representations for each type Xi.

Figure 9.4 shows a fragment of a Typed Racket representation of rectangular sets, opera-

tions and values, with rectangles of R (Real-Set), Bool (Bool-Set), 〈X,X〉 (Pair-Set), {〈〉}
1It is possible to encode typeclasses and type families into a polymorphic type system by parameterizing

every function on function tables that represent typeclasses, but this encoding is difficult to work with.

160

;; Lattice bottom and top
(define-singleton-type Empty-Set empty-set)
(define-singleton-type Univ-Set univ-set)

;; Type of rectangular sets
(define-type Set (U Empty-Set Nonempty-Set))

;; Type of *nonempty* rectangular sets
(define-type Nonempty-Set

(U Univ-Set Real-Set Bool-Set Pair-Set Null-Set Omega-Set Trace-Set))

;; Type of members of rectangular sets
(define-type Value

(Rec Value (U Real Boolean (Pair Value Value) Null Omega-Val Trace-Val)))

(: intersect (Set Set -> Set))
;; Returns the intersection of two rectangular sets
(define (intersect A B)

(cond [(and (real-set? A) (real-set? B)) (real-set-intersect A B)]
[(and (bool-set? A) (bool-set? B)) (bool-set-intersect A B)]
[(and (pair-set? A) (pair-set? B)) (pair-set-intersect A B)]
[(and (null-set? A) (null-set? B)) null-set]
[(and (omega-set? A) (omega-set? B)) (omega-set-intersect A B)]
[(and (trace-set? A) (trace-set? B)) (trace-set-intersect A B)]
[(univ-set? A) B]
[(univ-set? B) A]
[else empty-set]))

;; Type of *nonempty* rectangular sets of pairs
(struct: Pair-Set ([fst : Nonempty-Set] [snd : Nonempty-Set])

#:transparent)
(define pair-set? Pair-Set?)

(: prod (Set Set -> (U Empty-Set Pair-Set)))
;; Constructs pair sets from possibly empty sets
(define (prod A1 A2)

(if (or (empty-set? A1) (empty-set? A2))
empty-set
(Pair-Set A1 A2)))

(: pair-set-intersect (Pair-Set Pair-Set -> (U Empty-Set Pair-Set)))
;; Intersection specialized to pair sets
(define (pair-set-intersect A B)

(match-define (Pair-Set A1 A2) A)
(match-define (Pair-Set B1 B2) B)
(prod (intersect A1 B1) (intersect A2 B2)))

Figure 9.4: Part of a Typed Racket implementation of monomorphic, rectangular sets.

161

(Null-Set), J → [0, 1] (Omega-Set) and J → Bool⊥ (Trace-Set). The type Nonempty-Set

is the union of these types and Univ-Set, which represents X. The Set type additionally

represents ∅. The Value type represents members of X and is defined similarly, but mostly

uses built-in Racket types such as Real and Pair.

The intersect function receives any two Set instances and dispatches to a more specific

intersection function based on their runtime data types. The intersection of two differently

typed rectangles is empty because the types represent disjoint sets. Every operation on Set

or Value is computed in a similar way.

Typed Racket’s true union types make it easy to represent nonempty sets of pairs, simply

by leaving Empty-Set out of the type in Pair-Set’s fields. The pair-set-intersect function

is derived from the identity (A1 × A2) ∩ (B1 × B2) = (A1 ∩ B1)× (A2 ∩ B2).

Subsets of Bool are easy to represent. Subsets of {〈〉} are trivial.

We need the representation of real sets to have closed intervals because Ω = J→ [0, 1].

Because preimage refinement splits Ω into disjoint sets, we also need half-open and open

intervals. We therefore need to represent intervals with four values: two extended-real

endpoints, and two booleans that determine whether each endpoint is in the interval (i.e.

whether each endpoint is closed).

Figure 9.5 lists part of the code for representing closed, open and half-open intervals. For

efficiency, endpoints are 64-bit floating-point numbers, but this does not threaten soundness.

Because the floating-point numbers contain −inf.0 and +inf.0, every real interval can be

covered by at least one floating-point interval. The (unlisted) interval function returns a

Real-Set or Empty-Set given open or closed endpoints. It ensures neither endpoint is +nan.0,

returns empty-set if the endpoints are out of order or are equal but at least one is open,

and forces −inf.0 and +inf.0 endpoints to be open. The real-set-intersect function

intersects real sets; the unlisted real-set-join is similar, but always returns a (nonempty)

Real-Set. The unlisted real-set-member? is simple enough: it returns #t when its value

argument is between its set argument’s endpoints, or equal to a closed endpoint.

162

;; Type of rectangular real sets (intervals)
(struct: Real-Set ([mn : Flonum] [mx : Flonum] [mn? : Boolean] [mx? : Boolean])

#:transparent)

(: interval (Flonum Flonum Boolean Boolean -> (U Empty-Set Real-Set)))

(: real-set-intersect (Real-Set Real-Set -> (U Empty-Set Real-Set)))
;; Intersection specialized to real sets
(define (real-set-intersect A B)

(match-define (Real-Set a1 a2 a1? a2?) A)
(match-define (Real-Set b1 b2 b1? b2?) B)
(define-values (c1 c1?)

(cond [(> a1 b1) (values a1 a1?)]
[(< a1 b1) (values b1 b1?)]
[else (values a1 (and a1? b1?))]))

(define-values (c2 c2?)
(cond [(> a2 b2) (values b2 b2?)]

[(< a2 b2) (values a2 a2?)]
[else (values a2 (and a2? b2?))]))

(interval c1 c2 c1? c2?))

(: real-set-singleton (Real -> Real-Set))
;; Returns the smallest Real-Set containing the given Real
(define (real-set-singleton a)

(define b (fl a))
(cond [(not (rational? a)) ; No +nan.0 or infinities

(raise-argument-error ’real-set-singleton "rational?" a)]
[(< b a) (Real-Set b (flnext b) #f #f)]
[(< a b) (Real-Set (flprev b) b #f #f)]
[else (Real-Set b b #t #t)]))

Figure 9.5: Part of a Typed Racket implementation of closed, open and half-open intervals.

The function real-set-singleton is also defined in Figure 9.5. Because R values are

represented by the type Real, which includes exact rationals such as 1/7, it cannot simply

return the closed interval (Real-Set a a #t #t). Fortunately, because the floating-point

numbers contain −inf.0 and +inf.0 and there are only finitely many of them, every real

number that is not represented exactly by a float is between two closest floats. The fl

function converts an exact rational to a floating-point number by rounding its argument to

the nearest one. The logic after (define b (fl a)) determines whether b is rounded down

or up, or is not rounded, and uses Racket’s math/flonum library’s flnext and flprev in the

163

rounding cases to construct the smallest open floating-point interval containing a. If b is not

rounded, it returns a closed interval with both endpoints b.

Testing real-set-singleton on 3/4 and 1/7, we get

> (real-set-singleton 3/4)
(Real-Set 0.75 0.75 #t #t)

> (real-set-singleton 1/7)
(Real-Set 0.14285714285714285 0.14285714285714288 #f #f)

> (real-set-member? 3/4 (real-set-singleton 3/4))
#t

> (real-set-member? 1/7 (real-set-singleton 1/7))
#t

Using the Racket’s math/bigfloat library to get a 128-bit approximation of π, and using the

#e number prefix to construct exact rational numbers that are smaller and larger than the

smallest and largest positive floating-point numbers, we get the following intervals:

> (real-set-singleton (bigfloat->real pi.bf))
(Real-Set 3.141592653589793 3.1415926535897936 #f #f)

> (real-set-singleton #e1e−350)
(Real-Set 0.0 4.9406564584125e−324 #f #f)

> (real-set-singleton #e1e350)
(Real-Set 1.7976931348623157e+308 +inf.0 #f #f)

These are the tightest sound approximations of {3/4}, {1/7}, {π}, {10−350} and {10350}

possible with floating-point intervals.

9.2.1 Infinite Binary Trees

Rectangular families of sets (Definition 8.54) are defined so that rectangles of any J→ A have

only finitely many projections that are proper subsets of A. For example, for Ω := J→ [0, 1],

if Ω′ ∈ Rect Ω, then proj j Ω′ ⊂ [0, 1] for only finitely many j ∈ J. Further, the index set J is

part of a binary indexing scheme, so such values have a tree structure we can use to represent

164

them. We can thus use self-similarity to represent Ω rectangles by a finite data structure: a

subtree in which every projection is [0, 1] is represented by (the representation of) Ω itself.

We need a constructor for building binary trees recursively. The following function

receives a node value a and two tree encodings l and r, and returns a tree encoding that maps

j0 to a, and has l and r as the left and right subtrees.

tree-node : A⇒ (J→ A)⇒ (J→ A)⇒ (J→ A)

tree-node a l r := {〈j0, a〉} ∪
{〈left j, a〉 | 〈j, a〉 ∈ l} ∪
{〈right j, a〉 | 〈j, a〉 ∈ r}

(9.1)

From tree-node, we define a function to construct instances of Rect (J→ A) from a projection,

and left and right subtree rectangles. It is essentially a trinary cartesian product.

tree-prod : Rect A⇒ Rect (J→ A)⇒ Rect (J→ A)⇒ Rect (J→ A)

tree-prod A L R := {tree-node a l r | a ∈ A, l ∈ L, r ∈ R}
(9.2)

Any Rect (J → A) can be constructed from J → A itself, finitely many projections, and

finitely many applications of tree-prod. For example,

tree-prod [0, 1
2] (tree-prod [12 , 1] Ω Ω) Ω (9.3)

constructs an instance Ω′ ∈ Rect Ω for which proj j0 Ω′ = [0, 1
2] and proj (left j0) Ω′ = [12 , 1],

and all other projections are [0, 1].

In Figure 9.6, tree-prod is represented by a data type Omega-Node, and Ω is represented

by the singleton value univ-omega-set. Representations of Rect Ω instances are constructed

as in (9.3); for example

(define omega-rect
(Omega-Node (Real-Set 0.0 0.5 #t #t)

(Omega-Node (Real-Set 0.5 1.0 #t #t)
univ-omega-set
univ-omega-set)

univ-omega-set))

165

;; Binary indexing scheme
(define-type J (Listof Boolean))
(define j0 null)

(: left (J -> J))
(define (left j) (cons #t j))

(: right (J -> J))
(define (right j) (cons #f j))

;; Type representing Omega
(define-singleton-type Univ-Omega-Set univ-omega-set)

;; Type representing a subrectangle of Omega
(struct: Omega-Node ([axis : Real-Set] [left : Omega-Set] [right : Omega-Set])

#:transparent)

(define-type Omega-Set (U Univ-Omega-Set Omega-Node))
(define-predicate omega-set? Omega-Set)

(: omega-set-project (J Omega-Set -> Real-Set))
;; Returns Z’s axis at index j
(define (omega-set-project j Z)

(let loop ([j (reverse j)] [Z Z])
(match Z

[(? univ-omega-set?) unit-interval]
[(Omega-Node A L R)
(cond [(null? j) A]

[(first j) (loop (rest j) L)]
[else (loop (rest j) R)])])))

;; Functionally equivalent to univ-omega-set, but has fields for recursion
(define univ-omega-node

(Omega-Node unit-interval univ-omega-set univ-omega-set))

(: omega-set-unproject (J Omega-Set Real-Set -> (U Empty-Set Omega-Set)))
;; Functionally updates Z’s axis at index j by intersecting it with B
(define (omega-set-unproject j Z B)

(let loop ([j (reverse j)] [Z Z])
(match Z

[(? univ-omega-set?) (loop j univ-omega-node)]
[(Omega-Node A L R)
(cond [(null? j) (omega-set-node (real-set-intersect A B) L R)]

[(first j) (omega-set-node A (loop (rest j) L) R)]
[else (omega-set-node A L (loop (rest j) R))])])))

Figure 9.6: Part of a Typed Racket representation of Rect Ω, as finite binary trees.

166

(struct: Omega-Val ([value : (Promise Real)]
[left : (Promise Omega-Val)]
[right : (Promise Omega-Val)])

#:transparent)

(: omega-set-member? (Omega-Val Omega-Set -> Boolean))
(define (omega-set-member? z Z)

(match∗ (z Z)
[(z (? univ-omega-set?)) #t]
[((Omega-Val a l r) (Omega-Node A L R))
(and (real-set-member? (force a) A)

(omega-set-member? (force l) L)
(omega-set-member? (force r) R))]))

(: omega-set-sample (Omega-Set -> Omega-Val))
(define (omega-set-sample Z)

(match Z
[(? univ-omega-set?)
(omega-set-sample univ-omega-node)]

[(Omega-Node A L R)
(Omega-Val (delay (real-set-sample A))

(delay (omega-set-sample L))
(delay (omega-set-sample R)))]))

Figure 9.7: A Typed Racket representation of values ω ∈ Ω, as lazy binary trees.

Functions omega-set-project and omega-set-unproject respectively implement proj and

unproj for Ω rectangles; for example

> (omega-set-project j0 omega-rect)
(Real-Set 0.0 0.5 #t #t)

> (omega-set-project (right j0) omega-rect)
(Real-Set 0.0 1.0 #t #t)

> (omega-set-unproject (left j0) omega-rect (Real-Set 0.0 0.75 #t #t))
(Omega-Node (Real-Set 0.0 0.5 #t #t)

(Omega-Node (Real-Set 0.5 0.75 #t #t)
univ-omega-set
univ-omega-set)

univ-omega-set)

Figure 9.7 lists an implementation of values in Ω, which are infinite binary trees, as a

lazy data structure. The Omega-Val data type represents the tree-node function. Instances

167

of (Promise A) are lazy values: they are created using special syntax (delay a) where a is

of type A, and are computed and cached using the function force. Thus, an Omega-Val’s

infinite left and right subtrees are represented by (Promise Omega-Val), which are promises

to produce subtrees.

For lazy trees, it is easy to write recursive functions that may not terminate. The two

listed functions omega-set-member? and omega-set-sample always terminate, however: both

recur on the structure of Omega-Set, and are thus well-founded.

Representations of branch traces and rectangles are similar to Omega-Val and Omega-Set.

9.2.2 Disjoint Bottom and Top Unions

The set representations up to this point are the minimum necessary for a language with real

numbers and lists. Whether more complicated representations are necessary depends on the

presence of certain language features and primitives.

Suppose, for example, that we extend J·K⇓a∗ by this rule:

Jstrict-if e1 e2 e3K
⇓
a∗ := iftea∗ Je1K

⇓
a∗ Je2K

⇓
a∗ Je3K

⇓
a∗ (9.4)

Unlike if, this “strict” conditional cannot be used to define recursive functions, but that is

not the only difference. Compare these two expressions, in which e is any test expression

that may evaluate to true or false:

if e 〈〉 random

strict-if e 〈〉 random
(9.5)

The if expression is interpreted as an application of ifte⇓pre∗ , whose approximation (Figure 8.12c)

takes at most one branch. The image of the program domain under the if expression is

therefore {〈〉} or [0, 1], or is not computed at all. In contrast, strict-if is interpreted as an

application of iftepre∗ , whose approximation (Figure 8.12b) takes both branches. The image of

the program domain under the strict-if expression is therefore {〈〉}] [0, 1].

168

In fact, in the absence of a form or a primitive such as strict-if, neither image nor

preimage computation attempts to join sets of different types. The implementation of (∨)

may return anything in these circumstances (though it is safest to raise an error).

We have found strict-if useful for a few things.

One is defining strict versions of boolean operators, which are faster than their lazy (i.e.

short-cutting) counterparts:

a and b :≡ if a b false

a and∗ b :≡ strict-if a b false
(9.6)

Here, “:≡” denotes defining special syntax rather than defining a function. (Otherwise, both

conjunctions would be strict.)

Another is to assert that prop? x for some predicate prop? and value x:

assert prop? x :≡ strict-if (prop? x) x fail (9.7)

Here, fail is interpreted as a computation that always returns ⊥, so its range and preimages

are ∅. This expression thus restricts the program domain to the set of values for which

prop? x evaluates to true regardless of branch traces, which cannot be done using if.

Another is pasting together piecewise monotone functions (Section 9.3.4).

With strict-if, there must be a type to represent disjoint unions such as {〈〉}] [0, 1]. One

that is relatively easy to use is

(struct: Bot-Union-Set ([hash : (HashTable Symbol Nonempty-Set)])
#:transparent)

which maps symbols to instances of associated set types. This type also allows user data types

to be represented easily: every structure definition is assigned a symbol, which is mapped

to product sets within instances of Bot-Union-Set. Intersections and joins are computed by

looping over symbols.

Suppose we add a primitive real? that returns true when its argument is a real number

169

and false otherwise. As a preimage computation, it could be defined as

real?pre A := case 〈A ∩ R,A\R〉
〈∅,∅〉 −→ 〈∅,λB.∅〉
〈At,∅〉 −→ constpre true At
〈∅,Af〉 −→ constpre false Af
〈At,Af〉 −→ 〈Bool,λB. (if (true ∈ B) At ∅) ∪ (if (false ∈ B) Af ∅)〉

(9.8)

We potentially have a problem implementing this: rectangles are not closed under relative

complements. If we have a limited number of data types, however, we can compute A\R as

A\R = A ∩ (X1 ∪ X2 ∪ ... ∪ Xn) (9.9)

where R does not appear in the union X1 ∪ X2 ∪ ... ∪ Xn, which can be represented by a

Bot-Union-Set. Unfortunately, computing this in the presence of user data types can be

very inefficient and requires some static analysis to determine which are used in a particular

program.

Instead, we might represent X1 ∪ X2 ∪ ... ∪ Xn using a top union:

(struct: Top-Union-Set ([hash : (HashTable Symbol Nonuniversal-Set)])

#:transparent)

where Nonuniversal-Set is a new subtype of Set that does not include Univ-Omega-Set,

Univ-Trace-Set nor other universal sets. For example, a Top-Union-Set that maps ’real to

empty-set would represent the set of all values except the reals.

With top unions, it is easy to abstract real?pre to arbitrary predicates:

predicatepre Xt Xf A :=
case 〈A ∩ Xt,A ∩ Xf〉
〈∅,∅〉 −→ 〈∅,λB.∅〉
〈At,∅〉 −→ constpre true At
〈∅,Af〉 −→ constpre false Af
〈At,Af〉 −→ 〈Bool,λB. (if (true ∈ B) At ∅) ∪ (if (false ∈ B) Af ∅)〉

(9.10)

Thus, real?pre ≡ predicatepre R (>\R). In the implementation, >\R would be represented by

an instance of Top-Union-Set.

170

9.2.3 Testing

Dr. Bayes’s rectangular sets include sets of booleans, {〈〉}, pairs, real sets, tagged structures,

and bottom and top disjoint unions. Real sets are represented by finite, sorted lists of nonad-

jacent intervals, which complicates the set library further. We plan to add set representations

for other basic data types, such as symbols and strings.

Even without representing sets of symbols and strings, the set library is the largest part

of Dr. Bayes’s codebase: at just over 3000 lines of code, it comprises half.

Not only is the set library large and complicated, but errors in it are difficult to diagnose.

By analogy, if Dr. Bayes is Java, then the bottom* and preimage* arrows are bytecode, and

rectangular set operations are machine code. Blaming an error from Dr. Bayes’s output on

the set library is like blaming an error from Java program output on an error in the CPU’s

microprogram for an opcode. Worse, because Dr. Bayes outputs stochastic approximations,

we are lucky if a noncatastrophic error in the set library is detectable.

Fortunately, unlike CPU microcode, rectangular set operations are correct if and only if

they obey a small collection of laws.

The first part of the collection of laws regards sets not as boxes of values, but as values

themselves in a bounded lattice. There are eight algebraic laws that define a bounded lattice.

In terms of (∩), (∨), ∅ and ⊥, the algebraic laws are

∅ ∨ A = A (∨) identity

> ∩ A = A (∩) identity

A ∨ B = B ∨ A (∨) commutativity

A ∩ B = B ∩ A (∩) commutativity (9.11)

(A ∨ B) ∨ C = A ∨ (B ∨ C) (∨) associativity

(A ∩ B) ∩ C = A ∩ (B ∩ C) (∩) associativity

A ∨ (A ∩ B) = A (∨)-(∩) absorption

171

A ∩ (A ∨ B) = A (∩)-(∨) absorption

If these laws hold in the implementation, then at an abstract level in which we do not consider

the contents of the sets, the implementation is correct.

But we must consider their contents, because we will be sampling within them, and we

will be testing membership to determine whether the samples lie inside a preimage set. For

our lattice, membership in its elements is characterized by these two laws:

x ∈ A or x ∈ B =⇒ x ∈ (A ∨ B) (∨) membership

x ∈ A and x ∈ B ⇐⇒ x ∈ (A ∩ B) (∩) membership
(9.12)

These are taken from the definitions of (∪) and (∩), but the first has (⇐⇒) replaced by (=⇒)

because (∨) overapproximates (i.e. if x ∈ (A ∨ B), it may be in neither A nor B).

If the preceding 10 laws hold, the implementation is correct.

The first eight laws refer to (=), which we have not discussed the implementation of

yet. The set representations given in this section can easily be made canonical, so that

equality can be decided structurally. By default, Racket’s equal? primitive decides equality

structurally for types with the #:transparent property, as Haskell’s (==) primitive does by

default for types in the Eq typeclass.

Dr. Bayes’s set representations are currently canonical, but may not be in the future:

the only equality requirement is that A = ∅ be decidable. (Hopefully it is also efficient.) So

to decide equality nonstructurally, we implement (⊆) as subseteq? and use Lemma 5.1:

A = B ⇐⇒ A ⊆ B and B ⊆ A (=) extensionality (9.13)

Of course, we must now test subseteq? to ensure it has the properties of (⊆). The only

essential property is derived from its definition, from Axiom 1 in Chapter 4:

A ⊆ B ⇐⇒ x ∈ A =⇒ x ∈ B (⊆) definition (9.14)

172

If the preceding 12 laws hold, the implementation is correct. For canonical sets, (=) exten-

sionality is testable; otherwise we use it to define set equality (i.e. it holds by definition).

The testing regime is this: some large number of times,

1. Randomly generate A, B and C.

2. Randomly generate x ∈ A and y ∈ B.

3. Evaluate the preceding 12 laws.

The number of iterations for a typical testing run is 100,000, for which the current implemen-

tation takes about a minute on current hardware.

If step 2 randomly generated just x ∈ >, then x ∈ A would be rare, and x ∈ A =⇒ x ∈ B

would too often be equivalent to false =⇒ x ∈ B, which is always true. Of course, we

cannot always test with x ∈ A = true, so for more complete coverage we also generate

y ∈ B and test y ∈ A =⇒ y ∈ B. We ensure boundary conditions, such as intersections

and joins between two barely overlapping or adjacent intervals, happen often enough by

choosing interval endpoints from {−∞,−4,−3,−2,−1, 0, 1, 2, 3, 4,∞}. We choose members

of intervals from a similar small set that includes those endpoints, except the infinities.

To be even more certain that the implementation is correct, we additionally test an

alternative lattice characterization: that the elements have an associated partial order in

which every pair of elements has a meet and a join. In this case, the partial order is (⊆). To

be a partial order, it should have these properties:

A ⊆ A (⊆) reflexivity

A ⊆ B and B ⊆ A =⇒ A = B (⊆) antisymmetry

A ⊆ B and B ⊆ C =⇒ A ⊆ C (⊆) transitivity

(9.15)

For canonical sets, (⊆) antisymmetry is testable; otherwise it holds by definition.

The partial order is related to the lattice operators by the following properties, of which

the first two provide alternative definitions for (⊆) in terms of (∨) or (∩), or vice-versa:

B = A ∨ B ⇐⇒ A ⊆ B (∨)-(⊆) definition

173

A = A ∩ B ⇐⇒ A ⊆ B (∩)-(⊆) definition

A ⊆ A ∨ B (∨) increasing (9.16)

A ∩ B ⊆ A (∩) decreasing

A1 ⊆ A2 and B1 ⊆ B2 =⇒ A1 ∨ B1 ⊆ A2 ∨ B2 (∨) monotone

A1 ⊆ A2 and B1 ⊆ B2 =⇒ A1 ∩ B1 ⊆ A2 ∩ B2 (∩) monotone

For noncanonical sets, the first two properties are equivalent to the middle two.

Errors introduced by changing the set library are caught quickly, usually within a few

hundred iterations. We are quite certain of the correctness of our current implementation of

rectangular sets and set operations, having verified the preceding 21 lattice and membership

properties on millions of random inputs.

9.3 Preimages Under Real Functions

Chapter 8 leaves computing approximate preimages under arithmetic and other primitives

up to implementors. In this section, we formalize a unified approach to doing so for one- and

two-argument real functions, and give examples from Dr. Bayes’s implementation.

The general idea is to compute preimages by computing images of inverses. While how to

do so seems obvious for certain kinds of one-argument functions, for two-argument functions

it is not. Generalizing the computation of preimages under two-argument functions requires

a theory of per-axis function inversion, which we have not been able to find in the literature.

We start with one-argument functions for simplicity, and extend to two-argument

functions by regarding a one-argument function and its inverse as a cyclic group of order 2,

and generalizing to similar groups of order 3. The resulting theory should generalize naturally

to functions with any number of arguments, but we leave it for future work.

Working with intervals algorithmically is easier if we have notation in which the kind of

interval is not baked into the syntax.

174

Definition 9.1 (interval). [(a1, a2,α1,α2)] denotes an interval, where a1, a2 ∈ R are extended

real endpoints, and α1,α2 ∈ Bool determine whether a1 and a2 are contained in the interval.

Some intervals, using [(·, ·, ·, ·)] notation:

[(0, 1, true, false)] = [0, 1)

[(−∞, 0, false, true)] = (−∞, 0]

[(−∞,∞, false, false)] = (−∞,∞) = R

[(−∞,∞, true, true)] = [−∞,∞] = R

(9.17)

9.3.1 Invertible Primitives

We consider only total, strictly monotone functions on subsets of R.2 Further on, we recover

more generality by using language conditionals to implement piecewise monotone functions.

One reason we consider only strictly monotone functions is that they are easy to invert.

Recall that a function is invertible (bijective) if and only if it is injective (one-to-one) and

surjective (onto).

Lemma 9.2 (strictly monotone, surjective implies invertible, continuous). If g : A → B

is strictly monotone, g is injective. If g is additionally surjective, g and its inverse are

continuous.

Preimages under invertible functions can be computed using their inverses. Because

we are deriving preimage arrow computations, we are primarily interested in computing

preimages under restricted functions.

Lemma 9.3 (preimages from inverse images). If A′ ⊆ A, B′ ⊆ B, and g : A→ B has inverse

g−1 : B→ A, then preimage (restrict g A′) B′ = A′ ∩ image g−1 B′.

These facts suggest that we can compute images (or preimages) of intervals under any

strictly monotone, surjective g by applying g (or its inverse) to interval endpoints to yield an
2Our results should hold in any other totally ordered, first-countable topological space.

175

aaaaaaaaa

sq
r

a
sq

r
a

sq
r

a
sq

r
a

sq
r

a
sq

r
a

sq
r

a
sq

r
a

sq
r

a

000000000 111111111 √2√2√2√2√2√2√2√2√2 222222222 √7√7√7√7√7√7√7√7√7

000000000

222222222

777777777

sqrsqrsqrsqrsqrsqrsqrsqrsqr

domain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restriction

inverse imageinverse imageinverse imageinverse imageinverse imageinverse imageinverse imageinverse imageinverse image

preimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimage

Figure 9.8: Computing the preimage of the interval [2, 7] under sqr restricted to [1, 2), by computing roots
and intersecting with [1, 2).

interval, as in Figure 9.8. This is evident for endpoints in A. Limit endpoints like ∞ require

a larger g defined on a compact superset of A.

Theorem 9.4 (images of intervals by endpoints). Let A and B be compact subsets of R,

g : A→ B be strictly monotone and surjective, and g be the restriction of g to some A ⊆ A.

For all nonempty [(a1, a2,α1,α2)] ⊆ A,

• If g is increasing, image g [(a1, a2,α1,α2)] = [(g a1, g a2,α1,α2)].

• If g is decreasing, image g [(a1, a2,α1,α2)] = [(g a2, g a1,α2,α1)].

Proof. Because A is compact and totally ordered, every subset of A has a lower and an upper

bound in A. Therefore, the endpoints of every interval subset of A are in A.

Let (a1, a2] ⊆ A. Suppose g is strictly increasing; thus a1 < a ≤ a2 if and only if

g a1 < g a ≤ g a2, so image g (a1, a2] = image g (a1, a2] = (g a1, g a2]. The remaining cases

are similar.

176

To use Theorem 9.4 to compute preimages under g by computing images under its

inverse g−1, we must know if g−1 is increasing or decreasing. The following lemma can help.

Lemma 9.5 (inverse direction). If g : A→ B is strictly monotone and surjective with inverse

g−1 : B→ A, then g is increasing if and only if g−1 is increasing.

Example 9.6 (nonnegative square). The extension of sqr+ : [0,∞)→ [0,∞), where sqr+ a :=

a · a, to the compact superdomain [0,∞] is

sqr+ : [0,∞]→ [0,∞]

sqr+ a := lim
a′→a

sqr+ a′ = if (a =∞) ∞ (sqr+ a)
(9.18)

(With respect to R’s standard topology, which is first-countable, sqr+ is continuous and

thus limit-preserving.) The extension of its inverse sqrt+ is sqrt+ : [0,∞]→ [0,∞], defined

similarly, which by Lemma 9.5 is also strictly increasing. Thus,

image sqr+ [5,∞) = [sqr+ 5, sqr+ ∞)

= [25,∞)

preimage (restrict sqr+ [1, 2)) [2, 7] = [1, 2) ∩ image sqrt+ [2, 7]

= [1, 2) ∩ [sqrt+ 2, sqrt+ 7]

= [1, 2) ∩ [
√

2,
√

7]

= [
√

2, 2)

(9.19)

by Theorem 9.4 and Lemma 9.3. ♦

9.3.2 Two-Argument Primitives

We do not expect to be able to compute preimages under R× R ⇀ R primitives by simply

inverting them. Two-argument invertible real functions are difficult to define and are usually

pathological. Instead, we compute approximate preimages only, using inverses with respect

to one argument (with the other held constant).

177

Definition 9.7 (axial inverse). Let gc : A × B → C. Functions ga : B × C → A and

gb : C× A→ B defined so that

gc 〈a, b〉 = c ⇐⇒ ga 〈b, c〉 = a ⇐⇒ gb 〈c, a〉 = b (9.20)

are axial inverses with respect to gc’s first and second arguments.

We call gc axis-invertible or trijective when it has axial inverses ga and gb. We call

ga the first axial inverse of gc because it is the inverse of gc along the first axis: ga with

only c varying, or λc ∈ C. ga 〈b, c〉, is the inverse of gc with only a varying, or λa ∈ A. gc 〈a, b〉.

Similarly, gb is the second axial inverse.

Example 9.8. Let addc : R×R→ R, addc 〈a, b〉 := a+b. Its axial inverses are adda 〈b, c〉 :=

c− b and addb 〈c, a〉 := c− a. ♦

We have chosen the axial inverse function types carefully: they are the only types for

which gc, ga and gb form a cyclic group.

Theorem 9.9 (axial inverse cyclic group). The following statements are equivalent.

• gc has axial inverses ga and gb.

• ga has axial inverses gb and gc.

• gb has axial inverses gc and ga.

Equivalently, every axis-invertible function generates a cyclic group of order 3 by inversion in

the first axis.

Proof. This is evident from the definition of axial inverse (Definition 9.7).

This fact is analogous to how mutual inverses g and g−1 form a cyclic group of order 2

generated by inversion. Similar to using mutual inversion to compute images and preimages

under both sqr+ and sqrt+, Theorem 9.9 allows computing preimages under two-argument

functions related by axial inversion.

178

Example 9.10. Define subc : R × R → R by subc 〈a, b〉 := a − b. Because subc = addb,

suba = addc and subb = adda. ♦

Unlike inverses, axial inverses do not provide a direct way to compute exact preimages.

Instead, they provide a way to compute a preimage’s smallest rectangular bounding set.

Theorem 9.11 (preimage bounds from axial inverse images). Let A′ ⊆ A ⊆ R, B′ ⊆ B ⊆ R,

C′ ⊆ C ⊆ R, and gc : A× B→ C with axial inverses ga and gb. If g′c := restrict gc (A′ × B′),

preimage g′c C′ ⊆ (A′ ∩ image ga (B′ × C′)) ×
(B′ ∩ image gb (C′ × A′))

(9.21)

Further, the right-hand side is the smallest rectangular superset.

Proof. The smallest rectangle containing preimage g′c C′ is

preimage g′c C′ ⊆ (image fst (preimage g′c C′)) ×
(image snd (preimage g′c C′))

(9.22)

Starting with the first set in the product, expand definitions, distribute fst, replace gc 〈a, b〉 = c

by ga 〈b, c〉 = a, and simplify:

image fst (preimage g′c C′)

= image fst {〈a, b〉 ∈ A′ × B′ | gc 〈a, b〉 ∈ C′}

= {a ∈ A′ | ∃ b ∈ B′. gc 〈a, b〉 ∈ C′}

= {a ∈ A′ | ∃ b ∈ B′, c ∈ C′. gc 〈a, b〉 = c}

= {a ∈ A′ | ∃ b ∈ B′, c ∈ C′. ga 〈b, c〉 = a}

= {ga 〈b, c〉 | b ∈ B′, c ∈ C′, ga 〈b, c〉 ∈ A′}

= A′ ∩ {ga 〈b, c〉 | b ∈ B′, c ∈ C′}

= A′ ∩ image ga (B′ × C′)

The second set in the product is similar.

179

aaaaaaaaa

bbb bb bbbb

-2-2-2-2-2-2-2-2-2 000000000 1/21/21/21/21/21/21/21/21/2 111111111

-1-1-1-1-1-1-1-1-1

000000000

1/21/21/21/21/21/21/21/21/2

222222222 preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]preimage of [0,1/2]

domain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restrictiondomain restriction

axial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse imagesaxial inverse images

rectangular preimagerectangular preimagerectangular preimagerectangular preimagerectangular preimagerectangular preimagerectangular preimagerectangular preimagerectangular preimage

Figure 9.9: Computing an approximate preimage of [0, 1
2] under addition restricted to [0, 1]× [0, 2] (Exam-

ple 9.12). The preimage is approximated by intersecting the domain with an overapproximation computed
using axial inverses.

Example 9.12. Let add′c := restrict addc ([0, 1]× [0, 2]). By Theorem 9.11,

preimage add′c [0, 1
2] ⊆ ([0, 1] ∩ image adda ([0, 2]× [0, 1

2])) ×
([0, 2] ∩ image addb ([0, 1

2]× [0, 1]))

= ([0, 1] ∩ [−2, 1
2])× ([0, 2] ∩ [−1, 1

2])

= [0, 1
2]× [0, 1

2]

is the smallest rectangular subset of [0, 1]× [0, 2] containing the preimage of [0, 1
2] under add

′
c.

Figure 9.9 illustrates the calculation. ♦

At this point, we have an analogue of Lemma 9.3, in that we can compute (approximate)

preimages by computing images under (axial) inverses. Computing images using interval

endpoints requires analogues of Lemma 9.2 (strictly monotone, surjective implies invertible,

continuous), Theorem 9.4 (images of intervals by endpoints), and Lemma 9.5 (inverse

180

direction).

We first need a notion of function properties that hold for one argument for every fixed

value of the other argument. We will say that gc : A× B→ C has property P in its first

axis when P (λa ∈ A. gc 〈a, b〉) for all b ∈ B. Similarly, gc has property P in its second

axis when P (λb ∈ B. gc 〈a, b〉) for all a ∈ A.

Theorem 9.13 (strictly monotone, surjective implies axis-invertible, continuous). Let A ⊆ R,

B ⊆ R, C ⊆ R and gc : A × B → C. If gc is surjective and either strictly increasing or

decreasing in each axis, it has axial inverses ga and gb. Further, ga and gb are also surjective

and either strictly increasing or decreasing in each axis, and gc, ga and gb are continuous.

Proof. We define

ga 〈b, c〉 := ι a ∈ A. gc 〈a, b〉 = c

gb 〈c, a〉 := ι b ∈ B. gc 〈a, b〉 = c
(9.23)

which by Lemma 9.2 and the assumed axis properties are well-defined. (Recall ι a ∈ A. e

means “the a ∈ A such that e.”) Evidently, ga 〈b, c〉 = a ⇐⇒ gc 〈a, b〉 = c and gb 〈c, a〉 =

b ⇐⇒ gc 〈a, b〉 = c, so ga and gb are axial inverses by Definition 9.7, from which also follows

per-axis surjectivity and strict monotonicity.

For continuity, we note that the standard topology of R×R is first-countable, as are the

standard topologies of any subsets. A function with a first-countable domain is continuous if

and only if it preserves countable limits; in this case, gc (limit xs) = limit (map gc xs) for all

convergent sequences xs : N→ A× B.

Let xs : N→ A×B such that limit xs = 〈a′, b′〉 for some 〈a′, b′〉 ∈ A×B. We start with a

simpler horizontal case, then reduce the general case to it.

Horizontal case: snd (xs n) = b′ for all n ∈ N; i.e. xs is on a horizontal line at b′. Let

as := map fst xs and g := λa ∈ A. gc 〈a, b′〉, so map gc xs = map g as. Because gc is surjective

181

and either strictly increasing or decreasing in its first axis, by Lemma 9.2, g is continuous, so

limit (map gc xs) = limit (map g as) = g (limit as)

= g a′ = gc 〈a′, b′〉 = gc (limit xs′) = gc (limit xs)
(9.24)

Thus gc preserves horizontal limits. By a similar argument, ga preserves vertical limits.

General case: Define

line b′′ 〈a, b〉 := let c := gc 〈a, b〉
a′′ := ga 〈b′′, c〉

in 〈a′′, b′′〉

(9.25)

which because gc 〈a′′, b′′〉 = c ⇐⇒ ga 〈b′′, c〉 = a′′ transforms a pair 〈a, b〉 into a pair 〈a′′, b′′〉

so that gc 〈a, b〉 = gc 〈a′′, b′′〉. That is, xs′′ := map (line b′′) xs is a sequence on a horizontal

line at b′′ for which map gc xs = map gc xs′′.

Now let xs′ := map (line b′) xs so that additionally (because ga preserves vertical limits),

limit xs′ = limit xs. Thus,

limit (map gc xs) = limit (map gc xs′) = gc (limit xs′) = gc (limit xs) (9.26)

with the middle equality by gc’s preservation of horizontal limits.

Similar arguments prove continuity of ga and gb.

Figure 9.10 illustrates Theorem 9.13’s hypotheses.

Example 9.14. In each axis, addc is surjective and strictly increasing. In each axis, subc is

surjective, and is strictly increasing/decreasing in its first/second axis. Therefore, both are

axis-invertible. ♦

Restriction usually makes a function not surjective in each axis.

Example 9.15. Let add′c : [0, 1]× [0, 1]→ [0, 2], defined by restricting addc. It is surjective,

but not in each axis: the range of λb ∈ B. add′c 〈0, b〉 is [0, 1], not [0, 2]. ♦

Fortunately, restriction sometimes does the opposite.

182

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

.8.8.8.8.8.8.8.8.8
.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4
.2.2.2.2.2.2.2.2.2

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2
aaaaaaaaa

bbbbbbbbb

ccccccccc

(a) Not surjective, not monotone

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

.8.8.8.8.8.8.8.8.8
.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4
.2.2.2.2.2.2.2.2.2

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2
aaaaaaaaa

bbbbbbbbb

ccccccccc

(b) Not surjective, but monotone

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

.8.8.8.8.8.8.8.8.8
.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4
.2.2.2.2.2.2.2.2.2

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2
aaaaaaaaa

bbbbbbbbb

ccccccccc

(c) Surjective, but not monotone

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

.8.8.8.8.8.8.8.8.8
.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4
.2.2.2.2.2.2.2.2.2

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2
aaaaaaaaa

bbbbbbbbb

ccccccccc

(d) Surjective and monotone

Figure 9.10: Four (0, 1)× (0, 1)→ (0, 1) functions and their axis properties. Only (d) is axis-invertible.

Example 9.16. Define mulc : R × R → R by mulc 〈a, b〉 := a · b. It is not surjective nor

strictly monotone in each axis because mulc 〈0, b〉 = 0 for all b ∈ B. (See Figure 9.11.) But

mul++
c : (0,∞) × (0,∞) → (0,∞), and mulc restricted to the other open quadrants, are

surjective and strictly increasing or decreasing in each axis. ♦

Theorem 9.4 justifies computing images of intervals with infinite endpoints under one-

argument functions by applying an extended function to the endpoints. Its two-argument

analogue is more involved because extended, two-argument functions may not be defined at

every point.

Example 9.17. addc cannot be extended to addc : R × R → R in the same way sqr+ is

183

-1-1-1-1-1-1-1-1-1

-.5-.5-.5-.5-.5-.5-.5-.5-.5

000000000

.5.5.5.5.5.5.5.5.5

111111111

111111111

.5.5.5.5.5.5.5.5.5

000000000

-.5-.5-.5-.5-.5-.5-.5-.5-.5

-1-1-1-1-1-1-1-1-1

111111111

.5.5.5.5.5.5.5.5.5

000000000

-.5-.5-.5-.5-.5-.5-.5-.5-.5

-1-1-1-1-1-1-1-1-1

aaaaaaaaa

bbbbbbbbb

a·ba·ba·ba·ba·ba·ba·ba·ba·b

a·b = 0a·b = 0a·b = 0a·b = 0a·b = 0a·b = 0a·b = 0a·b = 0a·b = 0

Figure 9.11: Multiplication on R × R is not surjective nor strictly monotone in each axis: a · 0 = 0 and
0 · b = 0 for all a and b (Example 9.16). Fortunately, restricted to each open quadrant, multiplication is
surjective and strictly increasing or decreasing in each axis.

extended to sqr+ because

lim
〈a′,b′〉→〈a,b〉

addc 〈a′, b′〉 (9.27)

diverges when 〈a, b〉 is 〈−∞,∞〉 or 〈∞,−∞〉. ♦

The previous example suggests that extensions of strictly increasing, two-argument

functions are always well-defined except at off-diagonal corners. This is true if we define

“off-diagonal” carefully.

Theorem 9.18 (R×R extension). Let A, B, C be open subsets of R, and gc : A× B→ C be

surjective and strictly increasing or decreasing in each axis. Let A, B and C be the closures

of A, B and C in R. The following extension is well-defined:

gc : (A× B)\N→ C

gc 〈a, b〉 := lim
〈a′,b′〉→〈a,b〉

gc 〈a′, b′〉
(9.28)

184

where N := {〈min A,max B〉, 〈max A,min B〉} if gc is increasing in each axis or decreasing

in each axis, and N := {〈min A,min B〉, 〈max A,max B〉} if gc is increasing/decreasing or

decreasing/increasing.

Proof. Suppose gc is increasing/increasing, and let xs : N → A × B be a sequence of gc’s

domain values, and ys := map gc xs.

Interior case: xs converges to 〈a, b〉 ∈ A × B. The limit of ys is gc 〈a, b〉 because gc

preserves limits by its continuity (by Theorem 9.13) in the first-countable space R× R.

Corner case: xs converges to 〈max A,max B〉. It thus has a strictly increasing subsequence.

By monotonicity, ys has a strictly increasing subsequence. Because ys is bounded by max C,

gc 〈max A,max B〉 = max C. A similar argument proves gc 〈min A,min B〉 = min C.

Border case: xs converges to 〈max A, b′〉 for some b′ ∈ B. Define xs′ := map (line b′) xs,

where line is defined as in the proof of Theorem 9.13. Now ys = map gc xs′. Because xs′ has a

subsequence that is strictly increasing in the first of each pair, and because the second of

each pair is the constant b′, by monotonicity, ys has a strictly increasing subsequence. It is

bounded by max C, so gc 〈max A, b′〉 = max C. Similar arguments prove gc 〈min A, b′〉 = min C,

gc 〈a′,max B〉 = max C, and gc 〈a′,min B〉 = min C.

The cases for gc’s other possible directions are similar.

Following the proof of Theorem 9.18, extensions of two-argument functions can be defined

by two corner cases, four border cases, and an interior case.

Example 9.19. Define powc : (0, 1)× (0,∞)→ (0, 1) by powc 〈a, b〉 := exp (b · log a), which

185

is increasing/decreasing. Its extension to a subset of R× R is

powc : ([0, 1]× [0,∞])\N→ [0, 1]

powc 〈a, b〉 := case 〈a, b〉
〈0,∞〉 −→ 0
〈1, 0〉 −→ 1
〈0, b〉 −→ 0
〈1, b〉 −→ 1
〈a, 0〉 −→ 1
〈a,∞〉 −→ 0
else −→ powc 〈a, b〉

(9.29)

where N := {〈0, 0〉, 〈1,∞〉}. ♦

The analogue of Theorem 9.4 (images of intervals by endpoints) is easiest to state if we

have predicates that indicate a function’s direction in each axis. Define inc1 : (A× B→ C)⇒

Bool so that inc1 g if and only if g is strictly increasing in its first axis, and similarly inc2 so

that inc2 g if and only if g is strictly increasing in its second axis.

Theorem 9.20 (images of rectangles by interval endpoints). Let A,B,C be open subsets of

R, and gc : A× B→ C be surjective and strictly increasing or decreasing in each axis, with gc

as defined in Theorem 9.18. If A′ := [(a1, a2,α1,α2)] ⊆ A and B′ := [(b1, b2, β1, β2)] ⊆ B, then

C′ := image gc ([(a1, a2,α1,α2)]× [(b1, b2, β1, β2)])

= let 〈a′1, a′2,α′1,α′2〉 := cond (inc1 gc) −→ 〈a1, a2,α1,α2〉
else −→ 〈a2, a1,α2,α1〉

〈b′1, b′2, β′1, β′2〉 := cond (inc2 gc) −→ 〈b1, b2, β1, β2〉
else −→ 〈b2, b1, β2, β1〉

in [(gc 〈a′1, b′1〉, gc 〈a′2, b′2〉,α′1 and β′1,α′2 and β′2)]

(9.30)

Proof. Because gc is continuous and A′ × B′ is a connected set, C′ is a connected set, which

in R is an interval. Thus, we need to determine only its endpoints and whether it contains

each endpoint.

Suppose gc is increasing/increasing. In this case, a′1 = a1, b′1 = b1, and so on. By

monotonicity, C′ is contained in [gc 〈a′1, b′1〉, gc 〈a′2, b′2〉]. If α′1 or β′1 is false, C′ cannot

186

contain gc 〈a′1, b′1〉. If α′2 or β′2 is false, C′ cannot contain gc 〈a′2, b′2〉. Therefore C′ =

[(gc 〈a′1, b′1〉, gc 〈a′2, b′2〉,α′1 and β′1,α′2 and β′2)].

We still must prove 〈a′1, b′1〉 and 〈a′2, b′2〉 are in gc’s domain. First, recall gc : (A×B)\N→

C, where A, B and C are the closures of A, B and C, and N = {〈min A,max B〉, 〈max A,min B〉}.

Because A′ ⊆ A and B′ ⊆ B, and A and B are open sets, a1 6= max A, a2 6= min A, b1 6= max B,

and b2 6= min B, so for all a ∈ A and b ∈ B,

〈a1, b1〉 6= 〈max A, b〉 〈a2, b2〉 6= 〈min A, b〉

〈a1, b1〉 6= 〈a,max B〉 〈a2, b2〉 6= 〈a,min B〉
(9.31)

Therefore, 〈a1, b1〉 6∈ N and 〈a2, b2〉 6∈ N, as desired.

The remaining cases for gc are similar.

Example 9.21. Because inc1 powc and not (inc2 powc),

image powc ((0, 1
2]× [2,∞))

= let 〈a1, a2,α1,α2〉 := 〈0, 1
2 , false, true〉

〈b1, b2, β1, β2〉 := 〈∞, 2, false, true〉
in [(powc 〈a1, b1〉, powc 〈a2, b2〉,α1 and β1,α2 and β2)]

= [(powc 〈0,∞〉, powc 〈12 , 2〉, false and false, true and true)]

= [(0, 1
4 , false, true)]

= (0, 1
4] ♦

To use Theorem 9.20 to compute approximate preimages under some gc by computing

images under its axial inverses, we must know whether each axis of ga and gb is increasing or

decreasing. It helps to have an analogue of Lemma 9.5 (inverse direction).

Theorem 9.22 (axial inverse directions). Let gc : A × B → C be surjective and strictly

increasing or decreasing in each axis, with axial inverses ga and gb. Then

1. inc1 ga if and only if (inc1 gc) xor (inc2 gc).

2. inc2 ga if and only if inc1 gc.

187

Proof. For 1, let c ∈ C, b1, b2 ∈ B, a1 := ga 〈b1, c〉 and a2 := ga 〈b2, c〉. Let c′ := gc 〈a1, b2〉;

note c = gc 〈a1, b1〉 = gc 〈a2, b2〉. Suppose inc1 gc and inc2 gc; then a1 > a2 ⇐⇒ c < c′ and

b1 < b2 ⇐⇒ c < c′, so b1 < b2 ⇐⇒ a1 > a2. The remaining cases are similar.

For statement 2, fix b ∈ B and apply Lemma 9.5.

By Theorem 9.22, we can use gc’s axis directions to determine ga’s, and by Theorem 9.9

(axial inverse cyclic group), use ga’s to determine gb’s.

9.3.3 Primitive Implementation

Because floating-point functions are defined on subsets of R, it would seem we could compute

preimages under strictly monotone, real functions by applying their floating-point counterparts

to interval endpoints. This is mostly true, but as with real-set-singleton, we must take

care with rounding. We must also account for floating-point’s signed zeros.

As with all interval arithmetic, to compute sound approximations of interval images, we

must round the results outward: round the lower endpoints down, and round the upper

endpoints up. Unlike with most interval arithmetic, soundness is not just a nice theoretical

guarantee. For the lowest-rejection-rate sampling algorithm presented further on, it is critical.

The sampling algorithm chooses a random value a, restricts Ω at index j to [a, a] using

Ω′ := unproj j Ω [a, a], and computes a preimage under the program’s interpretation as a

function, restricted to Ω′. If in the forward pass, the approximation of the image of Ω′ is not

sound, the reverse pass will often falsely compute an empty preimage.

Here is a more concrete example. As a preimage arrow computation, square root is

sqrtpre : [0,∞) pre [0,∞)

sqrtpre A := 〈image sqrt+ A, preimage (restrict sqrt+ A)〉
(9.32)

Suppose A = [12 ,
1
2], and that the implementation mistakenly computes image sqrt+ [12 ,

1
2] as

[0.7071067811865476, 0.7071067811865476]. The number 0.7071067811865476 is the closest

64-bit floating-point number to
√

1
2 ; i.e. the implementation’s floating-point square root is

188

compliant with the IEEE 754 floating-point standard [2].

Suppose that on the reverse phase, we compute the preimage of R under restrict sqrt+ [12 ,
1
2].

By Lemma 9.3, the implementation of pre should compute

preimage (restrict sqrt+ [12 ,
1
2]) (R ∩ [0.7071067811865476, 0.7071067811865476])

= [12 ,
1
2] ∩ image sqr+ [0.7071067811865476, 0.7071067811865476]

(9.33)

If it again uses compliant floating-point arithmetic but does not round outward, it computes

[12 ,
1
2] ∩ [0.5000000000000001, 0.5000000000000001] = ∅ (9.34)

In fact, an implementation that does not round intervals outward would falsely compute

empty preimages for about half of the floating-point numbers between 0.0 and 1.0.

The IEEE 754 floating-point standard mandates a settable rounding mode, and that

common operations must use it to determine which of the nearest floating-point numbers to

round to. Unfortunately, there is no portable way to set the rounding mode. In Racket, we

have a few other options.

1. Use math/bigfloat, which wraps the MPFR arbitrary-precision floating-point li-

brary [28], which does provide a way to set the rounding mode for its operations.

2. Use the math/flonum library’s functions for double-doubles, which are two nonover-

lapping floating-point numbers that when added together represent a number with

a 105-bit significand [69]. Convert flonums to double-doubles, operate on them, and

manually round the high-order number of the result up or down based on the sign of

the low-order number.

3. Use the math/flonum library’s flnext and flprev to bump the endpoints up or down.

We use option 2 for functions with 105-bit implementations, such as arithmetic, exp and log,

and otherwise use option 3.

For option 3, how far the endpoints are bumped up or down depends on the maximum

error in the output of the function’s floating-point implementation. For example, we use

189

the normal distribution’s inverse cumulative density function F−1
N (and its inverse FN) to

transform uniformly distributed random numbers (i.e. each ω j) into normally distributed

random numbers. As a preimage arrow computation, it is

normal-inv-cdfpre : (0, 1) pre R

normal-inv-cdfpre A := 〈image F−1
N A, preimage (restrict F−1

N A)〉
(9.35)

Racket’s math/distributions library implements F−1
N with flnormal-inv-cdf and FN with

flnormal-cdf, whose outputs are always within four floating-point numbers of the exact

outputs. The implementation of normalpre therefore bumps lower endpoints down by 4 and

upper endpoints up by 4.

For the code in this section, we use a /rndu suffix (read “with rounding up”) for the

names of functions that round up, and a /rndd for the name of functions that round down. In

Racket, prefixing floating-point functions with fl is conventional, so the name of the floating-

point addition function that rounds down is fl+/rndd, and the name of the floating-point

square root function that rounds up is flsqrt/rndu.

Figure 9.12 lists code that computes sound image and preimage approximations under

strictly monotone, surjective real functions. Such functions are represented by instances of

Bijection. Each instance contains a Boolean indicating whether the function is increasing, its

domain, range, an implementation with rounding down and up, and an inverse implementation

with rounding down and up. For example,

(define pos-sqr-bij
(Bijection #t nonnegative-reals nonnegative-reals

flsqr/rndd flsqr/rndu
flsqrt/rndd flsqrt/rndu))

(define sqrt-bij
(bijection-inverse pos-sqr-bij))

The preimage arrow computation sqrt-pre computes (bijection-image sqrt-bij A) in the

forward phase and (bijection-preimage sqrt-bij A B) in the reverse phase.

190

;; Represents an R -> R bijection, its direction, domain and range
(struct: Bijection

([inc? : Boolean] [domain : Real-Set] [range : Real-Set]
[gb/rndd : (Flonum -> Flonum)] [gb/rndu : (Flonum -> Flonum)]
[ga/rndd : (Flonum -> Flonum)] [ga/rndu : (Flonum -> Flonum)]))

(: bijection-inverse (Bijection -> Bijection))
;; Returns the inverse of a bijection (see Lemma 8.5)
(define (bijection-inverse g)

(match-define (Bijection inc? X Y gb/rndd gb/rndu ga/rndd ga/rndu) g)
(Bijection inc? Y X ga/rndd ga/rndu gb/rndd gb/rndu))

(: real-image (Boolean (Flonum -> Flonum) (Flonum -> Flonum) Real-Set
-> Real-Set))

;; Returns a sound approximation of the image of A under g (Theorem 8.4)
(define (real-image inc? g/rndd g/rndu A)

(match-define (Real-Set a1 a2 a1? a2?) A)
(cond [inc? (Real-Set (g/rndd a1) (g/rndu a2) a1? a2?)]

[else (Real-Set (g/rndd a2) (g/rndu a1) a2? a1?)]))

(: bijection-image (Bijection Real-Set -> (U Empty-Set Real-Set)))
;; Computes the image of A under bijection g
(define (bijection-image g A)

(match-define (Bijection inc? X Y gb/rndd gb/rndu) g)
(let ([A (real-set-intersect A X)])

(if (empty-set? A)
empty-set
(real-set-intersect Y (real-image inc? gb/rndd gb/rndu A)))))

(: bijection-preimage (bijection Real-Set Real-Set -> (U Empty-Set Real-Set)))
;; Returns an approximate preimage of B under g restricted to A (Lemma 8.3)
(define (bijection-preimage g A B)

(match-define (Bijection inc? X Y ga/rndd ga/rndu) g)
(let ([A (real-set-intersect A X)]

[B (real-set-intersect B Y)])
(if (or (empty-set? A) (empty-set? B))

empty-set
(real-set-intersect A (real-image inc? ga/rndd ga/rndu B)))))

Figure 9.12: Typed Racket code for computing images and preimages under strictly monotone, surjective real
functions.

A simple example shows how floating-point’s signed zeros can cause problems: the

implementation of the reciprocal function. Let recip+ be the extension of recip+ : (0,∞)→

191

(0,∞) to the compact superdomain [0,∞], defined by

recip+ : [0,∞]→ [0,∞]

recip+ a := lim
a′→a

recip+ a′ = case a
0 −→ ∞
∞ −→ 0
else −→ recip+ a

(9.36)

Suppose we implement it this way:

(define pos-recip-bij
(Bijection #f positive-reals positive-reals

(λ (a) (fl//rndd 1.0 a)) (λ (a) (fl//rndu 1.0 a))
(λ (a) (fl//rndd 1.0 a)) (λ (a) (fl//rndu 1.0 a))))

Because recip+ is surjective, image recip+ (0,∞) = (0,∞). With this implementation, we get

the expected result only when the left endpoint is positive floating-point zero, or +0.0:

> (bijection-image pos-recip-bij (Real-Set +0.0 +inf.0 #f #f))
(Real-Set 0.0 +inf.0 #f #f)

> (bijection-image pos-recip-bij (Real-Set −0.0 +inf.0 #f #f))
empty-set

The issue is that (fl/ 1.0 +0.0) returns +inf.0, but (fl/ 1.0 −0.0) returns −inf.0, as

per the IEEE 754 floating-point standard. The implementation should compute

image recip+ (0,∞) = (recip+ ∞, recip+ 0) = (0,∞) (9.37)

but tries to return (0,−∞), which is the empty set.

In interval arithmetic, the typical solution is to allow +0.0 only as a lower endpoint,

and −0.0 as only as an upper endpoint [35]. We have not determined whether this solution

generalizes to nonarithmetic functions, however, so we define

(define (pos-recip/rndd a)
(if (fl= a 0.0) +inf.0 (fl/ 1.0 a)))

192

;; Represents an R x R -> R trijection, its directions, domain and range
(struct: Trijection
([inc1? : Boolean] [inc2? : Boolean]
[domain1 : Real-Set] [domain2 : Real-Set] [range : Real-Set]
[gc/rndd : (Flonum Flonum -> Flonum)] [gc/rndu : (Flonum Flonum -> Flonum)]
[ga/rndd : (Flonum Flonum -> Flonum)] [ga/rndu : (Flonum Flonum -> Flonum)]
[gb/rndd : (Flonum Flonum -> Flonum)] [gb/rndu : (Flonum Flonum -> Flonum)]))

(: real2d-image (Boolean Boolean
(Flonum Flonum -> Flonum)
(Flonum Flonum -> Flonum)
Real-Set Real-Set -> Real-Set))

;; Returns a sound approximation of the image of AxB under g (Theorem 8.20)
(define (real2d-image inc1? inc2? g/rndd g/rndu A B)

(define-values (a1 a2 a1? a2?)
(match-let ([(Real-Set a1 a2 a1? a2?) A])

(cond [inc1? (values a1 a2 a1? a2?)]
[else (values a2 a1 a2? a1?)])))

(define-values (b1 b2 b1? b2?)
(match-let ([(Real-Set b1 b2 b1? b2?) B])

(cond [inc2? (values b1 b2 b1? b2?)]
[else (values b2 b1 b2? b1?)])))

(Real-Set (g/rndd a1 b1) (g/rndu a2 b2) (and a1? b1?) (and a2? b2?)))

(: trijection-preimage (Trijection Real-Set Real-Set Real-Set
-> (Values (U Empty-Set Real-Set)

(U Empty-Set Real-Set))))
;; Returns an approximate preimage of C under g restricted to AxB
;; (Theorem 8.11, Theorem 8.22)
(define (trijection-preimage g A B C)

(match-define (Trijection gc-inc1? gc-inc2? X Y Z
ga/rndd ga/rndu gb/rndd gb/rndu) g)

(define ga-inc1? (xor gc-inc1? gc-inc2?))
(define ga-inc2? gc-inc1?)
(define gb-inc1? (xor ga-inc1? ga-inc2?))
(define gb-inc2? ga-inc1?)
(let ([A (real-set-intersect A X)]

[B (real-set-intersect B Y)]
[C (real-set-intersect C Z)])

(if (or (empty-set? A) (empty-set? B) (empty-set? C))
(values empty-set empty-set)
(values (real-set-intersect

A (real2d-image ga-inc1? ga-inc2? ga/rndd ga/rndu B C))
(real-set-intersect
B (real2d-image gb-inc1? gb-inc2? gb/rndd gb/rndu C A))))))

Figure 9.13: Typed Racket code for computing images and preimages under two-dimensional real functions
that are surjective and strictly increasing or decreasing in each axis.

193

and similarly pos-recip/rndu, and define pos-recip-bij in terms of these functions.

Figure 9.13 lists code that computes sound image and preimage approximations under

two-dimensional real functions that are surjective and strictly increasing or decreasing in

each axis. Such functions are represented by instances of Trijection. Each instance contains

two Boolean values indicating whether each axis is increasing, its axis domains, its range, an

implementation with rounding down and up, and two axial inverse implementations with

rounding down and up. For example, the implementations of addition and subtraction are

(define add-trij
(Trijection #t #t reals reals reals

fl+/rndd fl+/rndu
flrev-/rndd flrev-/rndu
fl-/rndd fl-/rndu))

(define sub-trij
(trijection-second-inverse add-trij))

where flrev-/rndd implements adda 〈b, c〉 := c− b with rounding down.

9.3.4 Piecewise Monotone Primitives

Using iftepre, it is easy to provide primitives that are piecewise monotone with finitely many

pieces. We first need predicates to distinguish the parts, so we define

negative?pre : R pre Bool

negative?pre := predicatepre (−∞, 0] (0,∞)
(9.38)

as well as positive?pre in the same way.

From sqr+pre (nonnegative square) and negpre (negation) primitives, we define

sqrpre := iftepre negative?pre (negpre >>>pre sqr+pre) sqr+pre

sqrpre∗ := ηpre∗ sqrpre
(9.39)

We then extend J·K⇓pre∗ by the rule Jsqr eK⇓pre∗ := JeK⇓pre∗ >>>pre∗ sqrpre∗ . Equivalently, we could

194

provide sqr+, neg and negative? as primitives and define

sqr a := strict-if (negative? a) (sqr+ (neg a)) (sqr+ a) (9.40)

as a standard library function for probabilistic programs.

From implementations of multiplication restricted to each open quadrant, or mul++
pre ,

mul+−pre , mul−+pre and mul−−pre , we define multiplication on all of R× R with

mulpre := iftepre (fstpre >>>pre positive?pre)
(iftepre (sndpre >>>pre positive?pre)

mul++
pre

(iftepre (sndpre >>>pre negative?pre)
mul+−pre
(constpre 0)))

... [similar code using mul−+pre and mul−−pre] ...

mulpre∗ := ηpre∗ mulpre

(9.41)

and extend J·K⇓pre∗ by the rule Je1 · e2K
⇓
pre∗ := J〈e1, e2〉K⇓pre∗ >>>pre∗ mulpre∗ .

9.4 Sampling Methods

Chapter 8 defines the preimage refinement algorithm (Definition 8.62), which repeatedly splits

a partition of the program domain, restricts the program to each part, and refines each part

by computing a preimage. While it appears to converge for programs that terminate with

probability 1, it is inefficient. Good accuracy requires fine discretization, which is exponential

in the number of discretized axes. For example, a nonrecursive program that contains only 10

uses of random would need to partition 10 axes of Ω. Splitting each axis into only 4 disjoint

intervals yields a partition of Ω of size 410 = 1, 048, 576.

Fortunately, Bayesian practitioners tend to be satisfied with sampling methods, which

are usually more efficient than enumeration methods. To approximately answer conditional

queries, it suffices to sample within the preimage of the condition set. More precisely, if

g := JpK⇓map∗ , we can answer almost any query Pr[B′|B] by sampling within A := preimage g B,

195

(a) Exact preimage of B (b) Parts sampled from a rectangu-
lar cover instead of enumerated

(c) Points sampled within the parts

Figure 9.14: A more efficient alternative to the preimage refinement algorithm. Instead of enumerating a
rectangular cover, its parts are sampled, and each part is then sampled from. Points that lie outside the
exact preimage (which is easy to test) are rejected.

if the probability of A is positive.

It is easy to sample within A by sampling within Ω and rejecting samples not in A. To

determine whether samples are in A, we can use the interpretation of the program p as a

bottom* arrow computation f := JpK⇓⊥∗ . Unfortunately, the time required to accept a fixed

number of samples also tends to be exponential in the number of dimensions. To solve this

problem, we sample within a rectangular cover of A, as computed by preimage refinement,

instead of within Ω. But we do not need to enumerate the cover’s parts, as Figure 9.19

illustrates: for each sample, we first sample a part, and then sample a value within the part.

9.4.1 Partitioned Sampling

More generally, without considering probabilistic programming at all, we want to sample

values in a probability space X,P by first sampling a part from a partition of X and then

sampling from that part.3

First, to restrict probability measures to measurable, positive-probability sets and
3This is not stratified sampling, which samples a fixed number of times from each partition.

196

renormalize them, we define

condition : Set X ⇀ [0, 1]⇒ Set X⇒ Set X ⇀ [0, 1]

condition P A := λA′ ∈ domain P.P (A′ ∩ A) / P A
(9.42)

Definition 9.23 (partitioned sampling). Let X,P be an arbitrary probability space, N be an

at-most-countable index set, and s : N→ Set X be a partition of X into |N| measurable parts.

The following procedure samples from X:

1. Choose n ∈ N with probability P (s n).

2. Choose a ∈ s n according to condition P (s n).

It is not hard to show that partitioned sampling chooses an a ∈ X according to P.

Example 9.24 (partitioned sampling from a standard normal). Let P be the standard

normal distribution’s probability measure. To sample according to P, let N := {neg, pos} and

s = [neg 7→ (−∞, 0], pos 7→ (0,∞)], and define Q : N→ Set R ⇀ [0, 1] by

Q neg A = P ((−∞, 0] ∩ A) / 1
2

Q pos A = P ((0,∞) ∩ A) / 1
2

(9.43)

Then

1. Choose n = neg or n = pos, each with probability 1
2 .

2. Choose a ∈ s n according to Q n. ♦

Partitioned sampling has two weaknesses. First, it requires P (s n) to be easy to compute

for all n ∈ N. If this were true, we would not need to sample in the first place—i.e. it

assumes a solution to the overall problem we are trying to solve. Second, it assumes sampling

according to condition P (s n) is easy, which is also not reasonable, as sampling according to

a conditioned distribution is a subproblem we are trying to solve.

But suppose we could easily sample a partition index according to a different distribution

over N, and according to a different distribution over part s n for each n ∈ N. Doing so and

197

returning weighted samples to adjust for the differences in distribution comprises partitioned

importance sampling.

First, to restrict a probability measure P to a measurable set A without renormalizing it,

we define

subcond : Set X ⇀ [0, 1]⇒ Set X⇒ Set X ⇀ [0, 1]

subcond P A := λA′ ∈ domain P.P (A′ ∩ A)
(9.44)

This returns a subprobability measure: a measure whose largest output is less than 1.

Definition 9.25 (partitioned importance sampling). Suppose we have

• An arbitrary probability space X,P.

• An at-most-countable index set N.

• A probability mass function p : N→ [0, 1] such that p n > 0 for all n ∈ N.

• A partition s : N→ Set X of X into |N| measurable parts.

• Candidate probability measures Q : N→ Set X ⇀ [0, 1], one for each partition.

To sample from X according to P,

1. Choose n ∈ N with probability p n.

2. Choose a ∈ X according to Q n.

3. Compute w := 1
p n · diff

+ (subcond P (s n)) (Q n) a.

4. Return the weighted sample 〈a,w〉.

The function diff+ (subcond P (s n)) (Q n), with type X→ [0,∞), is aRadon-Nikodým4

derivative. If P has density f, Q n has density g, and a ∈ s n implies g a > 0, then5

diff+ (subcond P (s n)) (Q n) a = if (a ∈ s n) (f a / g a) 0 (9.45)

Appendix B has formal definitions and more details. We use diff+ in a more general sense,

but in this section, it is usually fine to think of its return values as quotients of densities.
4Pronounced “RADon neekohDIM,” and named after Austrian mathematician Johann Radon and Polish

mathematician Otto Nikodým.
5The equality in (9.45) holds (Q n)-almost everywhere.

198

-.25-.25-.25-.25-.25-.25-.25-.25-.25 000000000 .25.25.25.25.25.25.25.25.25 .5.5.5.5.5.5.5.5.5 .75.75.75.75.75.75.75.75.75 111111111 1.251.251.251.251.251.251.251.251.25
-.25-.25-.25-.25-.25-.25-.25-.25-.25

000000000

.25.25.25.25.25.25.25.25.25

.5.5.5.5.5.5.5.5.5

.75.75.75.75.75.75.75.75.75

111111111

1.251.251.251.251.251.251.251.251.25

(a) Samples chosen according to overlapping candi-
date distributions Q left and Q right

-.25-.25-.25-.25-.25-.25-.25-.25-.25 000000000 .25.25.25.25.25.25.25.25.25 .5.5.5.5.5.5.5.5.5 .75.75.75.75.75.75.75.75.75 111111111 1.251.251.251.251.251.251.251.251.25
-.25-.25-.25-.25-.25-.25-.25-.25-.25

000000000

.25.25.25.25.25.25.25.25.25

.5.5.5.5.5.5.5.5.5

.75.75.75.75.75.75.75.75.75

111111111

1.251.251.251.251.251.251.251.251.25

(b) After resampling candidate samples by weight

Figure 9.15: Partitioned importance sampling used to sample uniformly in a partition of the unit square,
using two overlapping, overapproximating candidate distributions.

An importance sampling algorithm is correct when all expected values computed using

its weighted samples are the equal to the true expected values. This is true of partitioned

importance sampling under reasonable conditions, which are analogous to the support of

subcond P (s n) being no larger than that of Q n. The formal statement of the theorem and

its proof are in Appendix B.

Partitioned importance sampling allows quite a lot of freedom: parts can be chosen with

arbitrary nonzero probability, and each part can have its own candidate distribution, which

may be defined on a superset of the part. The last property in particular—that candidate

distributions for different parts may overlap—is critical for sampling within restricted program

domains, because we necessarily sample rectangular covers of parts.

Example 9.26 (2D partitioned importance sampling). Figure 9.15 shows the result of

partitioned importance sampling in a partition of the unit square. In this instance,

• X := [0, 1]× [0, 1] is the unit square and P is uniform measure on X (i.e. area).

• N := {left, right} are the partition’s part indexes.

199

• s left = {〈x, y〉 ∈ X | y > 2 · x − 1
2} is the left part; s right is defined similarly.

• p := [left 7→ 0.4, right 7→ 0.6] is a non-uniform distribution over part indexes.

• Q left is the uniform measure on a superset of s left, and Q right is a multivariate

Gaussian centered at 〈0.8, 0.3〉; note that these candidate distributions overlap.

The implementation does not actually construct most of these objects. It constructs

• A density function f : R× R⇒ [0,∞) to represent P.

• A family of predicates s? : N⇒ X⇒ Bool to decide a ∈ s n.

• Candidate densities g : N⇒ X⇒ [0,∞) to represent Q.

It computes weights using diff+ (subcond P (s n)) (Q n) a = f a / g n a when s? n a = true.

It directly represents only N and p, but we will find even this to be infeasible shortly.

Figure 9.15a shows the samples taken by choosing a part index n ∈ N, then choosing a

point from the candidate distribution Q n. Figure 9.15b shows the result of resampling the

samples by weight, to demonstrate that the weighted samples represent a uniform distribution

over [0, 1]× [0, 1]. The left part has higher variation in coverage: repeated resamples make

up for the fact that the candidate samples are sparser there. ♦

Two properties make the preceding example relatively simple. First, the partition has

finitely many parts. Second, the measures subcond P (s n) and Q n have densities, which

ensures diff+ (subcond P (s n)) (Q n) exists and is easy to compute.

When sampling in the domain of programs, neither property holds in general.

9.4.2 Partitioning Probabilistic Program Domains

For the random source part Ω := J → [0, 1] of probabilistic program domains, which

consists of infinite binary trees of reals, it is not clear that partitioned importance sampling is

applicable. The main problem is that it is difficult to prove that any given infinite-dimensional

Radon-Nikodým derivative exists.

Fortunately, we can prove they exist if the two measures differ in only finitely many

axes. More precisely, let P1 : Set Ω ⇀ [0, 1] and P2 : Set Ω ⇀ [0, 1] be probability measures,

200

and J′ ⊆ J be a finite set of tree indexes. Suppose P1 can be factored into a distribution P′1

over finite prefixes J′ → [0, 1] and a distribution over suffixes (J\J′)→ [0, 1], and P′2 can be

similarly factored into P′2 and the same distribution over suffixes. Then, under reasonable

conditions (which are analogous to the support of P′1 being no larger than that of P′2),

diff+ P1 P2 exists and can be computed using diff+ P′1 P′2. Appendix B contains a formal

statement and proof.

To ensure subcond P (s n) and Q n differ in only finitely many axes, we partition Ω

according to branch traces. Because only finitely branches may be taken, each branch trace

corresponds with a program that reads any ω ∈ Ω at only finitely many indexes J′ ⊆ J.

In the remainder of this subsection, assume a fixed program p. Let f := JpK⇓⊥∗ :

〈〈Ω,T〉, 〈〉〉 ⊥* Y be its interpretation as a bottom* arrow computation, with maximal

domain A∗. Define T∗ := image (fst >>> snd) A∗ as its maximal branch trace set and

Ω∗ := image (fst >>> fst) A∗ as its maximal random source set.

We need a notion of the random sources that agree with a given branch trace t ∈ T; i.e.

those ω ∈ Ω for which f 〈〈ω, t〉, 〈〉〉 6= ⊥.

Definition 9.27 (induced random sources). Let t ∈ T be a branch trace. The random

sources induced by t are a subset of Ω defined by Ω′ := {ω ∈ Ω | f 〈〈ω, t〉, 〈〉〉 6= ⊥}.

Equivalently, Ω′ is the set of ω ∈ Ω for which 〈〈ω, t〉, 〈〉〉 ∈ A∗.

Example 9.28. Consider the program

if (random < random) e1 e2 (9.46)

where e1 and e2 are deterministic expressions. Figure 9.16 illustrates the partition induced

by its maximal branch traces T∗. The trace [left j0 7→ true, ∗ 7→ ⊥] induces the upper-left

triangle in the plot, which represents the subset of Ω for which random < random is true.

The trace maps left j0 to true because left j0 is the index of the expression random < random.

For this program, the trace [∗ 7→ ⊥] induces ∅. ♦

201

j0

if

left j0

<

right j0

unused

left (left j0)

random

right (left j0)

random

left (right j0)

e1

right (right j0)

e2

(a) The computation tree for if (random < random) e1 e2.
ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

000000000 .2.2.2.2.2.2.2.2.2 .4.4.4.4.4.4.4.4.4 .6.6.6.6.6.6.6.6.6 .8.8.8.8.8.8.8.8.8 111111111
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

 t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥] t = [left j₀ ↦ true, * ↦ ⊥]

 t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥] t = [left j₀ ↦ false, * ↦ ⊥]

(b) The partition induced by maximal
branch traces T∗. Each part is labeled
with a trace that induces it.

Figure 9.16: A computation tree and an induced partition of Ω.

In fact, only traces in T∗ induce nonempty subsets of Ω.

Theorem 9.29. Let t ∈ T induce Ω′. Ω′ 6= ∅ if and only if t ∈ T∗.

Proof. By definition of T∗, Ω′ 6= ∅ if and only if there is an ω ∈ Ω′ with 〈〈ω, t〉, 〈〉〉 ∈ A∗.

Using T or T∗ as the partition index set and defining the partition’s parts as induced

random sources almost works, in the sense that the required Radon-Nikodým derivatives

exist. Unfortunately, we cannot use T or T∗ as the partition index set because many branch

traces can induce the same random sources.

Example 9.30. Consider again if (random < random) e1 e2. There are many other traces

that induce the same subset of Ω as [left j0 7→ true, ∗ 7→ ⊥]; for example

[left j0 7→ true, right j0 7→ false, ∗ 7→ ⊥]

[left j0 7→ true, left (right j0) 7→ true, ∗ 7→ ⊥]
(9.47)

and so on. All of these agree with every ω that [left j0 7→ true, ∗ 7→ ⊥] agrees with. In fact,

there are infinitely many branch traces in T∗ that induce the same random sources. ♦

202

We need to find a subset of T∗ whose induced random sources are disjoint. The main

idea is to define equivalence classes of branch traces that induce the same random sources,

and use the “smallest” branch trace in each class as a part index.

To identify the smallest trace in each class, we must define an ordering over them. One

fairly natural way is to say a branch trace is smaller than another when it describes fewer

branch decisions; i.e. its tree has fewer non-⊥ elements. Two branch traces that differ by

returning respectively true and false for the same j may represent different execution paths,

so they must be incomparable.

Definition 9.31 (branch trace partial order). t1 ≤ t2 when for all j ∈ J, t1 j = ⊥ or

t1 j = t2 j.

To find the minimum of a set of equivalent traces, it helps to be able to compute the

greatest lower bound, or infimum. We claim that this function does so:

trace-inf : Set T⇒ T

trace-inf T′ := λ j ∈ J. case proj j T′
{b} −→ b
else −→ ⊥

(9.48)

Theorem 9.32 (trace infimum). Let T′ ⊆ T and t∗ := trace-inf T′. Then

• For all t′ ∈ T′, t∗ ≤ t′.

• For all t ∈ T, if for all t′ ∈ T′, t ≤ t′, then t ≤ t∗.

Proof. Let t′ ∈ T′ and j ∈ J. If proj j T′ = {b} for b ∈ Bool⊥, then t∗ j = t′ j = b. Otherwise,

t∗ j = ⊥. Thus t∗ ≤ t′.

Let t ∈ T and suppose that for all t′ ∈ T′, t ≤ t′. Let j ∈ J. If proj j T′ = {b}, then there

are two cases: t j = ⊥, or t j = t∗ j = b. Otherwise there exists a t′ ∈ T′ such that t j 6= t′ j,

so t j = ⊥. Thus t ≤ t∗.

Any two comparable traces in T∗ induce the same random sources.

203

Theorem 9.33 (comparable implies equivalent). Let t1, t2 ∈ T∗ induce Ω1, Ω2. If t1 ≤ t2 or

t2 ≤ t1, then Ω1 = Ω2.

Proof. It suffices to consider t1 ≤ t2; the t2 ≤ t1 case follows from reflexivity of (=).

Suppose ω ∈ Ω1, so f 〈〈ω, t1〉, 〈〉〉 6= ⊥. Let J′ ⊆ J such that j ∈ J′ if and only if 〈ω, t1〉

agrees with the ifte⇓⊥∗ subcomputation at index j. For all j ∈ J′, t1 j 6= ⊥, so t2 j = t1 j by

definition of (≤). Therefore, 〈ω, t2〉 also agrees with every ifte⇓⊥∗ subcomputation at every

index j ∈ J′, so f 〈〈ω, t2〉, 〈〉〉 6= ⊥. Therefore ω ∈ Ω2, so Ω1 ⊆ Ω2.

Suppose ω 6∈ Ω1. Let J′ ⊆ J such that j ∈ J′ if and only if t1 j 6= ⊥. Because

f 〈〈ω, t1〉, 〈〉〉 = ⊥, there exists a j ∈ J′ such that the ifte⇓⊥∗ subcomputation at index j disagrees

with 〈ω, t1〉. Because t1 j = t2 j by definition of (≤), the ifte⇓⊥∗ subcomputation at index j also

disagrees with 〈ω, t2〉, so f 〈〈ω, t2〉, 〈〉〉 = ⊥. Therefore ω 6∈ Ω2, so Ω2 ⊆ Ω1.

Corollary 9.34 (infimum in T∗ implies equivalent). Let t1, t2 ∈ T∗ induce Ω1,Ω2, and define

t∗ := trace-inf {t1, t2}. If t∗ ∈ T∗, then Ω1 = Ω2.

If T∗ is partitioned into equivalence classes of traces that induce the same random

sources, each part in the partition contains a smallest member with respect to (≤).

Theorem 9.35. Let t ∈ T∗ induce Ω′, T′ be the largest subset of T∗ that induces Ω′, and

t∗ := trace-inf T′. Then t∗ ∈ T′.

Proof. Let ω ∈ Ω′. By definition of trace-inf, every ifte⇓⊥∗ subcomputation agrees with 〈ω, t∗〉.

Therefore f 〈〈ω, t∗〉, 〈〉〉 6= ⊥, so t∗ induces Ω′.

Theorem 9.36 (infimum not in T∗ implies disjoint). Let t1, t2 ∈ T∗ induce Ω1,Ω2, and define

t∗ := trace-inf {t1, t2}. If t∗ 6∈ T∗, then Ω1 ∩Ω2 = ∅.

Proof. Let T1,T2 be the largest subsets of T∗ that induce Ω1, Ω2. Let t1∗ := trace-inf T1 and

t2∗ := trace-inf T2. Because t∗ 6∈ T∗, t1∗ 6= t2∗.

Let ω ∈ Ω1. For every j ∈ J for which t1∗ j 6= ⊥, there is an ifte⇓⊥∗ subcomputation at

index j that agrees with 〈ω, t1∗〉. But because t2∗ 6= t1∗, there exists a j ∈ J for which an

204

ifte⇓⊥∗ subcomputation at index j disagrees with 〈ω, t2∗〉. Therefore ω 6∈ Ω2. By a symmetric

argument, ω ∈ Ω2 implies ω 6∈ Ω1.

We can thus get our sought-after index set by defining the set of smallest branch traces.

Definition 9.37 (minimal branch traces). The set of minimal branch traces T∗ is the

set of minimal elements in T∗, or

T∗ := {t1 ∈ T∗ | ∀ t2 ∈ T∗. t2 ≤ t1 =⇒ t2 = t1} (9.49)

Theorem 9.38. T∗ induces Ω∗.

Proof. Let t ∈ T∗ induce Ω′ and T′ be the largest subset of T∗ that induces Ω′. Its minimum

t∗ := trace-inf T′ is in T∗.

Theorem 9.39 (T∗ partitions). Let t1, t2 ∈ T∗ induce respectively Ω1 and Ω2. If t1 6= t2,

then Ω1 ∩Ω2 = ∅.

Proof. Let t∗ := trace-inf {t1, t2}. Because t1 and t2 are minimal, t∗ 6∈ T∗. By Theorem 9.36,

Ω1 ∩Ω2 = ∅.

We can thus sample a partition index t ∈ T∗, which induces a unique part from a

partition of Ω∗.

A program’s minimal branch trace set T∗ contains only the actual branches taken when

running the program on every ω ∈ Ω∗. Therefore, one way to sample from T∗ with the

correct probability—at least, for programs that halt with probability 1—would be to choose

an ω ∈ Ω uniformly, and run the program on ω while recording each branch decision.

But this sampling scheme has problems similar to those of partitioned sampling (Defini-

tion 9.23). First, it assumes the probabilities of branch traces, which are the probabilities of

the Ω∗ subsets they induce, are easy to compute. Second, we are interested in sampling from

an arbitrarily low-probability subset of Ω∗, which may be covered by the partition induced by

an arbitrarily low-probability subset of T∗.

It appears we have a chicken-and-egg problem, in that

205

1. Sampling in a small subset of Ω∗ requires sampling in a small subset of T∗.

2. Sampling in a small subset of T∗ requires sampling in a small subset of Ω∗.

Fortunately, if we allow ourselves subsets of a larger set than T∗, and allow ourselves to

sample within overapproximating covers of Ω∗ subsets, we can use approximate preimage

computation to sample from T∗ and Ω∗ subsets simultaneously.

9.4.3 Approximate Partitions of Probabilistic Program Domains

The idea is to define a set of branch traces T+ that is derived only from a program’s shape,

not its actual executions. We ensure that T∗ ⊆ T+, and that every t ∈ T+\T∗ induces ∅, so

that T+ induces the same partition as T∗. We define an algorithm for sampling from T+,

which does not require running a probabilistic program on any ω ∈ Ω. We then extend this

algorithm to use preimage computation to sample in arbitrarily good approximations of small

subsets of T∗ and Ω∗.

Defining T+ in terms of a program’s branching shape requires an additional abstract

interpretation. Figure 9.17a defines the indexes arrow. Its type is J⇒ Idxs, which does

not refer to a domain or codomain type of program values because its computations do not

receive or compute program values. Instead, they build lazy trees of possible branching

decisions, ignoring the actual values of if conditions. For example, lifted, pure functions are

interpreted as λ j. 〈〉, which takes the function’s computation index and returns no decisions.

Composition and pairing of subcomputations i1 and i2 both return 〈i1 (left j), i2 (right j)〉: a

node with two children that contain the feasible branch decisions in their subcomputations.

Only ifteidxs∗ does more than simple structural recursion: it returns if-idxs j idxs2 idxs3 to

represent a decision at computation index j. The children idxs2 and idxs3 are lazy, abstract

representations of the if’s branches. Like a concrete execution, a branch trace sampler is

expected to compute and recur through only one of them.

Figure 9.17b defines sample-traces, which, to make its extension for use with preimage

refinement easier, samples rectangles of branch traces given an idxs : Idxs. It returns a

206

Idxs ::= 〈〉 | 〈Idxs, Idxs〉
| if-idxs J (1⇒ Idxs) (1⇒ Idxs)

arridxs∗ : (x ⇒ y)⇒ (J⇒ Idxs)
arridxs∗ f j := 〈〉

(>>>idxs∗) : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
(i1 >>>idxs∗ i2) j := 〈i1 (left j), i2 (right j)〉

(&&&idxs∗) : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
(i1 >>>idxs∗ i2) j := 〈i1 (left j), i2 (right j)〉

ifteidxs∗ : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
ifteidxs∗ i1 i2 i3 j := let idxs2 := λ0. i2 (left (right j))

idxs3 := λ0. i3 (right (right j))
in 〈i1 (left j), if-idxs j idxs2 idxs3〉

lazyidxs∗ : (1⇒ (J⇒ Idxs))⇒ (J⇒ Idxs)
lazyidxs∗ i j := i 0 j

randomidxs∗ : J⇒ Idxs
randomidxs∗ j := 〈〉

(a) Branch index arrow. Computations return a lazy tree of type Idxs, of feasible branch decisions, ignoring
the actual values of if conditions. The arrow is directly implementable in any λ-calculus.

sample-traces : Idxs→ 〈R,Rect T〉
sample-traces idxs := sample-traces∗ idxs 〈1,T〉

sample-traces∗ : Idxs⇒ 〈R,Rect T〉 ⇒ 〈R,Rect T〉
sample-traces∗ 〈〉 pt := pt
sample-traces∗ 〈idxs1, idxs2〉 pt := let pt′ := sample-traces∗ idxs1 pt

in sample-traces∗ idxs2 pt′
sample-traces∗ (if-idxs j idxs2 idxs3) 〈pt,T′〉 := let 〈pb, b〉 := sample-branch Bool⊥

pt′ := 〈pt · pb, unproj j T′ {b}〉
in case b

true −→ sample-traces∗ (idxs2 0) pt′
false −→ sample-traces∗ (idxs3 0) pt′
⊥ −→ pt′

(b) The stochastic function sample-traces samples a T′, and returns T′ and its probability.

Figure 9.17: Branch index collecting semantics.

pair 〈pt,T′〉, where T′ is the sampled rectangle and pt is the probability with which it was

chosen. It assumes a stochastic procedure sample-branch : Set Bool⊥ ⇒ 〈R,Bool⊥〉, where

sample-branch B returns any member of B with some nonzero, constant probability. At index

j, for the branch choice 〈pb, b〉 := sample-branch Bool⊥, T′ is restricted using unproj j T′ {b}.

Although sample-traces returns rectangles, it is easy to transform one into a single trace

using trace-inf; i.e. trace-inf (snd (sample-traces idxs)) samples a branch trace.

Let idxs := JpK⇓idxs∗ j0.

Definition 9.40 (feasible branch traces). The feasible branch traces T+ are those t ∈ T

for which Pr[t = trace-inf (snd (sample-traces idxs))] > 0.

207

Because sample-traces∗ imposes a total order on evaluation, any terminating application

of it induces a total order on the indexes j in applications matching if-idxs j idxs2 idxs3.

Let j1, j2, ..., jn be those indexes, with corresponding branch choices b1, b2, ..., bn. Define

T′1,T′2, ...,T′n by T′0 := T and T′i := unproj ji T′i−1 {bi}.

Theorem 9.41 (sample-traces soundness). T∗ ⊆ T+.

Proof. Let t ∈ T∗. It suffices to show that there exists an n and a sequence of branch choices

b1, b2, ..., bn for which t = trace-inf T′n.

First, we prove by induction the seemingly weaker statement that there exist n and

branch choices for which t ∈ T′n. Let j1, j2, ..., jn be the in-order indexes at which t ji 6= ⊥.

Clearly t ∈ T′0 = T. If t ∈ T′i−1, then bi := t ji implies t ∈ T′i = unproj ji T′i−1 {bi}.

For any j ∈ {j1, j2, ..., jn}, {t j} = proj j T′n. For any other j, t j = ⊥ and proj j T′n = Bool⊥.

By definition of trace-inf, therefore t = trace-inf T′n.

For T+ to induce a partition, every t ∈ T+\T∗ must induce ∅.

Theorem 9.42 (sample-traces non-∅-unique). For all t ∈ T+, if t 6∈ T∗ then t induces ∅.

Proof. Let j1, j2, ..., jn and b1, b2, ..., bn for a terminating evaluation of sample-traces∗ idxs 〈1,T〉.

Suppose T′n ∩ T∗ = ∅. Then there exists an i such that T′i−1 ∩ T∗ 6= ∅ and T′i ∩ T∗ = ∅.

Thus bi 6∈ proj ji T∗, so f does not agree with any t ∈ T′i.

Let t := trace-inf T′n, which by definition of trace-inf and sample-traces∗ is in T′n. Because

T′n ⊆ T′i, f does not agree with t, so t induces ∅.

Corollary 9.43 (sample-traces partitioning). T+ induces a partition of Ω∗.

To be used in partitioned importance sampling, the probability returned by sample-traces

must be correct.

Theorem 9.44 (sample-traces correctness). If 〈p′t,T′〉 := sample-traces idxs, then Pr[T′] = p′t.

208

Proof. Let pb1 , pb2 , ..., pbn be the probabilities returned from sample-branch for b1, b2, ..., bn.

The probability of b1, b2, ..., bn is thus p′t := pb1 · pb2 · ... · pbn . Because the transformation from

b1, b2, ..., bn to T′n is injective, Pr[T′n] = p′t.

Further, sample-traces should terminate with probability 1.

Theorem 9.45 (sample-traces termination). sample-traces idxs terminates with probability 1.

Proof. For each branch choice bi, there is a nonzero probability that bi = ⊥, which is a

recursion base case.

We finally have a way to use partitioned importance sampling to sample within the

preimage of some set B. Define

f := JpK⇓⊥∗ j0 h′ := JpK⇓′pre∗ j0 idxs := JpK⇓idxs∗ j0 (9.50)

to interpret p as a bottom arrow computation, an approximating preimage arrow computation,

and a lazy tree of feasible branch decisions. Define refine A := ap′pre (h′ A) B. Then

1. Let 〈pt,T′〉 := sample-traces idxs.

2. Let t := trace-inf T′.

3. Let A′ := refine ((Ω × {t})× {〈〉}).

4. Let Ω′ := image (fst >>> fst) A′. If Ω′ = ∅, reject.

5. Choose ω ∈ Ω′ according to Q t. If f 〈〈ω, t〉, 〈〉〉 6∈ B, reject.

6. Compute weight w := 1
pt
· diff+ (subcond P Ω′′) (Q t) ω, where Ω′′ is the set of random

sources induced by t.

Computing diff+ (subcond P Ω′′) (Q t) does not require Ω′′, as we will demonstrate shortly.

Samples are rejected for two reasons. The first is when Ω′ = ∅ because sample-trace

overapproximates by choosing from T+ instead of T∗. The second is when ω ∈ Ω′ but ω 6∈ Ω′′

because h′ overapproximates. To reduce the rejection rate, we must reduce overapproximation

as much as possible. We can address both causes by partitioning Ω more finely than the

209

Idxs ::= 〈〉 | 〈Idxs, Idxs〉
| if-idxs J (1⇒ Idxs) (1⇒ Idxs)
| random-idxs J

arridxs∗ : (x ⇒ y)⇒ (J⇒ Idxs)
arridxs∗ f j := 〈〉

(>>>idxs∗) : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
(i1 >>>idxs∗ i2) j := 〈i1 (left j), i2 (right j)〉

(&&&idxs∗) : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
(i1 >>>idxs∗ i2) j := 〈i1 (left j), i2 (right j)〉

ifteidxs∗ : (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)⇒ (J⇒ Idxs)
ifteidxs∗ i1 i2 i3 j := let idxs2 := λ0. i2 (left (right j))

idxs3 := λ0. i3 (right (right j))
in 〈i1 (left j), if-idxs j idxs2 idxs3〉

lazyidxs∗ : (1⇒ (J⇒ Idxs))⇒ (J⇒ Idxs)
lazyidxs∗ i j := i 0 j

randomidxs∗ : J⇒ Idxs
randomidxs∗ j := random-idxs j

Figure 9.18: The final indexes arrow, which collects information about feasible branches and random choices.

partition induced by branch traces. Doing so requires an update to the indexes arrow and

another sampling algorithm.

Figure 9.18 shows an updated indexes arrow. The Idxs type has one more variant,

constructed by random-idxs : J ⇒ Idxs. The only difference between the remainder of the

code and that in Figure 9.17a is randomidxs∗ j := random-idxs j instead of randomidxs∗ j := 〈〉.

The proofs of the preceding theorems indicate the properties the new partition sampler

must have.

• Any returned T′ ∈ Rect T must contain its infimum (i.e. no set-valued branch choices).

• It must be sound: for any t ∈ T∗, with positive probability, it returns a T′ whose

minimum is t.

• It must partition: if it constructs a T′ whose minimum is not in T∗, T′ must induce ∅.

• It must terminate: branch choices must be ⊥ with positive probability.

• The combination of choices made must correspond with exactly one output.

Figure 9.19 defines the preimage refinement sampling algorithm, in which sample-part

is an extension of sample-traces∗. The key differences are

• It samples from a rectangular cover of a partition of Ω×T instead of from a rectangular

partition of T.

210

f := JpK⇓⊥∗ j0 h′ := JpK⇓
′
pre∗ j0 idxs := JpK⇓idxs∗ j0

where f : Rect 〈〈Ω,T〉, 〈〉〉 ⊥ Y

refine : Rect 〈Ω,T〉 ⇒ Rect 〈Ω,T〉
refine A := image fst (ap′pre (h′ (A× {〈〉})) B)

sample-part : Idxs⇒ 〈R,Rect 〈Ω,T〉〉 ⇒ 〈R,Rect 〈Ω,T〉〉
sample-part idxs 〈pn,∅〉 := 〈0,∅〉
sample-part 〈〉 pr := pr
sample-part 〈idxs1, idxs2〉 pr := let pr′ := sample-part idxs1 pr

in sample-part idxs2 pr′
sample-part (random-idxs j) 〈pn,Ω′ × T′〉 := let 〈pi,B〉 := sample-real-part (proj j Ω′)

in 〈pn · pi, refine (unproj j Ω′ B× T′)〉
sample-part (if-idxs j idxs2 idxs3) 〈pn,Ω′ × T′〉 := let 〈pb, b〉 := sample-branch (proj j T′ ∪ {⊥})

pr′ := 〈pn · pb, refine (Ω′ × unproj j T′ {b})〉
in case b

true −→ sample-part (idxs2 0) pr′
false −→ sample-part (idxs3 0) pr′
⊥ −→ pr′

sample-preimage Idxs⇒ 〈Ω⊥,R〉
sample-preimage idxs :=
let 〈pn,A〉 := sample-part idxs 〈1, refine (Ω × T)〉
in case A

∅ −→ 〈⊥, 0〉
Ω′ × T′ −→ let 〈qω,ω〉 := sample-source (Ω′ × T′)

t := trace-inf T′
w := if (f 〈〈ω, t〉, 〈〉〉 ∈ B) (1/pn · 1/qω) 0

in 〈ω,w〉

Figure 9.19: Sampling from the preimage of B under the program p interpreted as a random variable, using
preimage refinement and a uniform candidate distribution.

• For random-idxs j, it uses sample-real-part to sample from a partition of proj j Ω′.

• It uses refine to shrink the part’s covering rectangle after every choice.

• It stops immediately if it receives ∅, which refine may return.

• It chooses branches from proj j T′ ∪ {⊥} instead of Bool⊥, which allows refine to rule

out branch choices that disagree with Ω′.

We assume that for each input, sample-real-part : Rect R⇒ 〈R,Rect R〉 computes a determin-

istic partition, assigns each part a nonzero probability, and returns the correct probability for

the part it chooses. If so, sample-part is sound, it partitions, and it terminates; all branch

sets have minimum traces, its transformation from random choices to parts is injective, and

211

it returns the correct probabilities.

Besides sample-part, Figure 9.19 defines sample-preimage, which returns weighted samples

of points in the preimage of B under program p’s interpretation as a function. It does so by

partitioned importance sampling. It first uses sample-part to return a rectangle covering a

part in the partition and the probability with which the part was sampled. If the part is ∅,

it returns ⊥ (i.e. rejects). If the part is nonempty, it samples from the random sources and

weights the sample. For sample ω and trace t, if f 〈〈ω, t〉, 〈〉〉 6∈ B then 〈ω, t〉 is not in the

preimage of B, so it weights ω by 0, which is equivalent to rejecting it.

If the sample’s image is in B, sample-preimage computes 1/pn · 1/qω as the sample’s

weight. To correctly do partitioned importance sampling, its weight should be 1/pn ·

diff+ (subcond P Ω′′) (Q n) ω, where pn is the probability of choosing the part. The

leading term is thus correct, so we need to show 1/qω = diff+ (subcond P Ω′′) (Q n) ω.

To state the theorem, we need some definitions. Let h := JpK⇓pre∗ j0 be the interpretation of

p as a preimage arrow computation, and Ω′′ := image (fst >>> fst) (appre (h (Ω′×T′)×{〈〉}) B)

be the exact part under its covering rectangle Ω′. Let J′ ⊆ J such that j ∈ J′ if and only if

sample-part is applied to random-idxs j. This is the set of indexes of random values in any

ω ∈ Ω′′ that are actually used while running the program, and it is finite. Let n be the

partition index of the part covered by Ω′ × T′.

Theorem 9.46. Let Q n have a density q when restricted to indexes J′ and be uniform on

J\J′. Suppose sample-source (Ω′ × T′) chooses ω ∈ Ω′ according to Q n. If ω ∈ Ω′′, then

diff+ (subcond P Ω′′) (Q n) ω = 1/(q (restrict ω J′)).

Proof. This is a straightforward application of Theorem B.26, so we need only meet the

conditions. Because J′ is finite,

• The subprobability measure subcond P Ω′′ can be factored into P′ : Set (J′ → [0, 1])⇒

[0, 1] and a uniform probability measure on J\J′ → [0, 1].

• The probability measure Q n can be factored into Q′ : Set (J′ → [0, 1])⇒ [0, 1] and

the same uniform probability measure.

212

A density for P′ that is uniform on Ω′′ is

p : (J′ → [0, 1])→ [0,∞)

p ω := if (ω ∈ Ω′′) 1 0
(9.51)

By assumption, the density of Q′ is q : (J′ → [0, 1])→ [0,∞). Therefore, if ω ∈ Ω′′,

diff+ (subcond P Ω′′) (Q n) ω = p (restrict ω J′)
q (restrict ω J′) = 1

q (restrict ω J′) (9.52)

Thus, if sample-source (Ω′ × T′) = 〈q (restrict ω J′),ω〉, then preimage refinement sam-

pling is correct.

9.4.4 Random Source Sampling

An easy way to ensure preimage refinement sampling is correct is to sample uniformly, so

that the density at every ω ∈ Ω′ is the reciprocal of the volume of Ω′. Let m : Set R ⇀ [0,∞]

be Lebesgue measure on R (i.e. length). Define

sample-source : Rect 〈Ω,T〉 ⇒ 〈R,Ω〉

sample-source (Ω′ × T′) := let qω := 1 /
∏

j∈J m (proj j Ω′)
ω := λ j ∈ J. sample-uniform (proj j Ω′)

in 〈qω,ω〉

(9.53)

Because Rect 〈Ω,T〉 is defined so that only finitely many axes of Ω′ are strict subsets of [0, 1],

qω is well-defined whenever the volume of Ω′ is nonzero.6 In particular, m (proj j Ω′) < 1 if

j ∈ J′, otherwise 1.

An implementation of sample-source cannot compute a product over all J, nor construct a

mapping with domain J. The representations of Rect Ω and ω ∈ Ω given in Figures 9.6 and 9.7

make getting around this easy. The function omega-set-sample in Figure 9.7 implements

λ j ∈ J. sample-uniform (proj j Ω′) by building a lazy tree. Further, because rectangles may
6In practice, we do not have to consider this case. The implementation of sample-source may return

reciprocal densities, so it returns the volume of Ω′, which is always well-defined.

213

have only finitely many nonfull axes, it is easy to write a total recursive function to compute∏
j∈J m (proj j Ω′) to measure the volumes of Ω rectangles. The measure of an Omega-Node

instance is the product of its axis’s measure and the measures of its subtrees. The measure

of univ-omega-set is 1.

Figure 9.20a shows the result of sampling within the preimage of [−0.05, 0.05] under the

interpretation of this program as a random variable:

(define/drbayes diagonal
(let ([x (random)]

[y (random)])
(- y x)))

The left plot shows the results returned by the implementation of sample-part: sampled parts

from a rectangle covering the true preimage, which surrounds the line ω1 = ω0. (There

are many duplicates.) The right plot shows the result of sampling once within each part

uniformly; in this case, 244 out of 500 samples are inside the preimage set.

Figure 9.20b shows the result of sampling within the preimage of [−0.002, 0.002], for

which many fewer samples are in the preimage set; in this case, only 30. In general, for the

interpretation of diagonal, the proportion of accepted samples in the preimage of [−ε, ε]

scales linearly with ε. We can mitigate this problem using finer partitions of proj j Ω′.

However, there is a solution that does not require finer partitions and accepts more samples

than any repartitioning.

The key insight is that the singleton interval {b} = [b, b] is also a rectangle. To sample

within a part, for each axis j ∈ J′, we choose b ∈ proj j Ω′, update Ω′ using unproj j Ω′ {b},

and use refine to get better bounds for sampling the other axes.

214

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g B
ω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g B

(a) Results of sample-part and sample-source for the preimage of [−0.05, 0.05]. Samples accepted: 244.

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g B
ω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g Bω ∉ preimage g B

(b) Results of sample-part and sample-source for the preimage of [−0.002, 0.002]. Samples accepted: 30.

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g Bω ∈ preimage g B

(c) Results of sample-part and sample-source∗ for the preimage of [−0.002, 0.002]. Samples accepted: 500.

Figure 9.20: 500 samples using Dr. Bayes’s implementations of sample-part, sample-source and sample-source∗.

215

The following function implements the idea.

sample-source∗ : [J]⇒ 〈R,Rect 〈Ω,T〉〉 ⇒ 〈R,Ω⊥〉

sample-source∗ js 〈qω,∅〉 := 〈0,⊥〉
sample-source∗ 〈〉 〈qω,Ω′ × T′〉 := let ω := λ j ∈ J. sample-uniform (proj j Ω′)

in 〈qω,ω〉
sample-source∗ 〈j, js〉 〈qω,Ω′ × T′〉 := let B := proj j Ω′

b := sample-uniform B
A′ := refine (unproj j Ω′ {b} × T′)

in sample-source∗ js 〈qω · 1/(m B),A′〉

(9.54)

Here, [J] is the type of lists of J, or 〈J, 〈J, ...〈J, 〈〉〉〉〉. The caller is expected to linearize J′,

the indexes of random values that are actually used while running the program, as js : [J].

(Dr. Bayes’s implementation of sample-part returns js in addition to the covering rectangle

and its probability.) The density of the sampled ω is computed as
∏

j∈J′ 1/(m (proj j Ω′j)),

where Ω′j are the ever-shrinking inputs to sample-source∗. Roughly, it is the joint density of

dependent uniform random variables evaluated at restrict ω J′.

Implementations of sample-source∗ require refine to compute image and preimage approx-

imations whose intervals are outwardly rounded. As we showed in Section 9.3.3, unsound

approximations of singleton intervals that are off by even one floating-point number can cause

refinement to falsely return ∅.

Figure 9.20c shows the result of using Dr. Bayes’s implementation of sample-source∗ to

sample within parts. No samples are rejected: in all cases, choosing an ω0 and updating Ω′

with {ω0} allows preimage refinement to determine the range of values for ω1 for which ω is

in the preimage set.

Samples taken using sample-source∗ may still be rejected, when sampling from an

overapproximated projection causes refine to return ∅. We demonstrate and characterize the

conditions under which this happens in Chapter 10.

9.4.5 Self-Adjusting Probabilistic Search

One way to regard sample-part is as a search for nonempty sets.

216

sch-node

sch-node

sch-fail x0 sch-succ x1

sch-node

1

2/3 1/3

2/5 3/5 3/74/7

sch-fail x2 sch-succ x3

(a) A random path leading to a failure leaf

sch-node

sch-node

sch-fail x0 sch-succ x1

17/21

14/17 3/17

2/5 3/5

sch-succ x3

(b) An adjusted tree with x2 removed

Figure 9.21: A self-adjusting, probabilistic tree search. After sch-fail x2 is discovered to be a failure node, the
path to the root is updated to remove it and maintain the probabilities of the other leaves.

To be correct, sample-part must return the actual probabilities with which it chooses each

rectangular part cover. The easiest way to do so is to ensure that the transformation from

random choices to part covers is injective: that no two combinations of choices result in the

same part cover. Then the part cover’s probability is the product of the choice probabilities.

This unfortunately rules out backtracking search, because many backtracking paths can

result in the same rectangular cover. Fortunately, because we invoke sample-part many times,

past results can inform future ones.

The main idea is this: instead of just searching by making random choices, build a tree

of possible searches. Each child node represents a choice, and parents label their children with

probabilities. Leaf nodes contain rectangular part covers. To choose a part cover, repeatedly

choose child nodes according to their probabilities. If the resulting leaf’s cover is ∅, remove

it from the tree and adjust the child probabilities. Thus, choice combinations that lead to

failure occur at most once. If child probabilities are correctly adjusted, removing a failure

leaf does not change the probabilities of successful ones.

Figure 9.21a illustrates the self-adjusting search more generally. Four boxes represent

two failure leaves with values x0 and x2, and two success leaves with values x1 and x3. Each

217

Search X ::= sch-fail X
| sch-succ X
| sch-node 〈(0, 1], Search X〉 〈(0, 1], Search X〉

adjusted-node : (0, 1]⇒ 〈[0, 1],Search X〉 ⇒ 〈(0, 1], Search X〉 ⇒ 〈(0, 1], Search X〉
adjusted-node pt 〈0, 〉 〈pr, cr〉 := 〈pt · pr, cr〉
adjusted-node pt 〈pl, cl〉 〈pr, cr〉 := let plr := pl + pr

in 〈pt · plr, sch-node 〈pl/plr, cl〉 〈pr/plr, cr〉〉

sample-search : 〈(0, 1], Search X〉 ⇒ 〈〈(0, 1],X〉, 〈[0, 1], Search X〉〉
sample-search 〈px, sch-succ x〉 := 〈〈px, x〉, 〈px, sch-succ x〉〉
sample-search 〈px, sch-fail x〉 := 〈〈px, x〉, 〈0, sch-fail x〉〉
sample-search 〈pt, sch-node l r〉 := let sch-node 〈pl, cl〉 r′ := if (sample-bool (fst l))

(sch-node l r)
(sch-node r l)

〈px, 〈p′t, c′l 〉〉 := sample-search 〈pt · pl, cl〉
p′l := p′t/pt

in 〈px, adjusted-node pt 〈p′l , c′l 〉 r′〉

Figure 9.22: A data type and algorithm for a self-adjusting, probabilistic tree search.

leaf value is distinct. Each node has two children, each with some probability, and the child

probabilities sum to 1. The dotted outlines show a random path down the search tree ending

on a failure leaf x2. The probability of this failure is 1 · 1/3 · 4/7 = 4/21.

To remove it, we must update the entire path back up to the root in a way that

maintains the probabilities of every other leaf. Figure 9.21b shows the result of having done

so. For example, the probability of x3 is 1 · 1/3 · 3/7 = 1/7 in the original tree, and is still

17/21 · 3/17 = 1/7 in the adjusted tree.

Figure 9.22 defines Search X, the type of search trees with leaf values X. To keep the

presentation simple, values with type Search X are finite trees. It is easy to extend it to

include lazy trees, and not much harder to change sample-part to build and update an instance

of 〈R, Search (Rect 〈Ω,T〉)〉 instead of sampling directly. From here on, we consider only

trees in which every pair of child probabilities sums to 1 and every leaf value in the tree is

unique.

The sample-search function carries out the self-adjusting probabilistic search. It receives

a probability and a Search X instance; for example, searching the tree in Figure 9.21b is

218

done by sample-search 〈17/21, sch-node ...〉. It returns two pairs: 〈px, x〉, which is the sampled

value and its probability, and 〈p′t, t′〉, which is the new search tree and its new probability.

We must be sure that px is the probability of x.

Theorem 9.47 (sample-search returns correct probabilities). Let 〈pt, t〉 : 〈R, Search X〉. Let

〈〈px, x〉, 〉 := sample-search 〈pt, t〉. If the probability of t is pt, the probability of x is px.

Proof. By induction on t. Base cases t = sch-succ x and t = sch-fail x follow directly from

uniqueness of x. For the inductive case t = sch-node 〈pl, cl〉 〈pr, cr〉, let sch-node 〈p, c〉 r′ :=

if (sample-bool pl) ... as in sample-search. Because pl + pr = 1, Pr[c = cl] = pt · pl and

Pr[c = cr] = pt · pr. Apply the inductive hypothesis for cases c = cl and c = cr.

When sample-search rebuilds the path from the leaf to the root using adjusted-node, we

must be sure that adjusted-node labels the left and right children with the correct probabilities.

Theorem 9.48 (adjusted-node returns correct probabilities). Let pt ∈ (0, 1] and 〈p′t, t′〉 :=

adjusted-node pt 〈pl, cl〉 〈pr, cr〉.

If t′ = cr, then p′t = pt · pr.

If t′ = sch-node 〈p′l, cl〉 〈p′r, cr〉, then p′t · p′l = pt · pl and p′r · p′t = pt · pr.

Proof. Case t′ = cr. Then p′t = pt · pr by definition of adjusted-node.

Case t′ = sch-node 〈p′l, cl〉 〈p′r, cr〉. Let plr := pl + pr, so p′t · p′l = (pt · plr) · (pl/plr) = pt · pl

by the definition of adjusted-node, and similarly for p′t · p′r.

Thus, using adjusted-node pt 〈p′l, c′l〉 〈pr, cr〉 to replace child cl with c′l does not affect the

probabilities of leaves below cr. Further, suppose 〈px, 〈p′t, c′l〉〉 = sample-search 〈pt · pl, cl〉 and

p′l = p′t/pt as in sample-search. By Theorem 9.48, c′l will be chosen with probability p′l · pt = p′t,

as desired.

A simple extension makes trees converge not just to trees without failures, but to trees

219

with stated probabilities for each leaf. Consider the base cases in sample-search’s definition:

sample-search 〈px, sch-succ x〉 := 〈〈px, x〉, 〈px, sch-succ x〉〉

sample-search 〈px, sch-fail x〉 := 〈〈px, x〉, 〈0, sch-fail x〉〉
(9.55)

In both cases, returning 〈p, t〉 in the second of the pair causes the tree to be rebuilt so that x’s

probability becomes p. Now define, instead of sch-succ, sch-fail : X⇒ Search X, a constructor

sch-leaf : [0, 1]⇒ X⇒ Search X and

sample-search 〈px, sch-leaf p x〉 := 〈〈px, x〉, 〈p, sch-leaf p x〉〉 (9.56)

Suppose t := sch-leaf p0 x0 is a leaf in the tree. Sampling the initial search tree returns x0

with some probability px that is determined by the path to t. With every subsequent tree

after x0 is first returned, sampling returns x0 with probability p0.

A version of sample-part that builds such trees using sch-leaf might use the actual measure

of the part cover Ω′ as its probability. Recall, however, that partitioned importance sampling

requires sample-part to choose parts according to a fixed probability measure. We are fairly

certain that partitioned importance sampling is correct even when the distribution over parts

varies, as long as it converges pointwise, but we have not yet proved it.

9.5 Conclusions

Figure 9.23 again shows the components in the implementation of Dr. Bayes.

Chapter 8 defined the semantic function that transforms programs into their meanings.

It derived the approximating preimage* arrow and proved it terminating and correct, provided

representations of abstract sets and operations on them are correct, as well as any lifts of

primitive functions.

In this chapter, we detailed the implementation of a simple abstract set library. Many

of its functions are derived from lattice and set properties. We additionally verified through

randomized testing that 21 sufficient lattice and membership properties hold.

220

Arrow
Combinators

Semantic
Function

Abstract
Sets

Inference
Algorithms

Real Function
Arrows

Programs

Figure 9.23: The implementation components that make up Dr. Bayes and their dependence structure.

We began a general theory of approximate function inversion, and used it to derive

correct computations of preimages under one-argument, real bijections such as square roots,

and two-argument trijections such as addition on R×R and multiplication on open quadrants.

The theory allows simultaneous implementation for functions related by inversion and axial

inversion. More complicated functions are built from simpler pieces using arrow combinators.

We developed a partitioned importance sampling algorithm and proved that it preserves

expected values. We proved that our implementation of it is correct and terminates, and

developed extensions that reduce the rejection rate of sampling within a part, and allow part

sampling to avoid reaching ∅ the same way twice.

With Dr. Bayes implemented and verified, it is time to try programming in it.

221

Chapter 10

Example Programs

Beware of bugs in the above code; I have only proved it correct, not tried it.

Donald Knuth

The correctness proofs in Chapters 8 and 9 assume an idealized model of the host

language. While Dr. Bayes’s core is nearly a transliteration of the λZFC terms that define

the approximating semantics, we cannot know how well the theorems apply to Dr. Bayes

without testing it.

Besides, we must still demonstrate that it is useful.

10.1 Guaranteed Termination

The theorems in Chapter 8 require a program or expression e to be well-defined (Defini-

tion 8.5); in particular, any interpretation JeK⇓a∗ must terminate. The syntax transformers

that implement J·K⇓a∗ and Racket’s rules for module-level definitions enforce this. For example,

the following program is not well-defined according to the semantics:

(define/drbayes (loop) (loop))

Further, Racket raises a compile-time error, or more precisely, an expansion-time error. Its

interpretation as a bottom* arrow computation is

(define loop/bot∗ (apply/bot∗ loop/bot∗ (list)))

222

where apply/bot∗ composes a first-order function’s interpretation with a list of argument

interpretations. (Here, the list is empty because there are no arguments.) Racket’s expander

does not allow module-level bindings such as loop/bot∗ to be referenced except by subsequent

module-level expressions and expressions in the bodies of lambdas.

On the other hand, this program is well-defined according to the semantics because its

recurrences are guarded by if:

(define/drbayes (loop) (if #t (loop) (loop)))

Further, Racket raises no errors. As a bottom* arrow computation, it is

(define loop/bot∗
(ifte∗/bot∗ (const/bot∗ #t)

(lazy/bot∗ (delay (apply/bot∗ loop/bot∗ (list))))
(lazy/bot∗ (delay (apply/bot∗ loop/bot∗ (list))))))

Racket allows this definition of loop/bot∗ because the inner reference to loop/bot∗ is within

a delay form, which expands to a lambda. (A (delay e) in Racket is similar to λ0. e in

λZFC, but it caches the value of e when it is first computed, and is applied using force.)

To test termination guarantees, we exhibit a few programs with different termination

conditions. The first program never terminates:

(define/drbayes never-terminate (loop))

When asked for any number of samples in the preimage of any nonempty set, Dr. Bayes

simply returns no samples:

> (drbayes-sample never-terminate 100 univ-set)
’()

How long sampling takes depends on the probability with which ⊥ is chosen for branches: a

lower probability of ⊥ increases the average number of loops before ⊥ is chosen, resulting in

longer wait times. Any probability of ⊥ below 1
3 seems reasonable, and we generally use 1

5 .

The following program returns 0 with probability 1
2 , and otherwise loops forever:

223

(define/drbayes half-terminate
(if (< (random) 1/2) 0 (loop)))

With the probability of ⊥ branches at 1
5 and the probabilities of true and false at 2

5 , we should

expect perhaps 2
5 of the samples we ask for. However, we get almost all of them:

> (length (drbayes-sample half-terminate 500 univ-set))
486

This is due to the self-adjusting tree search. Each ⊥ branch choice in the fully inlined (loop)

results in an empty preimage, which is a search failure, so its corresponding leaf in the

search tree is removed. Propagating the necessary adjustments upward through the path to

the removed leaf reduces the probability the sampler chooses false for (< (random) 1/2) in

subsequent samples. After many such adjustments, its probability becomes very small.

Roughly, the self-adjusting search “learns” that (loop) terminates with low probability

and usually avoids it. The more samples are taken, the lower its probability estimate, though

it never reaches zero.

With probability 1, the following program returns a geometrically distributed value.

(define/drbayes (geometric p)
(if (< (random) p) 0 (+ 1 (geometric p))))

(define/drbayes almost-surely-terminate
(geometric 1/2))

Dr. Bayes rejects some samples:

> (length (drbayes-sample almost-surely-terminate 500 univ-set))
493

The rejected samples are from ⊥ branch choices. As with half-terminate, the self-adjusting

search keeps the number of ⊥ choices small.

This program always terminates, but abstractly does not seem to:

224

(define/drbayes abstractly-loop
(let ([x (random)]

[y (random)])
(if (< x y)

(if (>= x y) (loop) 0)
(if (< x y) (loop) 1))))

When (< x y), (>= x y) is impossible, so the program returns 0. Otherwise, (< x y) is

impossible, so the program returns 1. Because loop is never applied, the program terminates.

However, the exact preimage of true-set under the interpretation of (< x y) cannot be

represented directly by rectangles, and its smallest cover is univ-omega-set. The same is true

for the exact preimage of true-set under (>= x y). In general, Dr. Bayes’s implementation

of sample-part can never rule out all branch choices that lead to (loop).

Because sample-part may choose ⊥ for a branch choice, sampling terminates anyway,

though for sequences of choices that contain ⊥ it rejects the sample. The proportion of

samples accepted depends on how finely the program domain is partitioned. Dr. Bayes has a

parameter drbayes-max-splits that determines how many times each projection is split in

half: if set to n, the size of each projection’s partition is 2n. When set to 0, the partition

whose cover is sampled from is that induced by the program’s minimal branch traces T∗.

With no splits, Dr. Bayes accepts about half the samples:

> (drbayes-max-splits 0)
> (length (drbayes-sample abstractly-loop 500 univ-set))
235

When set to a larger number, however, splitting the program domain allows preimage

refinement to often determine that (< x y) implies not (>= x y):

> (drbayes-max-splits 5)
> (length (drbayes-sample abstractly-loop 500 univ-set))
480

The only rectangular part covers that allow a later ⊥ branch choice are those that contain ω

for which (< x y) is true and others for which it is false; i.e. they straddle the line ω jx = ω jy

where jx and jy are the indexes of each (random).

225

Most of the examples so far require the possibility of ⊥ branch choices to terminate. How-

ever, most programs, like almost-surely-terminate, abstractly terminate with probability

1, and thus do not require it. Therefore, we define a parameter drbayes-always-terminate?

and implement sample-part so that it chooses ⊥ only when drbayes-always-terminate? is

set to #t. For example,

> (drbayes-always-terminate? #f)
> (length (drbayes-sample almost-surely-terminate 500 univ-set))
500

The default value is #f.

10.2 Primitives

The last chapter demonstrates sampling in a preimage under subtraction (Figure 9.20).

Addition is no more difficult. In fact, by Theorem 9.9, once we have addition or subtraction

it is easy to define the other so that it is just as efficient, because each is an axial inverse of

the other. Alternatively, we could derive one from the other using an additional negation

primitive and a− b = a + (−b) or a + b = a− (−b), but the derived one would be slower.

To help ensure Dr. Bayes is useful, it additionally has comparison primitives, multiplica-

tion and division primitives (for which one is easily defined in terms of the other), and various

R ⇀ R function primitives such as sqr, sqrt, log, exp, and inverse cumulative distribution

functions (inverse CDFs) for a few common distributions.

When subtraction and predicates are defined, comparing real numbers is easy. For

example, if negative? is defined as in (9.38), then because a < b if and only if a− b < 0,

(define/drbayes (< a b)
(negative? (- a b)))

The other comparison operators are defined similarly. We could define real equality by

(define/drbayes (= a b)
(and (<= a b) (<= b a)))

226

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

000000000 .2.2.2.2.2.2.2.2.2 .4.4.4.4.4.4.4.4.4 .6.6.6.6.6.6.6.6.6 .8.8.8.8.8.8.8.8.8 111111111
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0
ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

(a) Preimage of [−0.1, 0.2] under the interpretation of (uniform −1 1) · (uniform −1 1)

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

(b) Preimage of [−0.5, 1] under the interpretation of (uniform −1 1) / (uniform −1 1)

Figure 10.1: Exact preimages under multiplication and division, sampled part covers, and sampled points.

However, real equality is rarely useful because (= a b) is usually a zero-probability event;

i.e. the preimage of {true} under the interpretation of (= a b) usually has zero measure.

Figure 10.1a shows the result of sampling in the preimage of [−0.1, 0.2] under the

interpretation of either of the following equivalent programs:

(define/drbayes uniform-mul
(∗ (uniform −1 1)

(uniform −1 1)))

(define/drbayes uniform-mul
(∗ (+ −1 (∗ 2 (random)))

(+ −1 (∗ 2 (random)))))

Similarly, Figure 10.1b shows the result of sampling in the preimage of [−0.5, 1] under the

interpretation of (/ (uniform −1 1) (uniform −1 1)).

There are two points of interest here. The first is that the point samples in Figure 10.1

exhibit nonuniformity. (It is in the horizontal arms in the multiplication preimage, and in the

227

corners in the division preimage.) Nonuniformity arises from the fact that the probabilities

with which part covers are chosen can only approximate the covered parts’ true measures

(Figure 9.19), and from sampling dependent uniform random variables in sample-source∗ (9.54).

It is adjusted for by weighting the samples, and is further mitigated by the extension to

the self-adjusting search that causes the search tree to converge to a tree with stated leaf

probabilities (Section 9.4.5). But nonuniformity can lower the samples’ information content

in a query-dependent way. We quantify it further on.

The second point of interest is that (uniform −1 1) is defined by a function that encodes

the uniform distribution family:

(define/drbayes (uniform a b)
(+ a (∗ (- b a) (random))))

This function transforms uniform random variables on the unit interval into uniform random

variables between a and b. The uniform distribution family is one of the simplest common

examples of a location-scale family, which can always be encoded in Dr. Bayes as

(define/drbayes (family-name loc scale)
(+ loc (∗ scale (standard-inv-cdf (random)))))

For the uniform distribution family, standard-inv-cdf is the identity function.

Another location-scale family, the normal distribution family, is encoded in Dr. Bayes

using the implementation of normal-inv-cdfpre (9.35):

(define/drbayes (normal µ σ)
(+ µ (∗ σ (normal-inv-cdf (random)))))

Other implemented families include the exponential, Cauchy, and logistic distribution families.

Some distribution families are significantly more difficult to encode. For example, gamma

distributions are parameterized on a shape and a scale. Because one parameter is a scale, we

can reduce the work to implementing a two-argument primitive gamma-inv-cdf:

228

(define/drbayes (gamma k θ)
(∗ θ (gamma-inv-cdf k (random))))

Implementing gamma-inv-cdf requires implementing the following trijection, extended to a

compact superdomain.

Fp : (0,∞)× (0,∞)→ (0, 1) Gamma CDF

Fx : (0,∞)× (0, 1)→ (0,∞) Gamma inverse CDF

Fk : (0, 1)× (0,∞)→ (0,∞) ???

(10.1)

Fp and Fx are well-known, and Racket’s math/distributions library exports quite accurate

implementations of them. Unfortunately, as far as we can tell, no one else has ever needed

an implementation of Fk, which returns the shape parameter k given a probability p and a

gamma-distributed value x. While the numerical analysis required to implement it accurately

on its entire domain is beyond the scope of this work, we plan to do it in the future.

As soon as we have gamma, we can encode other distributions important in Bayesian

modeling by encoding sampling algorithms for them that are defined in terms of gamma

distributions. For example, the inverse gamma and beta families can be encoded by

(define/drbayes (inv-gamma k θ)
(/ 1 (gamma k θ)))

(define/drbayes (beta α β)
(let ([x (gamma α 1)]

[y (gamma β 1)])
(/ x (+ x y))))

The Dirichlet distribution family encoding would be similar to beta, but would use structural

recursion over a list of parameters to get and normalize an unbounded number of gamma-

distributed random variables.

In general, as with beta, the encoding of any sampling algorithm is also an encoding of

the distribution or distribution family it samples from. For example, this encoding of the

Box-Muller algorithm [13] also encodes the standard normal distribution:

229

(define/drbayes (normal/box-muller)
(∗ (sqrt (∗ −2 (log (random))))

(partial-cos (∗ pi (uniform −1 1)))))

Here, partial-cos is the cosine function defined on [−π, π], which is implemented by pasting

together two symmetric, monotone pieces defined on [−π, 0] and [0, π].

Using (normal-inv-cdf (random)) instead of (normal/box-muller) is much faster, con-

sisting of one Ω projection and one primitive operation instead of two Ω projections and nine

primitive operations. However, the point of defining (normal/box-muller) is to demonstrate

the expressive power of a probabilistic language defined measure-theoretically.

A language based on probability density functions necessarily distinguishes between

primitive and derived random variables. The former are simply projections, and conditions

are restricted to be primitive random variable equalities so that conditional densities always

exist. Conditions referring to a derived random variable such as (normal/box-muller), or

even (normal µ σ) using the present definition of normal, are close to unthinkable.

We will explore how to leverage this new expressiveness after showing how Bayesian

theories with density models are encoded in Dr. Bayes, and showing how to use its sampling

algorithm to answer conditional queries about them.

10.3 Theories With Density Models

10.3.1 Normal-Normal

We start with one of the simplest Bayesian theories, the normal-normal, introduced in

Chapter 2. Specified constructively, it is

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)
(10.2)

There are many possible encodings in Dr. Bayes whose interpretations are a model of this

theory. One of the most straightforward is

230

(define/drbayes normal-normal
(let∗ ([x (normal 0 1)]

[y (normal x 1)])
(cons x y)))

where let∗ makes x visible in the definition of y by expanding to nested let expressions, and

cons constructs pairs.

In Chapter 2, we used Bayes’ law for densities to find the distribution of X given Y = 2.

By not defining the language in terms of densities, we have given up the ability to handle

such zero-probability conditions except as limits, and we cannot wait for limits to complete.

We will show that not having zero-probability conditions matters little.

But first, from a philosophical standpoint, the condition Y = 2 is hard to support: it

is an assertion about all of the countably many digits of Y . If finding the distribution of

X |Y = 2 is a typical inference task, this amounts to claiming infinite knowledge about a

real-world observation. Still, zero-probability conditions are often convenient, so we intend to

investigate supporting them in future work.

To sample within a positive-probability preimage, the condition needs to be wider; e.g.

Y ∈ [2 − ε, 2 + ε] where ε > 0 is small. For normal-normal, we must sample within the

preimage of R× [2− ε, 2+ ε]. Equivalently, we could encode the condition in the program as

a proposition about y:

(define/drbayes normal-normal/cond
(let∗ ([x (normal 0 1)]

[y (normal x 1)])
(cons x (<= (- 2 ε) y (+ 2 ε)))))

and sample within the preimage of R× {true}.

Figure 10.2 shows the results of sampling 10000 times within the preimage for ε = 0.2

and ε = 0.01, each of which takes about 3 seconds on current hardware. The last plot is a

density estimate of the distribution of X |Y ∈ [1.8, 2.2], wherein ε = 0.2, not 0.01. Even so,

the density estimate is very good (and is consistently so in multiple tests), suggesting that

231

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

111111111.8.8.8.8.8.8.8.8.8.6.6.6.6.6.6.6.6.6.4.4.4.4.4.4.4.4.4.2.2.2.2.2.2.2.2.2000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

ω
1

xxxxxxxxx

d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.1.1.1.1.1.1.1.1.1

.2.2.2.2.2.2.2.2.2

.3.3.3.3.3.3.3.3.3

.4.4.4.4.4.4.4.4.4

.5.5.5.5.5.5.5.5.5

True DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue Density
Est. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. Density

Figure 10.2: From left to right, samples from the preimage of [1.8, 2.2], samples from the preimage of
[1.99, 2.01], and a density estimate computed from the image of the first set of samples.

we do not need anything close to a zero-probability condition. A fairly wide interval centered

on 2 is enough.

For ε = 0.2, sufficient statistics for the computed distribution are

> (mean xs ws)
0.9883685519606158

> (stddev xs ws)
0.7033198741144521

where xs are the first of every sampled (cons x y), and ws are the sample weights. The

exact values of these statistics for X |Y = 2 are 1 and
√

1
2 ≈ 0.707107.

Every value we estimate from samples, such as (mean xs ws) and (stddev xs ws), is

actually a random variable. The standard way to quantify their uncertainty or information

content is by estimating their variance, which is called Monte Carlo variance [21, Chap-

ter 12]. To get Monte Carlo variance of the estimated mean (mean xs ws) in the same units

as the mean, we use mc-stddev from Racket’s math/statistics library, which returns the

square root of an estimate of Monte Carlo variance, computed from the samples:

> (mc-stddev xs ws)
0.007754889592107897

232

We continue to follow DeGroot [21]. By the Central Limit theorem, the distribution of (mean

xs ws) should be approximately normal, and we have so many samples that we may simply

fit a normal distribution to it to obtain a confidence interval:

> (real-dist-hpd-interval
(normal-dist (mean xs ws) (mc-stddev xs ws))
0.95)

0.9731692476559998
1.0035678562652317

Here, real-dist-hpd-interval finds the High Probability Density (HPD) interval: the

narrowest interval containing 95% of the area under the density of the distribution object

returned by normal-dist. Thus, we are 95% confident that the mean of X |Y = 2 is between

0.973 and 1.004.

In this example, weighted samples carry almost as much information as unweighted.

For comparison, here are the same results computed from 10000 unweighted samples chosen

according to the exact distribution of X |Y = 2:

> (define zs (sample (normal-dist 1 (sqrt 1/2)) 10000))

> (mean zs)
0.9969732989599994

> (stddev zs)
0.7035825345789904

> (mc-stddev zs)
0.0070358253457899035

> (real-dist-hpd-interval
(normal-dist (mean zs) (mc-stddev zs))
0.95)

0.9831833346807372
1.0107632632392618

Monte Carlo variance is a little lower, so the resulting confidence interval is a little tighter.

We can also compute probabilities as expected values, as discussed in Chapter 6. For

example, Pr[X ∈ (0, 1) |Y = 2] is approximately

233

> (mean (map (indicator (λ (x) (< 0 x 1))) xs) ws)
0.42033680800148004

where indicator converts X⇒ Bool functions into X⇒ {0, 1} functions. As with the mean,

this computed probability is also a random variable, but fitting a normal distribution using

Monte Carlo variance may be a bad idea: the fitted distribution would give positive probability

to sets containing negative “probabilities.” It is better to fit a beta distribution, which has

support only in [0, 1], and is well-suited for characterizing distributions over probabilities.

The math/statistics export mc-prob-dist does this for us:

> (real-dist-hpd-interval
(mc-prob-dist (λ (x) (< 0 x 1)) xs ws)
0.95)

0.41066735830660506
0.4300151946469193

Thus, we are 95% confident that Pr[X ∈ (0, 1) |Y = 2] is between about 0.41 and 0.43.

The following encoding of the same normal-normal theory uses the standard normal

distribution as defined using the Box-Muller algorithm.

(define/drbayes normal-normal/box-muller
(let∗ ([x (normal/box-muller)]

[y (+ x (normal/box-muller))])
(cons x y)))

The results (elided) from taking 10000 samples in the preimage of [1.8, 2.2] are nearly identical,

except the Monte Carlo standard deviation is higher, at approximately 0.0115 instead of

0.00775, and collecting the samples takes about 22 seconds instead of 3.

10.3.2 Normal-Normals

Extending the normal-normal theory with more observations requires adding more random

variables that depend on X . A template for encoding them is

(define/drbayes normal-normals
(let ([x (normal µ σ)])

(list x (normal x σ1) ... (normal x σn))))

234

222222222

2.52.52.52.52.52.52.52.52.5

333333333

3.53.53.53.53.53.53.53.53.5

444444444

333333333

2.52.52.52.52.52.52.52.52.5

222222222

1.51.51.51.51.51.51.51.51.5

111111111

000000000

-.5-.5-.5-.5-.5-.5-.5-.5-.5

-1-1-1-1-1-1-1-1-1

-1.5-1.5-1.5-1.5-1.5-1.5-1.5-1.5-1.5

-2-2-2-2-2-2-2-2-2

y1y1y1y1y1y1y1y1y1y2y2y2y2y2y2y2y2y2

y3y3y3y3y3y3y3y3y3

Figure 10.3: Nested rectangular conditions: each axis represents an observation Yi ∈ [yi − εi, yi + εi].

We sample within preimages of R× [y1 − ε1, y1 + ε1]× ...× [yn − εn, yn + εn]× {〈〉}, where

y1, ..., yn are the observed data. (In functional languages, a finite list consists of nested pairs

terminated by 〈〉.) Each observation yi has its own interval width εi.

Figure 10.3 illustrates nested condition sets [y1−ε1, y1+ε1]×[y2−ε2, y2+ε2]×[y3−ε3, y3+

ε3] as each εi decreases. If the condition sets converge to {〈y1, y2, y3〉}, then queries with

positive-probability conditions 〈Y1,Y2,Y3〉 ∈ [y1−ε1, y1+ε1]×[y2−ε2, y2+ε2]×[y3−ε3, y3+ε3]

converge to queries with zero-probability conditions 〈Y1,Y2,Y3〉 = 〈y1, y2, y3〉—under mild

assumptions.

It is natural to wonder what these mild assumptions must be. What must the relationships

be among ε1, ..., εn? By illustrating with nested rectangles, not cubes, Figure 10.3 suggests

they need not be equal. Must they have the same order of magnitude, be proportional, or at

least be functions of each other? For which points 〈y1, ..., yn〉 can zero-probability conditions

be computed using sequences of nested rectangles?

The Lebesgue differentiation theorem [66, Chapter 7] justifies using any sequence of

sets that shrinks nicely to any continuous point 〈y1, ..., yn〉. Because Dr. Bayes’s primitive

operators are continuous almost everywhere, any encoded theory’s discontinuous points

235

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1ω1ω1

ω
1ω1

ω
1ω1ω1
ω
1

ω2ω2ω2ω2ω2ω2ω2ω2ω2

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1ω1ω1

ω
1ω1

ω
1ω1ω1
ω
1

ω2ω2ω2ω2ω2ω2ω2ω2ω2

xxxxxxxxx

d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty
d
e
n
si

ty

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

True DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue Density
ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01ε1 = 0.2, ε2 = 0.01
ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2ε1 = 0.01, ε2 = 0.2

Figure 10.4: From left to right, samples from the preimage of a condition using ε1 = 0.2, ε2 = 0.01, samples
using ε1 = 0.01, ε2 = 0.2, and density estimates computed from the images of the sets of samples.

comprise a zero-probability set. Theories with density models have no discontinuous points.

Rudin [66] defines shrinks nicely formally, but also gives an informative example. If, in a

sequence of rectangles, for any fixed c > 0, the longest edge is (eventually) always no more

than c times the shortest edge, then the sequence shrinks nicely.

Rudin’s example suggests something that is possibly counterintuitive, but fortunate:

that a wide observation Y1 ∈ [y1 − 0.2, y1 + 0.2] may affect the distribution of X as much

as a narrow observation Y2 ∈ [y2 − 0.01, y2 + 0.01]. Figure 10.4 demonstrates precisely this

using the normal-normals template with two observations y1 := 2 and y2 := −1, all standard

deviations set to 1, and two different settings for ε1, ε2. The left plot shows 10000 samples

from the preimage using ε1 = 0.2, ε2 = 0.01. The middle plot shows 10000 samples using

ε1 = 0.01, ε2 = 0.2. Though the preimage sets are visibly different, X ’s estimated density is

nearly the same either way: close to the true distribution, a normal with µ = 1
3 and σ =

√
1
3 .

In both cases, the µ estimate’s Monte Carlo standard deviation is about 0.006.

10.3.3 Polynomial Fitting

When encoding and computing conditional queries about normal-normal theories, it is easy to

notice that the time it takes Dr. Bayes to sample is superlinear in the number of observations.

In fact, this is expected. Because Ω subsets are represented by trees that correspond with

236

the expression tree and projections are looked up and updated starting from the root, a

(random) expression’s image and preimage computation takes time proportional to its depth

in the fully inlined program. Because (list e1 e2 ... en) is equivalent to (cons e1 (cons

e2 (cons ... (cons en null))), if each ei has one (random) subexpression at a constant

depth, its overall time complexity is O(n2).

We are fine with this for now. At this early stage, theoretical simplicity is more important

than speed. Additionally, it gives us a fresh problem on which to demonstrate using Dr.

Bayes for Bayesian regression, particularly to infer the distribution of a random function

from number of observations to running time.

Figure 10.5 demonstrates using Dr. Bayes to reason about the behavior of Dr. Bayes.

The theory is as follows: let a0, a1, a2 be random coefficients that define a quadratic function

f n := a0 + a1 · n + a2 · n2, where n is the number of observations. We assume that the time to

take 1000 samples conditioned on n observations is f n seconds plus some normally distributed

noise. We are interested in the distribution of f (equivalently the distribution of 〈a0, a1, a2〉)

given some running time observations.

A priori, we do not know much about a0, a1 and a2, so we assume they have Cauchy

distributions, which are bell-shaped like normal distributions but allow much more variation.

We also allow the random noise added to f n to be fairly large (standard deviation 1 second).

We collected running times for 0 through 15 observations with millisecond accuracy. This

data is encoded as ns (numbers of observations) and ts∗ (observed times) in Figure 10.5a.

The function quadratic-eval evaluates f. The generate function returns a list of running

time random variables generated from ns. The condition function returns a boolean random

variable which is #t only when every t in ts is near its corresponding observation t∗ in

ts∗. Because our times have millisecond accuracy, condition requires each t to be within a

millisecond of t∗, or it returns #f.

The encoding of our theory outputs a list containing a0, a1, a2 and the value of the

condition. Sampling within the preimage of R × R × R × {true} × {〈〉}, and taking the

237

(define ns (list 0 1 2 3 4 5 6 7 ...))
(define ts∗ (list 0.063 0.262 0.493 0.814 1.222 1.708 2.238 2.883 ...))

(define/drbayes (quadratic-eval a0 a1 a2 n)
(+ a0 (∗ n (+ a1 (∗ n a2)))))

(define/drbayes (generate a0 a1 a2 ns)
(if (null? ns) null (cons (normal (quadratic-eval a0 a1 a2 (first ns)) 1)

(generate a0 a1 a2 (rest ns)))))

(define/drbayes (condition ts ts∗)
(if (null? ts) #t (and (let ([t (first ts)]

[t∗ (first ts∗))])
(<= (- t∗ 0.001) t (+ t∗ 0.001)))

(condition (rest ts) (rest ts∗)))))

(define/drbayes normal-normal-running-time
(let∗ ([a0 (cauchy 0 0.1)]

[a1 (cauchy 0 0.1)]
[a2 (cauchy 0 0.1)]
[ts (generate a0 a1 a2 ns)])

(list a0 a1 a2 (condition ts ts∗))))

(a) A Bayesian theory of the running time of Dr. Bayes as a quadratic function of the number of observations.

Number of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observations

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)

000000000 555555555 101010101010101010 151515151515151515

000000000

555555555

101010101010101010

151515151515151515 Quadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic Samples

Mean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CI

Data PointsData PointsData PointsData PointsData PointsData PointsData PointsData PointsData Points

Number of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observations

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)
T

im
e

 (
s)

T
im

e
 (

s)

666666666 888888888 101010101010101010

222222222

444444444

666666666

Quadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic Samples

Mean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CIMean Quadratic 95% CI

Data PointsData PointsData PointsData PointsData PointsData PointsData PointsData PointsData Points

(b) The observations, sampled quadratic polynomials given observations, and a 95% confidence interval
for the average quadratic polynomial.

Figure 10.5: Bayesian analysis of Dr. Bayes’s running time, using Dr. Bayes.

238

image of these samples, results in samples from the distribution of f’s coefficients given the

observations.

Figure 10.5b shows two views of a plot of the observations, the polynomial function

samples, and an inferred 95% confidence interval computed by fitting a normal distribution

to the computed mean of each coefficient and its Monte Carlo standard deviation. By our

prior knowledge and the close fit, we believe the quadratic model is a good one.

In fact, we will use it to make a prediction. By evaluating each sampled quadratic

polynomial on n = 50, we get samples from a distribution over running times with mean

113.5 and standard deviation 15.6. The distribution’s upper and lower 2.5% quantiles are

approximately 83 and 144; thus, if the model is correct, then given the observations, there

is a 95% probability that the running time for 50 normal-normal observations is between

approximately 83 and 144 seconds. When we test this prediction (i.e. sample under the

normal-normal theory with 50 observations), Dr. Bayes takes 141.5 seconds.

10.3.4 Model Selection

When Bayesian practitioners have two or more competing theories in mind to explain some

phenomenon, they perform model selection to determine which is most probable. Of course,

we call it theory selection.

As a constructive theory, selecting between two theories is

M ∼ [m1 7→ p1,m2 7→ p2]

Θ ∼

Prior1 if M = m1

Prior2 if M = m2

Y ∼

Likelihood1(Θ) if M = m1

Likelihood2(Θ) if M = m2

(10.3)

where p1 and p2 are the probabilities of theories m1 and m2, and Θ is a random vector of

239

parameters for one theory or the other. A concrete, though contrived example is

M ∼ [cc 7→ 1
2 , nn 7→ 1

2]

X ∼

Cauchy(0, 1) if M = cc

Normal(0, 1) if M = nn
Y ∼

Cauchy(X, 1) if M = cc

Normal(X, 1) if M = nn

(10.4)

Here, the competing theories are Cauchy-Cauchy and normal-normal.

The major task in theory selection is computing the distribution of M |Y = y, to

determine the probabilities of each theory given observed data. Theoretically, it is as simple

as applying a version of Bayes’ law for mixed masses and densities:1 if fY (y) > 0, then

pM |Y (m | y) = pM(m) · fY |M(y |m)
fY (y)

= pM(m) · fY |M(y |m)∑
m∈{m1,m2}

pM(m) · fY |M(y |m)
(10.5)

Unlike using Bayes’ law for densities in Chapter 2, this is not conveniently in terms of

functions we have on-hand. While we have pM = [m1 7→ p1, ...,mn 7→ pn], we do not have the

conditional density fY |M . Much of the literature on Bayesian theory selection is devoted to

efficiently computing fY |M or approximations of it that can be used in certain circumstances.

Combining theories with density models results in a theory with a density model.

Sometimes the combined density model is amenable to traditional Monte Carlo methods.

(An example is our contrived Cauchy-Cauchy vs. normal-normal theory.) Practitioners then

need only sample according to the density conditioned on the data, and count the frequencies

with which M = m1, M = m2 and so on.

In Dr. Bayes, that always works. For example, suppose we want to determine whether

Dr. Bayes’s normal-normal running time is best modeled by a distribution over quadratic

functions f n := a0 + a1 · n+ a2 · n2 or exponential functions g n := b0 +b1 · 2n. As with a0, we

assume b0 has a Cauchy distribution. But b1 should not be negative and we do not expect it
1Technically, every version of Bayes’ law that Bayesians use is Bayes’ law for Radon-Nikodým derivatives.

240

(define/drbayes quad-or-exp-running-time
(if (< (random) 1/2)

;; Quadratic running time
(let∗ ([a0 (cauchy 0 0.1)]

[a1 (cauchy 0 0.1)]
[a2 (cauchy 0 0.1)]
[ts (generate-quad a0 a1 a2 ns)])

(list #t (list a0 a1 a2)
(condition ts ts∗)))

;; Exponential running time
(let∗ ([b0 (cauchy 0 0.1)]

[b1 (exponential 0.5)]
[ts (generate-exp b0 b1 ns)])

(list #f (list b0 b1)
(condition ts ts∗)))))

(a) Encoding of Bayesian theory selection
Number of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observationsNumber of observations

T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)
T
im

e
 (

s)

000000000 222222222 444444444 666666666 888888888 101010101010101010

000000000

555555555

101010101010101010

151515151515151515 Quadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic SamplesQuadratic Samples
Exponential SamplesExponential SamplesExponential SamplesExponential SamplesExponential SamplesExponential SamplesExponential SamplesExponential SamplesExponential Samples
Data PointsData PointsData PointsData PointsData PointsData PointsData PointsData PointsData Points

(b) Data points and sampled running time functions

Figure 10.6: Bayesian theory selection in Dr. Bayes.

to be large, so instead of a Cauchy distribution, we assume it has an exponential distribution

with scale 1
2 . A priori, we assume the quadratic and exponential theories are equally likely.

Figure 10.6 shows some of the encoding of the combined theory. (The rest is similar

to quadratic-eval and generate in Figure 10.5a.) It also shows the results of sampling in

the conditioned model. We use only 8 observations, as adding more makes the exponential

theory too unlikely; for example, a typical run with 16 observations returns no exponential

function samples. With 8 observations, we compute

> (real-dist-hpd-interval
(mc-prob-dist (λ (m) m) ms ws)
0.95)

0.8543205426853948
0.8858619943029161

where ms is the list of boolean theory choices, in which #t represents choosing quadratic. Thus,

we are 95% confident that the probability of the quadratic theory, given the 8 observations,

is between 0.85 and 0.89. Given 16 observations, the probability of the quadratic theory is

approximately 1.

241

In general, while Dr. Bayes does not construct density models, it is perfectly capable of

expressing and doing inference on theories and queries that have them.

10.4 Theories Without Density Models

10.4.1 Observing Sums

One way to demonstrate that Dr. Bayes properly handles non-axial conditions is to define

a query with one, for which transforming the theory allows an equivalent query with a

closed-form solution. A suitable theory is

X ∼ Normal(0, 1)

Y1 ∼ Normal(X, 1)

Y2 ∼ Normal(X, 1)

(10.6)

We are interested in the distribution of X |Y1 + Y2 = 2. This is equivalent to the distribution

of X |Y = 2 using the theory

X ∼ Normal(0, 1)

Y ∼ Normal(2 ·X,
√

2)
(10.7)

which has a closed-form solution: normal with mean 2
3 and standard deviation

√
1
3 .

Figure 10.7 shows the result of sampling in the preimage of [1.9, 2.1] in Dr. Bayes with

an encoding of the original theory. Sufficient statistics for the computed distribution are

> (mean xs ws)
0.6677390674446246

> (stddev xs ws)
0.5814956773340675

which are close to the true values 2
3 and

√
1
3 ≈ 0.577350. Figure 10.7b shows that the density

estimated from the weighted samples is close to the true density. Figure 10.7a shows that

242

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

ω0ω0ω0ω0ω0ω0ω0ω0ω0

ω
1ω1ω1

ω
1ω1

ω
1ω1ω1
ω
1

ω2ω2ω2ω2ω2ω2ω2ω2ω2

(a) Samples from the preimage of [1.9, 2.1]
xxxxxxxxx

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

d
e
n

si
ty

-2-2-2-2-2-2-2-2-2 000000000 222222222
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

True DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue DensityTrue Density
Est. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. DensityEst. Density

(b) Density estimate computed from the samples

Figure 10.7: Computing the distribution of X |Y1 +Y2 = 2.

the samples in the preimage of [1.9, 2.1] lie close to a 2-dimensional manifold, as we should

expect when effectively constraining one of three variables.

10.4.2 Bounded Measuring Devices

The simplest theories without density models try to faithfully model measuring devices, which

in reality cannot output unbounded values.

Suppose we wish to model a thermometer that would display the actual temperature

with normally distributed noise, except that it cannot display numbers less than 0 or greater

than 100. Here is a theory in which we assume the true temperature is F :

T ∼ Normal(F , 1)

U = max(0,min(T , 100))
(10.8)

A typically Bayesian task would be to infer the distribution of the outside temperature given

a thermometer reading. An encoding in Dr. Bayes is

243

TemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperatureTemperature

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

909090909090909090 100100100100100100100100100 110110110110110110110110110 120120120120120120120120120 130130130130130130130130130

.025.025.025.025.025.025.025.025.025

.05.05.05.05.05.05.05.05.05

.075.075.075.075.075.075.075.075.075

.1.1.1.1.1.1.1.1.1

Figure 10.8: Distribution over temperature given that our thermometer displays its maximum value 100.

(define/drbayes temp-outside
(let∗ ([temp (normal 90 10)]

[therm (max 0 (min 100 (normal temp 1)))])
(cons temp therm)))

where (normal 90 10) represents our prior knowledge about the outside temperature.

Suppose we see the thermometer pegged at 100. What is the distribution of the outside

temperature?

Figure 10.8 plots a density estimate of the image of samples taken in the preimage

of R × [100, 100]. The distribution is skewed positive, as we might expect: its mode is

approximately 102, and the temperatures below 102 that can cause the thermometer to

display 100 have lower probability than the temperatures above 102 that can cause it. The

distribution is wide, corresponding with the fact that reading the maximum value does not

tell us much about the probability of temperatures above the maximum value.

With 95% probability, the outside temperature is between about 98.4 and 114.5:

244

> (real-hpd-interval 0.95 temps ws)
98.47185450009886
114.45483575358433

As the result of a random simulation, these are of course random variables. But they are not

expected values, so it is more difficult to quantify uncertainty in them.2 Still, the mean’s

Monte Carlo standard deviation is about 0.047, which indicates that they should be close to

the true HPD interval.

While it may seem useless to infer that we know very little, it is in these cases that

Bayesian inference shines. In low-knowledge situations, prior knowledge becomes more

important. Because Bayesian theories explicitly represent prior knowledge, inference can fill

in the gaps. See, for instance, Toronto et al [74], wherein defaced portions of a photograph

are marked as missing data (i.e. no knowledge). A prior distribution that weakly favors

continuous edges and contiguous color regions allows inference to fill in the missing data quite

accurately. This work in particular, which tries to faithfully model the process of taking a

photograph, could have benefited from not requiring a density model, to account for the fact

that each camera sensor, at each image location, is a bounded measuring device. If it had,

inference could have found plausible shapes in under- and overbright portions of photographs,

and could have been used to undo sensor saturation and fix blooming artifacts.

10.4.3 Non-Axial Conditions

Faithfully modeling the process of taking a photograph also requires non-axial conditions.

The quantity measured by each sensor is a weighted sum of random quantities that represent

light arriving from slightly different directions. Observing such sums amounts to conditioning

on hyperplanes. In general, the result of asserting these and other non-axial, zero-probability

conditions must be a measure-theoretic model, not a density model.

The next example conditions on something a little more difficult than sums. Suppose

we augment our normal-normal theory encoding with the distance from the origin:
2Quantifying uncertainty about HPD intervals requires more complicated methods than we have discussed,

such as bootstrapping.

245

xxxxxxxxx

yyy yy yyyy

-1-1-1-1-1-1-1-1-1 -.5-.5-.5-.5-.5-.5-.5-.5-.5 000000000 .5.5.5.5.5.5.5.5.5 111111111

-1-1-1-1-1-1-1-1-1

-.5-.5-.5-.5-.5-.5-.5-.5-.5

000000000

.5.5.5.5.5.5.5.5.5

111111111

(a) 42144 samples from the distribution of
X ,Y |

√
X2 +Y 2 ∈ [1 − ε, 1 + ε], overlaid on a

contour plot of the unconditioned density model

xxxxxxxxx

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

d
e
n
si
ty

-1-1-1-1-1-1-1-1-1 -.5-.5-.5-.5-.5-.5-.5-.5-.5 000000000 .5.5.5.5.5.5.5.5.5 111111111

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

(b) Density estimate of the distribution of
X |
√
X2 +Y 2 ∈ [1− ε, 1 + ε]

Figure 10.9: Sampling within circular probabilistic conditions.

(define/drbayes normal-normal/distance
(let∗ ([x (normal 0 1)]

[y (normal x 1)])
(list x y (sqrt (+ (sqr x) (sqr y))))))

Figure 10.9 shows the results of sampling within the preimage of R×R× [1− ε, 1+ ε]×{〈〉},

where ε = 0.05. We are therefore conditioning on x and y being close to the unit circle.

We use ε = 0.05 to make the left plot’s circular band of samples wide, so it is obvious

that the point densities correspond with the density model for normal-normal/distance. Dr.

Bayes samples just as efficiently for any ε > 0. Therefore, while in the limit as ε approaches

zero there is no density model, Dr. Bayes can still compute converging sequences of answers

to queries.

We requested 50000 samples and received 42144. The rejected samples are from sampling

within overapproximations, which sometimes causes preimage refinement to return ∅. We

illustrate why further on.

246

 Light Source Light Source Light Source Light Source Light Source Light Source Light Source Light Source Light Source

 Aperture Aperture Aperture Aperture Aperture Aperture Aperture Aperture Aperture

000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

111111111

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

111111111

.8.8.8.8.8.8.8.8.8

.6.6.6.6.6.6.6.6.6

.4.4.4.4.4.4.4.4.4

.2.2.2.2.2.2.2.2.2

000000000

(a) Random paths from a single light source, conditioned
on passing through an aperture

(b) Random paths that pass through the aperture,
projected onto a plane and accumulated

Figure 10.10: Stochastic ray tracing in Dr. Bayes.

10.4.4 Stochastic Ray Tracing

By implementing a small vector math library and some collision detection functions, we

can encode a simple theory of light transport in Dr. Bayes for which conditional queries

carry out stochastic ray tracing [78]. For example, the following functions compute the

dot product between two vectors (represented by lists), and return a random vector with a

uniform direction (for emitting light).

(define/drbayes (vec-dot v1 v2)
(+ (∗ (list-ref v1 0) (list-ref v2 0))

(∗ (list-ref v1 1) (list-ref v2 1))
(∗ (list-ref v1 2) (list-ref v2 2))))

(define/drbayes (uniform-vec)
(list (normal) (normal) (normal)))

We have also implemented vec-add, vec-neg (negation) and vec-scale (elementwise multi-

plication by a constant). We additionally define a structure to represent collisions:

(struct/drbayes collision (time point normal))

247

and a function to compute ray-plane intersections:

(define/drbayes (ray-plane-intersect p0 v n d)
(let ([denom (- (vec-dot v n))])

(if (positive? denom)
(let ([t (/ (+ d (vec-dot p0 n)) denom)])

(if (positive? t) (collision t (vec-add p0 (vec-scale v t)) n) #f))
#f)))

Figure 10.10a illustrates the main idea behind stochastic ray tracing. Using the vector

functions, we simulate casting photons uniformly from a light source and reflect them

uniformly when they collide with the walls of a square room, which generates paths. We

condition on the paths passing through a small aperture, collect samples, and project them

onto a collector plane on the other side of the aperture. Figure 10.10b shows the result

of accumulating the collisions on the collector. The smaller the aperture, the smaller the

probability a path passes through it, and the more focused the resulting image.

All efficient implementations of stochastic ray tracing to date use sophisticated, specialized

sampling methods that bear little resemblance to the physical processes they simulate. The

proof-of-concept ray tracer in Dr. Bayes is little more than a simple physics simulation and a

conditional query.

10.4.5 Probabilistic Program Verification

Recent work in probabilistic verification recasts it as a probabilistic inference task [32]. We

take this idea further, recasting probabilistic verification more specifically as finding the

distribution over program inputs given an error condition, in which case it is equivalent to

Bayesian inference in particular.

To use Dr. Bayes to compute this conditional distribution for a given program, we

1. Encode the program in Dr. Bayes in a way that propagates errors.

2. Compute an overapproximation of the preimage of an error condition.

3. Sample points in the overapproximation that are also in the preimage.

248

Sometimes step 2 returns ∅, in which case there are no preconditions that produce errors (if

the program is encoded correctly). The longer the probabilistic search in step 3 runs without

finding a point in the preimage set, the likelier it is that the preimage has zero probability or

is empty. The probabilistic search is guided by preimage computation to find errors, and can

be guided further by manually adjusting the distribution over inputs.

Because dependent uniform sampling (i.e. sample-source∗ as defined in (9.54)) is so

sensitive to floating-point error, we are most interested in verifying error bounds for the

outputs of floating-point implementations of real functions.

While Dr. Bayes’s numbers are implemented by floating-point intervals, semantically,

they are real numbers. We therefore cannot represent floating-point numbers directly in

Dr. Bayes—but we do not want to. We need to represent abstract floating-point numbers,

each consisting of an exact, real number and a bound on the relative error with which it

is approximated. We regard numbers with catastrophic relative error (i.e. not in [0, 1)) as

representing any floating-point number, and so define the following two structures.

(struct/drbayes float-any ())
(struct/drbayes float (value error))

An abstract value (float v e) represents every floating-point number between (∗ v (- 1

e)) and (∗ v (+ 1 e)) inclusive.

Abstract floating-point functions compute exact results and use input error to bound

output error:

249

(define/drbayes (flsqrt x)
(if (float-any? x)

x
(let ([v (float-value x)]

[e (float-error x)])
(cond [(negative? v) (float-any)] ; NaN

[(zero? v) (float 0 0)] ; exact case
[else
; v is positive
(make-float (sqrt v) ; exact square root

(+ (∗ 1/2 epsilon.0) ; rounding error
(- 1 (sqrt (- 1 e))))) ; exact relative error

]))))

Here, (make-float v e) returns (float-any) when (> e 1). We have also implemented

arithmetic and comparison operators, as well as exponentials and logarithms.

Suppose we define an abstract floating-point implementation of the geometric distribution

family’s inverse CDF:

(define/drbayes (flgeometric-inv-cdf u p)
(fl/ (fllog u) (fllog (fl- (float 1 0) p))))

We want the distribution of x and y in (0, 1) given that the output error

(float-error (flgeometric-inv-cdf (float x 0) (float y 0)))

is in (3 · ε,∞), where ε ≈ 2.22 · 10−16 is the smallest 64-bit floating-point number that can

be added to 1.0 to yield a different floating-point number. That is, we want the distribution

of exact inputs3 for which the approximate output is more than about three floating-point

numbers away from the exact output.

Dr. Bayes overestimates the preimage of (3 · ε,∞) as approximately (0, 1)× (ε, 0.284)

and returns samples within it. Knowing a few common floating-point tricks, we define

(define/drbayes (flgeometric-inv-cdf u p)
(fl/ (fllog u) (fllog1p (flneg p))))

3Floating-point functions are almost always analyzed assuming exact inputs. Few useful ones reduce error.

250

where fllog1p (abstractly) computes log1p x := log (1 + x) with high accuracy. The

preimage of (3 · ε,∞) is now ∅. In fact, the preimage of (1.51 · ε,∞) is ∅, meaning that

this implementation of flgeometric-inv-cdf returns approximations that are no more than

about 1.51 floating-point numbers away from the exact answers.

Reasoning about subnormal numbers, NaNs, signed zeros, and infinities will require

more detailed abstractions, which we are certain we can encode in Dr. Bayes.

10.5 Current Shortcomings

To make progress, we must undertake the painful process of characterizing Dr. Bayes’s

shortcomings. We do not believe any of them are insurmountable, so we regard them as a

guide for future work.

10.5.1 Engineering Required

The simplest shortcomings require only engineering, and perhaps some numerical analysis.

With Dr. Bayes’s current primitives, we can find no good way to encode the gamma

distribution family, beta distribution family and Dirichlet distribution family, all of which

are important in Bayesian practice. Dr. Bayes needs a two-argument gamma primitive, from

which these families can be defined.

The Bernoulli, multinomial, Poisson and geometric distribution families, and arbitrary

discrete distributions can be encoded using if (or strict-if), random, <, and recursive

functions. The correctness and termination theorems for Dr. Bayes’s semantics ensure that

programs using such encodings work as expected. But defined this way, they are slow.

Bayesians tend to think in terms of propositions, not sets. Encoding conditions as

boolean expressions and sampling within the preimage of a rectangle with a {true} axis is a

good start, but Dr. Bayes should hide these details from users.

251

10.5.2 Research May Be Required

For the following shortcomings, we do not know yet whether engineering work is sufficient.

When we encode theories as functions, we write them to return every random variable of

interest in a list so we can estimate their expected values and study their behavior. Theories

assembled from many such functions are quite verbose because function applications must

destructure lists of returned values. It seems we need not just functions, but an additional

form of abstraction that is more transparent by default.

Lambdas would make the encoding of the theory of quadratic running time in Figure 10.5

shorter. The generate function would be an easy application of map, and condition an easy

application of andmap. Adding lambda expressions could be as simple as using well-known

techniques for compiling higher-order languages to first-order target languages.

Errors are often hard to find. Consider this bad program:

(define/drbayes add-number-to-list
(+ 1 (list (random))))

If we try to sample, we get this unhelpful error message:

drbayes-sample: cannot sample from the empty set

The culprit here is not distinguishing errors and nontermination: for simplicity, they are

both ⊥ in the semantics. In the exact semantics, computing preimages removes inputs that

produce ⊥, so errors do not occur. To begin addressing this, Dr. Bayes needs a separate type

of error values, as well as a representation for rectangular sets of error values. We do not

know whether exception handling is required or desirable, whether it makes sense to ignore

errors that happen with zero probability, nor how difficult it is to distinguish between errors

that arise only from overapproximation and those that are truly errors.

We have done inference on probabilistic context-free grammars specified very naturally

as mutually recursive functions. We did not demonstrate them because Dr. Bayes lacks

symbols, so the languages consist of lists of #t and #f, making them hard to understand.

252

Dr. Bayes also does not have string and integer data types. Lacking abstract sets of strings,

we have encoded no theories containing string manipulation. The obvious representation,

rectangular products of sets of characters, may not be precise enough.

10.5.3 Research Required

Addressing the rest of Dr. Bayes’s shortcomings will require quite a lot of research.

While Dr. Bayes is efficient, in the sense that the time complexity of sampling is a

polynomial of low degree, it is not fast. In particular, the ray tracer takes around 10000

times the time a hand-coded MCMC sampler would take to produce the same number of

samples. Much of the slowdown comes from computing images and preimages for deep

(random) expressions, which is quadratic in the depth of the expression.

The ray-traced image in Figure 10.10b is accumulated from 20 million samples. The

image is only 256 × 256, or 65536 pixels, so it could be much less grainy. The culprit is

importance sampling, which often suffers from high Monte Carlo variance in high-dimensional

spaces.

We could not set drbayes-max-splits to 5 before running the query that carried out

stochastic ray tracing. The search tree became too large to fit in memory. The explosion in

search tree size is similar to the state space explosion problem in model checking, and may

be just as hard to solve.

Dr. Bayes repeats computations unnecessarily. Consider this encoding of a theory of

independent normal random variables:

(define/drbayes independent-normals
(let ([x (normal 0 1)]

[y (normal 0 1)])
(cons x y)))

When Ω is split along the axis projected by x, Dr. Bayes carries out image and preimage

computation for y as well, even though the results are the same as with the previous Ω. In

253

(a) False independence causes
loose rectangular cover fit

(b) Nearly half of ω0 values on part
cover sample result in rejection

(c) No false independence: tight
fit, no rejections possible

Figure 10.11: The dependency problem: falsely assuming independence of variables that occur more than
once in an expression causes the rectangular preimage cover to fit loosely. If {ω0} is drawn from the left of
the part cover in (b), refinement returns ∅.

fact, there is a good chance that in most programs, most Ω splits along one axis do not affect

most image and preimage computations.

For the normal-normal theory encoding with the circular condition, we requested 50000

samples and received 42144. A much simpler program exhibits similar behavior:

(define/drbayes dependency-problem
(let ([x (random)]

[y (random)])
(/ x (+ x y))))

Figure 10.11a shows the preimage of [0.4, 0.6] and the rectangular cover Dr. Bayes samples

part covers from. When it samples the part cover shown in Figure 10.11b, it fails about half

the time because the part cover does not fit the preimage set as tightly as possible.

The loose fit happens because x occurs twice in x/(x + y), and image and preimage

computation do not account for the fact that each x occurrence refers to the same value.

To demonstrate how, we reason compositionally about its range. Let z := x + y;

then z ∈ [0, 2] because x, y ∈ [0, 1]. Because 〈x, z〉 ∈ [0, 1] × [0, 2], x/z ∈ [0,∞); therefore

x/(x + y) ∈ [0,∞). Each of these statements is true—they even constitute a proof—so

our reasoning is sound. But our reasoning is not precise: it is not hard to show that

254

x/(x + y) ∈ [0, 1]. In particular, [0, 1]× [0, 2] is a gross overestimate of the range of 〈x, z〉.

Just as in the preceding proof that x/(x + y) ∈ [0,∞), image and preimage computations

are carried out compositionally and rectangles represent sets of possible values. If h is the

interpretation of dependency-problem as a preimage* arrow computation, we have

> (pre-mapping-range ((h j0) program-domain))
(Real-Set 0.0 +inf.0 #t #f)

In interval arithmetic, this is called the dependency problem. The fact that preimages

are restricted to domain parts mitigates the problem somewhat. We can mitigate it further

by partitioning more finely, which works well enough but takes extra time and space.

We can occasionally solve the dependency problem by refactoring expressions. For

example, if x 6= 0, then x/(x + y) = 1/(1 + y/x). In our program, x = 0 is a zero-probability

event. Therefore, as long as x = 0 is not an asserted condition, we can rewrite the program as

(define/drbayes no-dependency-problem
(let ([x (random)]

[y (random)])
(/ 1 (+ 1 (/ y x)))))

without changing the meaning of any queries. Figure 10.11c shows the resulting rectangular

cover Dr. Bayes samples from, which tightly fits the preimage.

The dependency problem is not particular to interval arithmetic, but can be found in

many kinds of abstract interpretation and static analysis. As with using Monte Carlo methods

instead of enumeration methods to compute preimage measures, we hope that providing only

probabilistic guarantees will make solving the problem more tractable.

10.6 Conclusions

Dr. Bayes is a proof-of-concept implementation, designed for exploring the expressive power

and utility of the let-calculus whose semantics is defined in Chapter 8. We have shown that it

is expressive enough to encode Bayesian theories with and without density models, including

255

theories that (likely because they lack density models) are rarely regarded as Bayesian. Even

at this very early stage, as a mostly direct implementation of the semantics with barely any

work put into making it fast, Dr. Bayes is useful, at least for problems with up to 25 or so

random variables.

We have demonstrated that allowing only positive-probability conditions matters little:

they are philosophically easier to support, interval observations may be quite wide and still

be as effectful as point observations, and interval observations’ widths may be specified

independently without affecting accuracy.

We have characterized Dr. Bayes’s shortcomings and will use them to drive future work.

256

Chapter 11

Conclusions and Future Work

11.1 Conclusions

We started by defining λZFC, a call-by-value λ-calculus with infinite sets and set operations,

so that we could interpret Bayesian notation categorically.

We then investigated a general approach to trustworthy Bayesian languages: defining an

exact semantics that interprets notation as measure-theoretic models, and then deriving a

directly implementable approximating semantics. We restricted our investigation to countable

distributions and theories with finitely many statements, as it is the first point in the design

space where approximation is necessary, and requires no deep measure theory.

In a slight change of tactics, we fixed a canonical probability space of uniformly random,

infinite binary trees, and interpreted programs as measure-theoretic random variables, and

then as computations that compute exact preimages. The approximating semantics interprets

programs as computations that compute conservative approximations of preimages, using

rectangles instead of sets. We demonstrated that the language is useful by implementing the

approximating semantics and encoding typical Bayesian theories. We also encoded theories

without density models, which can only be interpreted using measure theory.

In short, we have proved and demonstrated the thesis by developing trustworthy, use-

ful languages for Bayesian modeling and inference, founding them solidly on functional

programming theory and measure-theoretic probability.

257

11.2 Future Work

There are four main categories of future work: adding expressiveness to Dr. Bayes, reducing

its runtime costs, providing more and better guarantees, and branching out into related

research areas.

11.2.1 Expressiveness

Adding a new feature and its semantics to a Turing-equivalent language makes the language

more expressive if the only way to encode the new feature in the original language with the

original semantics is by a global transformation [24]. Thus, adding expressive features to Dr.

Bayes will allow Bayesian theories to be encoded more succinctly and clearly.

An example is adding lambdas, which at very least can make repetition more succinct and

clear using higher-order functions like map. For a first-order language like Dr. Bayes, lambdas

may be added by closure conversion and defunctionalization: turning every lambda value into

a closure, which contains bound variable values and a function pointer, and changing every

application site to apply a global dispatching function that decodes closures [19]. It may be

simpler, more efficient, or more elegant to add lambda terms to the language itself, despite

the fact that ensuring higher-order application is measurable is difficult. Either way—by a

global transformation or an extension to the semantics—Dr. Bayes will have lambdas.

With lambdas added, looping constructs become mere syntactic sugar, because they

can be implemented by local transformations into recursive functions. We plan to provide

all possible looping constructs and other local features at once, by making Racket syntax

transformers, which perform local transformations, available in Dr. Bayes programs.

Other examples of expressive new features are mutation, and exceptions and parameters,

or more generally continuations [70] and continuation marks [17]. Once lambdas are available,

these can be encoded by globally transforming programs [20, 29]. We want to know whether

such global transformations are the simplest, most efficient, or most elegant ways to extend

our probabilistic language’s expressiveness.

258

We suggested in Chapter 10 that functions may be too opaque by default for abstracting

the high-level structure of Bayesian theories. It is possible that objects are the right abstraction,

or units [25], which are like modules but have runtime parameters. It is also possible that

Bayesian theories need an entirely new kind of recursive abstraction. This dimension of

probabilistic language design clearly needs study.

In our experience, probabilistic programs are more difficult to debug than other kinds

of programs. One way to increase expressiveness while reducing errors is by adding a type

system. A type system similar to Typed Racket’s [71] would be a good choice. Because

Typed Racket was originally meant for converting untyped programs into typed programs

by adding a few annotations, it has true union types, and occurrence typing, which allows

identifiers to have different types in each branch of a conditional based on the result of its test

expression. Occurrence typing is similar to how the forward phase in preimage computation

applies the interpretation of each true branch to the preimage of {true} under the test, and

the false branch to the preimage of {false}. Union types are similar to our representation of

disjoint unions of sets of tagged data structures.

11.2.2 Optimization

A type system would not only help reduce programmer error, but would provide information

about program terms that an optimizer could use. For example, because our implementation’s

sets are monomorphic, every set operation must dispatch to a more specific operation based

on the runtime data types of its arguments. If a type system determined that a certain

computation consumed and produced only pairs, such dispatch would be unnecessary.

Our semantics trades efficiency for simplicity by threading a constant, tree-shaped

random source. This makes each random computation linear-time in the depth it appears in

the completely inlined program, which can turn functions that should be linear-time into

quadratic-time. Passing subtrees instead would make random constant-time, restoring these

functions’ apparent time complexity. Passing subtrees would also allow combinators to detect

259

lack of change in their received subtrees and return cached values.

Even better than simply returning cached values would be to leverage recent advances in

incremental computation [33]. Smarter incrementalization could share results, take advantage

of commutativity, avoid recomputing “switched off” values when they are needed again,

and recompute only parts of execution that lead to changes in output. There are certainly

ways to take advantage of the forward-backward nature of preimage computation, and it

should provide interesting challenges as well. Further, we believe preimage computation is a

particularly good application for incremental computation, because the potential expense

of set operations, especially on high-dimensional products, should easily offset the extra

bookkeeping and logic required to avoid recomputing them.

Importance sampling was originally developed to reduce Monte Carlo variance for queries

in which sampling according to a random variable’s actual distribution results in high variance.

As in most uses in Bayesian inference, we currently use importance sampling to make up

for the fact that we cannot sample according to the target distribution; i.e. a uniform

distribution restricted to a condition’s preimage. Using importance sampling this way often

increases Monte Carlo variance, with “often” becoming “usually” with added complexity and

higher dimension, so that ever more samples are required. Using importance sampling to

actually reduce variance on a per-query basis is therefore an attractive idea. It has been done

on-the-fly in Bayesian inference [16], as the sampler collects information about the task.

Another (but not exclusive) possibility is to try Markov Chain Monte Carlo (MCMC)

sampling [21, Chapter 12], which eventually converges to behavior equivalent to sampling

directly from a target distribution. We expect the split-and-refine part of sampling to be

particularly amenable, because it divides the program domain into an at-most-countable

partition. Sampling its parts may sidestep a common problem with MCMC methods: that

they often “mix” poorly when sampling within narrow, non-convex shapes. In any case, to

use MCMC, we would need to solve this problem, because the preimages of conditions in

typical Bayesian queries are narrow and non-convex.

260

Any sampling method improves if we can leverage detailed knowledge of the target

distribution, the query, and their relationship. This seems like a perfect fit for static analysis

and precise nonstandard interpretation such as automatic differentiation [23]. We believe

probabilistic programming is an especially good area for them because

• Probabilistic programs are complete programs that do not interact with the outside

world as they run, so advanced whole-program analysis techniques always apply.

• Repeated execution magnifies time and space gains, which justifies aggressive tactics.

• Large reductions in Monte Carlo variance can justify expensive, concurrently computed

nonstandard interpretations.

• As we have seen, even repeated static analysis (e.g. preimage computation) is useful.

Basically, inference is so difficult that we can justify throwing anything at it that runs in

reasonable time and results in modest gains or provides useful information for a sampler.

Static analysis defined in terms of the exact semantics can identify transformations

for probabilistic programs that can only be justified as preserving exact distributions. One

example is variable collapse; e.g. for binomial-distributed random variables:

(+ (binomial n p) (binomial m p)) −→ (binomial (+ n m) p)

Chapter 6’s model equivalence in distribution, which extends readily to uncountable spaces,

defines a standard for such optimizations. Distribution-preserving transformations could also

allow Dr. Bayes to support zero-probability conditions by propagating them upward. Doing

so would likely require continuity analysis [15].

We could also use static analysis to address the dependency problem, by transforming

expressions with multiple occurrences of an identifier into equivalent expressions with one.

Even simple transformations such as changing (∗ x x) to (sqr x) and simple factoring would

be helpful. More complicated transformations, such as changing (/ x (+ x y)) to (/ 1 (+

1 (/ y x))), require deciding probabilistic conditions such as Pr[x = 0] = 0, or branching

on range checks as in (if (= x 0) 0 (/ 1 (+ 1 (/ y x)))).

Partitioning approaches to solving the dependency problem include adaptive partitioning,

261

and partitioning the program domain into parts on which the program is monotone. The

latter would allow computing preimages using axial inversion groups that are like trijections,

but of higher order, which would need to be automatically derived. Monotone partitioning

may be helped by the fact that Dr. Bayes’s primitives are already piecewise monotone.

Another possibility is trying more expressive set representations. For example, parallelo-

topes [5] are high-dimensional parallelograms and can thus express linear dependence, and

they are as easy to sample from as rectangles.

Symbols and characters can already be represented in Dr. Bayes as user-defined data

types, but direct support would be better. Sets of strings may be represented by products of

character sets, but finite-state automata look more promising [68]. For sets of integers, we

intend to try abstracting the string set representation. Doing so would guarantee that the

string-length primitive’s image and preimage computations are precise, and may do the

same for indexing operations.

The self-adjusting probabilistic tree search presented in Chapter 9 tends to avoid sampling

the empty set and reduce variance, but its memory use scales exponentially in the number of

if and random expressions. To address it, we intend to try partial-order reduction [30] and

sharing equivalent subtrees in a similar way to ordered binary decision diagrams (OBDDs) [54].

For some programs, it may be enough to store only subtrees that are explored with high

probability; for example, by storing subtrees in a Least-Frequently Used (LFU) cache [50].

11.2.3 Guarantees

At the most basic level, we would like to formalize the informal type system we use with

λZFC, to put our type-level reasoning on solid footing. An implementation of the type system

would let us run λZFC code abstractly; i.e. by checking the types. We could also formalize

λZFC and the informal type system in Coq [52].

Less ambitiously, we would like to formalize implementation details in Coq and extract

proofs of their properties as verified programs. The best first candidate is the abstract set

262

library, which is large and complicated, and whose functions are already mostly derived from

lattice properties.

Chapter 6 contains a theorem of semantic intent: that the interpretation of discrete

Bayesian theories as monadic computations that build measure-theoretic models is correct.

In this case, “correctness” means random variables have the stated conditional distributions

and are no more interdependent than is necessary to have those distributions. In contrast, in

Chapter 10, we manually interpret Bayesian theories as Dr. Bayes code and implicitly appeal

to syntactic similarity; for example, of this theory and encoding:

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)

(let∗ ([x (normal 0 1)]
[y (normal x 1)])

...)

We also appeal to the fact that we observe the expected results. This level of rigor is

appropriate for demonstrating usefulness, and Dr. Bayes’s semantics is correct on its own

terms. But correctness with respect to Bayesian notation requires a mechanical transformation

to the let-calculus defined in Chapter 8 and another theorem of semantic intent.

Chapter 8 defines the preimage refinement algorithm, which partitions the domain of

probabilistic programs more and more finely, and uses approximate preimage computation to

fit a rectangular cover to a preimage set. We do not yet know the conditions under which

the measure of the rectangular cover approaches the measure of the preimage set. Finding

and proving these conditions would help us determine when preimage refinement sampling,

along with the self-adjusting tree search, can be expected to eventually sample covers of only

positive-measure parts.

Dr. Bayes’s semantics and sampler guarantee that sampling always terminates, even

if it does not always return the requested number of samples. When programs terminate

with probability 1 abstractly—i.e. they never evaluate expressions that cannot escape infinite

loops—the implementation can sample more efficiently. Currently, users must tell Dr. Bayes

whether to do so using the drbayes-always-terminate? parameter. This seems like something

263

Dr. Bayes should be able to decide automatically by analyzing the call graph, allowing it to

guarantee termination with less user involvement.

11.2.4 Branching Out

Though we developed approximate preimage computation only so we could implement a

measure-theoretic semantics, there are many similarities between it and type checking and

inference [64]. Roughly, computing approximate images corresponds to type checking, and

computing approximate preimages corresponds to type inference. The main differences are

• Preimage computation operates only on monomorphic abstract values, while type

checking and inference often operate on polymorphic abstract values.

• Preimage computation does not abstractly evaluate if very precisely, while type

checking and inference do not abstractly evaluate function application very precisely

(though each strategy avoids infinite recursion during analysis).

• Preimage computation overapproximates non-error conditions, while type checking

and inference overapproximate error conditions.

It would be extremely interesting to define hybrids of these two approaches to analysis. We

would especially like to define preimage computation so that it can operate on polymorphic sets,

and use the results of type checking and inference to make image and preimage computation

more precise.

Preimage computation is also similar to computing weakest preconditions [22]. The

main differences are

• Preimage computation does not join the results of analyzing if branches, but analyzes

each combination of possible branches (i.e. each branch trace) separately.

• Preimage computation’s pre- and post- “conditions” are members of a fixed family of

abstract sets, while in computing weakest preconditions they are symbolic propositions

about program values (and are often defined in terms of propositions found in the

program, such as if test expressions).

264

One striking similarity is regarding programs as functions, though in computing preconditions

the functions are from program states to program states; i.e. they are monadic, not applicative.

Again, we would like to define hybrids to try to leverage the strengths of each approach.

State-of-the-art probabilistic program verification is quite ad-hoc, with little to no control

over randomized searches for preconditions that produce errors, nor even weak guarantees

that errors are found with high probability. We showed in Chapter 10 that Dr. Bayes can

find errors with high probability, and how we have used it to verify floating-point functions.

It works because probabilistic program verification can be recast as Bayesian inference. But

it is not Bayesian inference, and the main differences are

• In probabilistic verification, we are more interested in the existence of a counterexample

to a correctness statement than in sampling from a distribution over them.

• In floating-point analysis in particular, we are additionally interested in finding the

strongest possible correctness statements, not just evaluating a single statement whose

negation corresponds with one error condition.

As an example of the second point, in Chapter 10, we had to manually search for the

correctness statement “flgeometric-inv-cdf outputs are within 1.51 epsilons of exact” by

testing a few different error intervals of the form (e · ε,∞).

Supporting probabilistic program verification better should allow Dr. Bayes to carry out

more precise, verified preimage computation. We believe it will extend to other verification

tasks as well, from verifying the floating-point functions in Racket’s math library (which we

have already started) to verifying concurrent algorithms.

In all, the fact that Dr. Bayes is already capable of going beyond typical Bayesian

inference, and the fact that approximate preimage computation is similar to but distinct

from other widely applied analysis techniques, suggests that we have found ourselves a big

hammer. We are therefore on the lookout for nails. We hope that in pounding them in, for

Bayesian practitioners in particular, we can make hard things easy, intractable things simply

hard, and unthinkable things thinkable.

265

Appendix A

Measurability Theorems

Proving measurability is critical in proving correctness, in that it establishes that the

outputs of all programs have sensible distributions. While critical, it is somewhat distracting

to the main narrative. Instead of ignoring measurability, however, as is so often done, we have

moved it to the end, where readers who are somehow still starving for even more mathematics

can devour it and—possibly—finally be satiated.

Unsatiated readers may afterward proceed to Appendix B.

A.1 Basic Definitions

For readers familiar with topology, we review the necessary fundamentals by analogy to

topology. However, we have tried to include enough of the fundamentals [43] that readers

not familiar with basic topology can verify the proofs.

The analogue of a topology of open sets is a σ-algebra of measurable sets.

Definition A.1 (σ-algebra, measurable set). A collection of sets A ⊆ P X is called a

σ-algebra on X if it contains X and is closed under complements and countable unions. The

sets in A are called measurable sets.

X\X = ∅, so ∅ ∈ A. Additionally, it follows from De Morgan’s law that A is closed

under countable intersections.

The analogue of continuity is measurability.

Definition A.2 (measurable mapping). Let A and B be σ-algebras on X and Y. A mapping

g : X ⇀ Y is A-B-measurable if for all B ∈ B, preimage g B ∈ A.

266

When the domain and codomain σ-algebras A and B are clear from context, we will

simply say g is measurable.

Measurability is usually a weaker condition than continuity. For example, with respect

to the σ-algebra generated from R’s standard topology (i.e. using the standard topology

as a sort of “base”), measurable R ⇀ R functions may have infinitely many discontinuities.

Likewise, real comparison functions such as (=), (<), (>) and their negations are measurable,

but not continuous.

Product σ-algebras are defined analogously to product topologies.

Definition A.3 (finite product σ-algebra). Let A1 and A2 be σ-algebras on X1 and X2,

and define X := X1 × X2. The product σ-algebra A1 ⊗ A2 is the smallest (i.e. coarsest)

σ-algebra for which mapping fst X and mapping snd X are measurable.

Definition A.4 (arbitrary product σ-algebra). Let A be a σ-algebra on X. The product

σ-algebra A⊗J is the smallest σ-algebra for which, for all j ∈ J, mapping (π j) (J→ X) is

measurable.

A.2 Measurable Pure Computations

It is easier to prove measurability of pure computations than to prove measurability of partial,

probabilistic ones. Further, we can use the results to prove that the interpretations of all

partial, probabilistic expressions are measurable.

We must first define what it means for a computation to be measurable.

Definition A.5 (measurable mapping arrow computation). Let A and B be σ-algebras on X

and Y. A computation g : X map Y is A-B-measurable if g A∗ is an A-B-measurable mapping,

where A∗ is g’s maximal domain.

Theorem A.6 (maximal domain measurability). Let g : X map Y be an A-B-measurable

mapping arrow computation. Its maximal domain A∗ is in A.

267

Proof. Because g A∗ is measurable, preimage (g A∗) Y = A∗ is in A.

Mapping arrow computations can be applied to sets other than their maximal domains.

We need to ensure doing so yields a measurable mapping, at least for measurable subsets of

A∗. Fortunately, that is true without any extra conditions.

Lemma A.7. Let g : X ⇀ Y be an A-B-measurable mapping. For any A ∈ A, restrict g A is

A-B-measurable.

Theorem A.8. Let g : X map Y be an A-B-measurable mapping arrow computation with

maximal domain A∗. For all A ⊆ A∗ with A ∈ A, g A is A-B-measurable.

Proof. By Theorem 8.44 (mapping arrow restriction) and Lemma A.7.

We do not need to prove all interpretations using J·Ka are measurable. However, we do

need to prove mapping arrow combinators preserve measurability.

A.2.1 Composition

Proving compositions are measurable takes the most work. The main complication is that,

under measurable mappings, while preimages of measurable sets are measurable, images of

measurable sets may not be. We need the following four extra theorems to get around this.

Lemma A.9 (images of preimages). If g : X ⇀ Y and B ⊆ Y, image g (preimage g B) ⊆ B.

Lemma A.10 (expanded post-composition). Let g1 : X ⇀ Y and g2 : Y ⇀ Z such that

range g1 ⊆ domain g2, and let g′2 : Y ⇀ Z such that g2 ⊆ g′2. Then g2 ◦map g1 = g′2 ◦map g1.

Theorem A.11 (mapping arrow monotonicity). Let g : X map Y. For any A′ ⊆ A ⊆ A∗,

g A′ ⊆ g A.

Proof. By Theorem 8.44 (mapping arrow restriction).

Theorem A.12 (maximal domain subsets). Let g : X map Y. For all A ⊆ A∗, domain (g A) = A.

268

Proof. Follows from Theorem 8.45.

Now we can prove measurability.

Lemma A.13 ((◦map) measurability). If g1 : X ⇀ Y is A-B-measurable and g2 : Y ⇀ Z is

B-C-measurable, then g2 ◦map g1 is A-C-measurable.

Theorem A.14 ((>>>map) measurability). If g1 : X map Y is A-B-measurable and g2 : Y map Z

is B-C-measurable, then g1 >>>map g2 is A-C-measurable.

Proof. Let A∗ ∈ A and B∗ ∈ B be respectively g1’s and g2’s maximal domains. The maximal

domain of g1 >>>map g2 is A∗∗ := preimage (g1 A∗) B∗, which is in A. By definition,

(g1 >>>map g2) A∗∗ = let g′1 := g1 A∗∗
g′2 := g2 (range g′1)

in g′2 ◦map g′1

(A.1)

By Theorem A.8, g′1 is an A-B-measurable mapping. Unfortunately, g′2 may not be B-C-

measurable when range g′1 6∈ B.

Let g′′2 := g2 B∗, which is a B-C-measurable mapping. By Lemma A.13, g′′2 ◦map g′1 is

A-C-measurable. We need only show that g′2 ◦map g′1 = g′′2 ◦map g′1, which by Lemma A.10 is

true if range g′1 ⊆ domain g′2 and g′2 ⊆ g′′2 .

By Theorem A.12, A∗∗ ⊆ A∗ implies domain g′1 = A∗∗. By Theorem A.11 and Lemma A.9,

range g′1 = image (g1 A∗∗) (preimage (g1 A∗) B∗) (A.2)

= image (g1 A∗) (preimage (g1 A∗) B∗)

⊆ B∗

range g′1 ⊆ B∗ implies (by Theorem A.12) that domain g′2 = range g′1, and (by Theorem A.11)

that g′2 ⊆ g′′2 .

269

A.2.2 Pairing

Proving pairing preserves measurability is straightforward given a corresponding theorem

about mappings.

Lemma A.15 (〈·, ·〉map measurability). If g1 : X ⇀ Y1 is A-B1-measurable and g2 : X ⇀ Y2

is A-B2-measurable, then 〈g1, g2〉map is A-(B1 ⊗ B2)-measurable.

Theorem A.16 ((&&&map) measurability). If g1 : X map Y1 is A-B1-measurable and g2 : X map Y2

is A-B2-measurable, then g1 &&&map g2 is A-(B1 ⊗ B2)-measurable.

Proof. Let A∗1 and A∗2 be respectively g1’s and g2’s maximal domains. The maximal domain

of g1 &&&map g2 is A∗∗ := A∗1 ∩ A∗2, which is in A. By definition, (g1 &&&map g2) A∗∗ =

〈g1 A∗∗, g2 A∗∗〉map, which by Lemma A.15 is A-(B1 ⊗ B2)-measurable.

A.2.3 Conditional

Conditionals can be proved measurable given a theorem that ensures the measurability of

finite unions of disjoint, measurable mappings. We will need the corresponding theorem for

countable unions further on, however.

Lemma A.17 (union of measurable mappings). The union of a countable set of A-B-

measurable mappings with disjoint domains is A-B-measurable.

Theorem A.18 (iftemap measurability). If g1 : X map Bool, and g2 : X map Y and g3 : X map Y

are respectively A-(P Bool)-measurable and A-B-measurable, then iftemap g1 g2 g3 is A-B-

measurable.

Proof. Let A∗1, A∗2 and A∗3 be g1’s, g2’s and g3’s maximal domains. The maximal domain of

iftemap g1 g2 g3 is A∗∗, defined by

A∗∗2 := A∗2 ∩ preimage (g1 A∗1) {true}

A∗∗3 := A∗3 ∩ preimage (g1 A∗1) {false}

A∗∗ := A∗∗2] A∗∗3

(A.3)

270

Because preimage (g1 A∗1) B ∈ A for any B ⊆ Bool, A∗∗ ∈ A. By definition,

iftemap g1 g2 g3 A∗∗ = let g′1 := g1 A∗∗
g′2 := g2 (preimage g′1 {true})
g′3 := g3 (preimage g′1 {false})

in g′2]map g′3

(A.4)

By hypothesis, g′1, g′2 and g′3 are measurable mappings. By Theorem 8.44 (mapping arrow

restriction), g′2 and g′3 have disjoint domains. Apply Lemma A.17.

A.2.4 Laziness

We must first prove measurability of an often-ignored corner case.

Theorem A.19 (measurability of ∅). For any σ-algebras A and B, the empty mapping ∅

is A-B-measurable.

Proof. For any B ∈ B, preimage ∅ B = ∅, and ∅ ∈ A.

Theorem A.20 (measurability under lazymap). Let g : 1 ⇒ (X map Y). If g 0 is A-B-

measurable, then lazymap g is A-B-measurable.

Proof. The maximal domain A∗∗ of lazymap g is that of g 0. By definition,

lazymap g A∗∗ = if (A∗∗ = ∅) ∅ (g 0 A∗∗) (A.5)

If A∗∗ = ∅, then lazymap g A∗∗ = ∅; apply Theorem A.19. If A∗∗ 6= ∅, then lazymap g = g 0,

which is A-B-measurable.

A.3 Measurable Probabilistic Computations

As with pure computations, we must first define what it means for an effectful computation

to be measurable.

271

Definition A.21 (measurable mapping* arrow computation). Let A and B be σ-algebras on

(Ω×T)×X and Y. A computation g : X map* Y is A-B-measurable if g j0 is an A-B-measurable

mapping arrow computation.

Theorem A.22. If g : X map* Y is A-B-measurable, then for all j ∈ J, g j is an A-B-measurable

mapping arrow computation.

Proof. By induction on J: if g j is measurable, so are g (left j) and g (right j).

To make general measurability statements about computations, whether they have flat

or product types, it helps to have a notion of a standard σ-algebra.

Definition A.23 (standard σ-algebra). For a set X used as a type, Σ X denotes its standard

σ-algebra, which must be defined under the following constraints:

Σ 〈X1,X2〉 = Σ X1 ⊗Σ X2 (A.6)

Σ (J→ X) = (Σ X)⊗J (A.7)

From here on, when no σ-algebras are given, “measurable” means “measurable with

respect to standard σ-algebras.”

The following definitions allow distinguishing the results of conditional expressions and

any two branch traces:

Σ Bool ::= P Bool (A.8)

Σ T ::= P T (A.9)

Lemma A.24 (measurable mapping arrow lifts). arrmap id, arrmap fst and arrmap snd are

measurable. arrmap (const b) is measurable if {b} is a measurable set. For all j ∈ J, arrmap (π j)

is measurable.

Corollary A.25 (measurable mapping* arrow lifts). arrmap∗ id, arrmap∗ fst and arrmap∗ snd

are measurable. arrmap∗ (const b) is measurable if {b} is a measurable set. randommap∗ and

branchmap∗ are measurable.

272

Theorem A.26 (AStore combinators preserve measurability). Every AStore arrow combinator

produces measurable mapping* computations from measurable mapping* computations.

Proof. AStore’s combinators are defined in terms of the base arrow’s combinators and arrmap fst

and arrmap snd.

Theorem A.27 (ifte⇓map∗ measurability). ifte⇓map∗ is measurable.

Proof. branchmap∗ is measurable, and arrmap agrees is measurable by (A.8).

We can now prove all nonrecursive programs measurable by induction.

Definition A.28 (finite expression). A finite expression is any expression for which no

subexpression is a first-order application.

Theorem A.29 (all finite expressions are measurable). For all finite expressions e, JeKmap∗

is measurable.

Proof. By structural induction and the above theorems.

Now all we need to do is represent recursive programs as a collection of finite expressions

interpreted as mappings, and take their union.

Theorem A.30 (approximation with finite expressions). Let g := JeK⇓map∗ : X map* Y and t ∈ T.

Define A := (Ω × {t})× X. There is a finite expression e′ for which Je′Kmap∗ j0 A = g j0 A.

Proof. Let the index prefix J′ contain every j for which t j 6= ⊥. To construct e′, exhaustively

apply first-order functions in e, but replace any ifte⇓map∗ whose index j is not in J′ with the

equivalent expression ⊥. Because e is well-defined, recurrences must be guarded by if, so this

process terminates after finitely many first-order applications.

Theorem A.31 (all probabilistic expressions are measurable). For all expressions e, JeK⇓map∗

is measurable.

273

Proof. Let g := JeK⇓map∗ and g′ := g j0 ((Ω ×T)×X). By Corollary 8.51 (correct computation

everywhere), g′ = g j0 A∗ where A∗ is g’s maximal domain; thus we need only show g′ is a

measurable mapping.

By Theorem 8.44 (mapping arrow restriction),

g′ =
⋃
t∈T

g j0 ((Ω × {t})× X) (A.10)

By Theorem A.30 (approximation with finite expressions), for every t ∈ T, there is a finite

expression whose interpretation agrees with g on (Ω ×{t})×X. Therefore, by Theorem A.29

(all finite expressions are measurable), g j0 ((Ω × {t}) × X) is a measurable mapping. By

Theorem 8.44 (mapping arrow restriction), they have disjoint domains. By Lemma A.17

(union of measurable mappings), their union is measurable.

Theorem A.31 remains true when J·Kmap∗ is extended with any rule whose right side is

measurable, including rules for real arithmetic, equality, inequality and limits. More generally,

any continuous or (countably) piecewise continuous function can be made available as a

language primitive, as long as its domain’s and codomain’s standard σ-algebras are generated

from their topologies.

J·Kmap∗ may be composed with another semantic function that defunctionalizes lambda

expressions. Thus, the interpretations of all expressions in higher-order languages are

measurable.

A.4 Measurable Projections

If g := JeK⇓map∗ : X map* Y, the probability of a measurable output set B ∈ Σ Y is

P (image (fst >>> fst) (preimage (g j0 A∗) B)) (A.11)

Unfortunately, projections are generally not measurable. Fortunately, for interpretations of

programs JpK⇓map∗ , for which X = {〈〉}, we have a special case.

274

Theorem A.32 (measurable finite projections). Let A ∈ Σ 〈X1,X2〉. If X2 is at most

countable and Σ X2 = P X2, then image fst A ∈ A1.

Proof. Because Σ X2 = P X2, A is a countable union of rectangles of the form A1 × {a2},

where A1 ∈ Σ X1 and a2 ∈ X2. Because image fst distributes over unions, image fst A is a

countable union of sets in Σ X1.

Theorem A.33. Let g : X map* Y be measurable. If X is at most countable and Σ X = P X,

for all B ∈ Σ Y, image (fst >>> fst) (preimage (g j0 A∗) B) ∈ Σ Ω.

Proof. T is countable and Σ T = P T by (A.9); apply Theorem A.32 twice.

In particular, for JpK⇓map∗ : {〈〉} map* Y, the probabilities of Σ Y are well-defined.

275

Appendix B

Sampling Theorems

This chapter contains proofs of measure-theoretic theorems stated in Chapter 9.

B.1 Basic Definitions

While the following review is necessarily incomplete, we have tried to include enough discussion

for readers unfamiliar with measure theory, and enough formalism that the proofs can be

verified without consulting an outside text. For example, we do not define measure-theoretic

integration, but we contrast it with integration typically learned in differential calculus, and

import theorems about its properties and interactions with other operations we use.

B.1.1 Measures

Measure theory is named for its primary abstraction of length, area, volume and probability—

and anything else for which assigning reals to sets in an additive way makes sense.

Definition B.1 (measure). A partial function m : Set X ⇀ [0,∞] with domain A := domain m

is a measure if

• A is a σ-algebra

• m ∅ = 0

• It is σ-additive: for any disjoint collection A : N⇒ Set X of sets in A,

m
(⋃

n∈N

A n
)

=
∑
n∈N

m (A n) (B.1)

276

From here on, we rely again on the notion of a set X’s standard σ-algebra Σ X, and

assume the domain of a measure m : Set X ⇀ [0, 1] is Σ X.

We will need to distinguish three kinds of measures.

Definition B.2 (probability, finite, and σ-finite measures). A measure m : Set X ⇀ [0,∞]

may be

• A probability measure if m X = 1.

• A finite measure if m X <∞.

• A σ-finite measure if there is a collection A : N⇒ Σ X such that m (A n) <∞ for

all n ∈ N, and
⋃

n∈N A n = X.

Trivially, probability measures are also finite measures, which in turn are also σ-finite.

A ubiquitous example of a σ-finite measure is Lebesgue measure, which maps sets of

Rn (for n ≥ 1) to their lengths, areas and volumes. Indeed, the Lebesgue measure of R is ∞,

but R is the union of countably many sets with finite measure; e.g. R =
⋃

n∈N[−n, n].

Counting measure simply returns the cardinality of a set. If X is countable and

m : Set X ⇀ [0,∞] is counting measure, then m is σ-finite. If X is finite, m is finite.

Image measure defines measures over the outputs of functions in terms of measures over

their inputs.

Definition B.3 (image measure). Let m : Set X ⇀ [0,∞] be a measure and g : X ⇀ Y be

measurable. Then g’s image measure with respect to m is m′ : Set Y ⇀ [0,∞], defined by

m′ B = m (preimage g B).

Measures provide a way to differentiate between propositions that are always true, and

propositions that may be false, but are true for certain practical purposes. To determine the

latter, we need the concept of a null set: a set of measure zero. For example, with Lebesgue

measure, {4}, or any other singleton, is a null set. In general, so is any countable union of

null sets.

277

Definition B.4 (almost everywhere). A measurable predicate p? holds almost everywhere

with respect to measure m : Set X ⇀ [0,∞] when it holds on the complement of a null set:

ae? : (Set X ⇀ [0,∞])⇒ (X ⇀ Bool)⇒ Bool

ae? m p? := m (preimage p? {false}) = 0
(B.2)

If m is a probability measure, ae? m p? is equivalent to m (preimage p? {true}) = 1, or to

p? holding on a set of measure 1. If m is a finite measure, it is equivalent to p? holding on a

set of measure m X. If m is any other kind of measure, ae? m p? must be determined using null

sets. If we were to say p? holds almost everywhere when m (preimage p? {true}) = m X =∞,

we would have to say λx ∈ R. x > 0 holds almost everywhere with respect to Lebesgue

measure.

In this chapter, we are most interested in almost-everywhere equality of mappings.

Definition B.5 (almost-everywhere equality). Two total mappings are equal almost ev-

erywhere with respect to a measure m : Set X ⇀ [0,∞] when they are not equal only on a

null set, or ae-equal? m g1 g2 where

ae-equal? : (Set X ⇀ [0,∞])⇒ (X→ Y)⇒ (X→ Y)⇒ Bool

ae-equal? m g1 g2 := ae? m λa ∈ domain g1. g1 a = g2 a
(B.3)

From here on, we use the more common “g1 = g2 (m-a.e.)” instead of ae-equal? m g1 g2.

B.1.2 Integration

While measure-theoretic integration—called Lebesgue integration—is λZFC-definable, defin-

ing it will not illuminate the proofs further on. The main things to know are:

• Lebesgue integration is done with respect to any base measure for the integration

domain. In contrast, Riemann integration1 (as taught in differential calculus) is done

only with respect to length, area or volume in R, R2 and other finite products Rn.
1Pronounced “REEmahn,” and named after the German mathematician Bernhard Riemann.

278

• Lebesgue integration with respect to Lebesgue measure is strictly more general than

Riemann integration on Rn, as it can integrate more functions. Further, a Lebesgue

integral is equivalent to a corresponding Riemann integral when the latter exists.

• Lebesgue integration with respect to counting measure is summation.

We only functionalize Lebesgue integration: we assume it has been defined, and turn it

from special notation into a lambda. Using the notation for Lebesgue integration, we define

int : (X→ R)⇒ (Set X ⇀ [0,∞])⇒ (Set X ⇀ [−∞,∞])

int g m := λA ∈ domain m.
∫
A

g dm
(B.4)

Now int g m is an indefinite integral of g: another partial function, defined on the domain

of m, that returns the definite integral on a given set A. For example, if g x := x2 and

m : Set R ⇀ [0,∞] is Lebesgue measure, int g m measures areas under the curve y = x2.

We can compute areas under the curve y = x2 using Riemann integration:

int g m [0, 1) =
∫
[0,1)

g dm =
∫ 1

0
x2 dx = 13

3
− 03

3
= 1

3
(B.5)

Of course, int g m accepts any A ∈ domain m. Because domain m is a σ-algebra, this includes

countable unions, countable intersections, and complements of intervals.

For real-valued functions, Lebesgue integration gives another, sometimes more convenient

way to characterize almost-everywhere equality: two functions are equal almost everywhere if

and only if their indefinite integrals are equal.

Lemma B.6 (real function a.e. equality). If m : Set X ⇀ [0,∞] is a σ-finite measure and

g1, g2 : X→ R are measurable, then g1 = g2 (m-a.e) if and only if int g1 m = int g2 m.

The type of int might suggest its intended use; in particular, Set X ⇀ [−∞,∞] is

similar to Set X ⇀ [0,∞], which we use as the type of measures.2 We have functionalized

indefinite integration to emphasize that, in this chapter and much of measure-theoretic
2In fact, Set X ⇀ [−∞,∞] is the type we would use for signed measures if we needed them.

279

practice, integration’s primary purpose is not to compute concrete areas and volumes, but to

transform measures. Doing so is justified by the following imported theorem.

Lemma B.7 (indefinite integration yields measures). If g : X→ [0,∞) is measurable and

m : Set X ⇀ [0,∞] is a measure, then int g m is a measure.

For example, if g : R → [0,∞) is a probability density function and m is Lebesgue

measure on R, then int g m is a probability measure.

Lemma B.7 implies there is a function

int+ : (X→ [0,∞))⇒ (Set X ⇀ [0,∞])⇒ (Set X ⇀ [0,∞]) (B.6)

that agrees with int for all nonnegative, measurable functions g : X→ [0,∞). We thus begin

defining an algebra of measures and operations on them with int+.

We should expect integration to be positive linear, and it is. In the following, assume

that arithmetic is lifted to operate pointwise on mappings.

Lemma B.8. Let g1, g2 : X → [0,∞) be measurable and m : Set X ⇀ [0,∞] be a measure.

Then int (g1 + g2) m = int g1 m+ int g2 m.

Lemma B.9. Let g : X→ [0,∞) be measurable, α ≥ 0 and m : Set X ⇀ [0,∞] be a measure.

Then int (α · g) m = α · int g m.

Lastly, compositions within integrals can be moved into the base measure.

Lemma B.10 (image measure integration). Let m : Set X ⇀ [0,∞] be a measure, g1 : X→ Y

and g2 : Y → R be measurable, and m1 be g1’s image measure with respect to m. If g2 is

m1-integrable or nonnegative, then int (g2 ◦map g1) m (preimage g1 B) = int g2 m1 B for all

B ∈ Σ Y.

B.1.3 Differentiation

In differential calculus, indefinite integration has an inverse: differentiation. In measure

theory, indefinite Lebesgue integration also has an inverse, which is also called differentiation.

280

One significant difference is that, because indefinite Lebesgue integration returns measures,

differentiation operates on measures.

In differential calculus, differentiation is defined only for differentiable functions. In

measure theory, the analogous property is absolute continuity.

Definition B.11 (absolute continuity). Given measures m1,m2 : Set X ⇀ [0,∞], we say m1

is absolutely continuous with respect to m2 if m1 � m2, where

(�) : (Set X ⇀ [0,∞])⇒ (Set X ⇀ [0,∞])⇒ Bool

m1 � m2 := ∀A ∈ domain m2.m2 A = 0 =⇒ m1 A = 0
(B.7)

By Definition B.11, m1 � m2 means m1 has at least as many measure-zero sets as m2,

and is therefore, in a sense, smaller. If P and Q are probability measures, P� Q essentially

means P’s support is no larger than Q’s support.

As for integration, for differentiation, we functionalize special notation:

diff+ : (Set X ⇀ [0,∞])⇒ (Set X ⇀ [0,∞])⇒ (X→ [0,∞))

diff+ m1 m2 := dm1

dm2

(B.8)

This returns a Radon-Nikodým derivative. Such derivatives are named after the following

theorem, which gives circumstances under which diff+ m1 m2 exists, and states that int+ is

the left inverse of diff+ (with second arguments held constant).

Lemma B.12 (Radon-Nikodým). If m1,m2 : Set X ⇀ [0,∞] are σ-finite measures and

m1 � m2, then diff+ m1 m2 exists, is measurable, and m1 = int+ (diff+ m1 m2) m2.

The function diff+ m1 m2 : X→ [0,∞) is often called the density of m1 with respect to

m2, but we call them derivatives, reserving density for derivatives with respect to Lebesgue

measure. By Lemma B.6, any g : X ⇀ [0,∞) for which g = diff+ m1 m2 (m2-a.e.) meets the

Radon-Nikodým theorem’s conclusion m1 = int+ g m2. We therefore say that Radon-Nikodým

derivatives are unique up to equality m2-a.e.

281

By analogy to differential calculus, we should expect diff+ to be the left inverse of int+

(with second arguments held constant). It is, up to equality m2-a.e.

Lemma B.13. If g1 : X → [0,∞) is measurable and m2 : Set X ⇀ [0,∞] is a σ-finite

measure, then int+ g1 m2 � m2 and g1 = diff+ (int+ g1 m2) m2 (m2-a.e.).

The preceeding two theorems are analogous to the fundamental theorem of calculus.

We should expect differentiation to be positive linear, and it is.

Lemma B.14. Let m1,m2,m : Set X ⇀ [0,∞] be σ-finite measures with m1 � m and

m2 � m. Then m1 +m2 � m and diff+ (m1 +m2) m = diff+ m1 m+ diff+ m2 m (m-a.e.).

Lemma B.15. Let m1,m2 : Set X ⇀ [0,∞] be σ-finite measures with m1 � m2. For all

α ≥ 0 and β > 0, α ·m1 � β ·m2 and diff+ (α ·m1) (β ·m2) = α

β
· diff+ m1 m2 (m-a.e.).

As in differential calculus, there is a chain rule.

Lemma B.16 (chain rule). Let m1,m2,m3 : Set X ⇀ [0,∞] be σ-finite measures with

m1 � m2 and m2 � m3. Then m1 � m3 and diff+ m1 m2 · diff+ m2 m3 = diff+ m1 m3

(m3-a.e.).

We need two more differentiation rules, which have no direct analogues in differential

calculus. Importing them makes our algebra of measures complete enough to prove importance

sampling correct. The first is a rule for reciprocals.

Lemma B.17 (reciprocal rule). Let m1,m2 : Set X ⇀ [0,∞] be σ-finite measures with

m2 � m1 and m1 � m2. Then diff+ m1 m2 = 1 / diff+ m2 m1 (m1-a.e. and m2-a.e.).

The second provides a way to integrate out derivatives, or to use differentiation to change

the base measure in Lebesgue integration.

Lemma B.18 (change of measure). Let m1,m2 : Set X ⇀ [0,∞] be σ-finite measures with

m1 � m2, and g : X→ R be measurable. Then int g m1 = int (g · diff+ m1 m2) m2.

282

Suppose we have a joint and candidate probability densities p, q : Rn ⇀ [0,∞), and we

sample according to q and weight the samples by p / q. The weighted samples represent p if

expected values estimated using them are correct; i.e. for all measurable g : Rn → R,

int g P = int (g · p / q) Q (B.9)

where P := int+ p m and Q := int+ q m, and m is Lebesgue measure on Rn.

The density route to a proof is simple, and requires that q be nonzero everywhere. By

definition and Lemma B.13 (diff+ is a left inverse of int+), q = diff+ Q m (m-a.e.), so by

Lemma B.18 (change of measure) with m1 = Q,

int (g · p / q) Q = int (g · p / q · q) m

= int (g · p) m
(B.10)

which again by Lemmas B.13 and B.18 is int g P.

Taking the measure route demonstrates how to prove more general importance sampling

theorems. We again require q to be nonzero everywhere; then

p / q = p · 1 / q = diff+ P m · 1 / diff+ Q m (m-a.e.) Lemma B.13

= diff+ P m · diff+ m Q (m,Q-a.e.) Lemma B.17

= diff+ P Q (Q-a.e.) Lemma B.16

(B.11)

Because g · p / q = g · diff+ P Q (Q-a.e.),

int (g · p / q) Q = int (g · diff+ P Q) Q Lemma B.6

= int g P Lemma B.18
(B.12)

The more general method is this: instead of densities p and q, define measures P and Q,

derive diff+ P Q, and apply Lemma B.18.

The proof of correctness of partitioned importance sampling proceeds this way, but

requires more machinery to construct a measure-theoretic model of the sampling process.

283

B.1.4 Transition Kernels

In naïve probability theory, conditional density functions model probabilistic processes that

depend on the outcome of another. In measure-theoretic probability, this is accomplished

using transition kernels, which are not much more than functions that return measures.

Definition B.19 (transition kernel). A function k : X → Set Y ⇀ [0,∞] is a transition

kernel when both of the following hold.

• For all a ∈ X, k a is a measure.

• For all B ∈ Σ Y, λa ∈ X. k a B is measurable.

For any measure property, we say k has that property when it holds for all k a. Therefore,

k is a probability kernel, finite kernel, or σ-finite kernel when for all a ∈ X, k a is

respectively a probability measure, finite measure, or σ-finite measure.

Product models of dependent processes can be built by starting with a probability

measure and iteratively extending it using probability kernels.

Lemma B.20 (finite kernel products). Let m : Set X → [0,∞] be a finite measure and

k : X → Set Y ⇀ [0,∞] be a finite kernel. There exists a unique σ-finite measure m × k :

Set 〈X,Y〉⇀ [0,∞] that is determined by its output on rectangles; i.e. defined by extending

the following to a product measure: for all A ∈ Σ X and B ∈ Σ Y,

(m× k) (A× B) = int+ (λa ∈ X. k a B) m A (B.13)

If m is a probability measure and k a probability kernel, m× k is a probability measure.

For example, if k : R→ Set R ⇀ [0, 1] takes a mean µ and returns a normal probability

measure centered on µ with standard deviation 1, then the interpretation of

X ∼ Normal(0, 1)

Y ∼ Normal(X, 1)
(B.14)

as a measure-theoretic joint distribution is (k 0)× k.

284

For the proofs in the next section, we need a way to turn integrals with respect to m× k

measures into nested integrals.

Lemma B.21 (Fubini’s for transition kernels). Let m : Set X→ [0,∞] be a finite measure

and k : X → Set Y ⇀ [0,∞] be a finite kernel. If g : X × Y → R is measurable, and

nonnegative or (m× k)-integrable, then

int g (m× k) (X × Y)

= int (λa ∈ X. int (λb ∈ Y. g 〈a, b〉) (k a) Y) m X
(B.15)

B.2 Sampling Proofs

Recall the setup for partitioned importance sampling (Definition 9.25): we have

• An arbitrary probability space X,P.

• An at-most-countable index set N.

• A probability mass function p : N→ [0, 1] such that p n > 0 for all n ∈ N.

• A partition s : N→ Set X of X into |N| measurable parts.

• Candidate probability measures Q : N→ Set X ⇀ [0, 1], one for each partition.

Note that Q is a transition kernel. Recall subcond P A′ := λA ∈ domain P.P (A′ ∩ A).

Theorem B.22 (partitioned importance sampling correctness). Suppose subcond P (s n)�

Q n for all n ∈ N. Define PN : Set N→ [0, 1] by integrating p with respect to counting measure.

If g : X→ R is a P-integrable mapping, and

g′ : N× X→ R

g′ 〈n, a〉 := g a · 1
p n · diff

+ (subcond P (s n)) (Q n) a
(B.16)

then int g′ (PN × Q) (N× X) = int g P X.

Proof. Let w1 n := 1
p n and w2 n := diff+ (subcond P (s n)) (Q n). Starting from the left side,

int g′ (PN × Q) (N× X) (B.17)

= int (λ〈n, a〉 ∈ N× X. g a · w1 n · w2 n a) (PN × Q) (N× X) Def of g′

285

= int (λn ∈ N. int (λa ∈ X. g a · w1 n · w2 n a) (Q n) X) PN N Lemma B.21

= int (λn ∈ N. int (g · w1 n · w2 n) (Q n) X) PN N Lift (·)

= int (λn ∈ N.w1 n · int (g · w2 n) (Q n) X) PN N Lemma B.9

= int (λn ∈ N.w1 n · int g (subcond P (s n)) X) PN N Def w2, Lemma B.18

Because PN is defined with respect to counting measure, turn integration into summation:

=
∑
n∈N

p n · 1
p n · int g (subcond P (s n)) X Def of w1

=
∑
n∈N

int g (subcond P (s n)) X p n > 0

=
∑
n∈N

int g P (s n) Def of subcond

= int g P (
⋃

n∈N (s n)) σ-additivity

= int g P X Def of s

When m1 and m2 are measures on infinite spaces, it is not clear that diff+ m1 m2 exists or

how to compute it. It seems it should exist when m1 and m2 differ only on a finite projection

of their domains, and that it should be easy to compute when the distributions of those finite

projections can be defined by densities.

We will start with a theorem that says we may ignore k in computing diff+ (m1×k) (m2×k).

But first, to apply diff+, we need to have absolute continuity; i.e. m1 × k� m2 × k.

Theorem B.23. If m1,m2 : Set X ⇀ [0,∞] are finite measures such that m1 � m2, and

k : X→ Set Y ⇀ [0,∞] is a finite kernel, then m1 × k� m2 × k.

Proof. Let C ∈ Σ 〈X,Y〉 such that (m2 × k) C = 0, and 1C 〈a, b〉 := if (〈a, b〉 ∈ C) 1 0. Then

0 = (m2 × k) C (B.18)

= int+ 1C (m2 × k) (X × Y) Def of 1C

= int+ (λa ∈ X. int+ (λb ∈ B. 1C 〈a, b〉) (k a) Y) m2 X Lemma B.21

286

Because m1 � m2, int+ g m2 X = 0 implies int+ g m1 X = 0, so

int+ (λa ∈ X. int+ (λb ∈ B. 1C 〈a, b〉) (k a) Y) m1 X = 0 (B.19)

Apply Fubini’s theorem (Lemma B.21) again to get (m1 × k) C = 0.

Theorem B.24. Let m1,m2 : Set X ⇀ [0,∞] be finite measures such that m1 � m2,

and k : X → Set Y ⇀ [0,∞] be a finite kernel. Then diff+ (m1 × k) (m2 × k) =

(λ〈a, b〉 ∈ X × Y. diff+ m1 m2 a) (m2 × k-a.e.).

Proof. By Theorem B.23, m1 × k� m2 × k, so diff+ (m1 × k) (m2 × k) is well-defined.

Let A ∈ Σ X and B ∈ Σ Y. Integrating the left-hand side, by Lemma B.12,

int (diff+ (m1 × k) (m2 × k)) (m2 × k) (A× B) = (m1 × k) (A× B) (B.20)

Integrating the right-hand side,

int (λ〈a, b〉 ∈ X × Y. diff+ m1 m2 a) (m2 × k) (A× B) (B.21)

= int (λa ∈ X. int (λb ∈ Y. diff+ m1 m2 a) (k a) B) m2 A Lemma B.21

= int (diff+ m1 m2 · λa ∈ X. int (λb ∈ Y. 1) (k a) B) m2 A Lemma B.9, Lift (·)

= int (λa ∈ X. k a B) m1 A Lemma B.18

= (m1 × k) (A× B) Lemma B.20

Therefore, because m1 × k is uniquely defined by its output on all such A× B,

int (diff+ (m1 × k) (m2 × k)) (m2 × k)

= int (λ〈a, b〉 ∈ X × Y. diff+ m1 m2 a) (m2 × k)
(B.22)

Apply Lemma B.6 (real function a.e. equality).

It is not hard to extend the preceeding theorem to arbitrary sublists of finite lists, or

to arbitrary finite substructures of any algebraic data type, by induction. But we need a

287

version of it for arbitrary finite substructures of infinite binary trees, which we have defined

non-inductively as mappings Ω := J→ [0, 1] from tree indexes to reals.

One solution is to define an injective transformation g from any ω ∈ Ω to a pair 〈ωfin,ωinf〉,

where ωfin is a finite substructure of ω and ωinf is the rest of it, and apply Theorem B.24.

The proof is easier to do first in generality, without specifying the structure of ω, requiring

the substructure to be finite, or requiring the pairs to contain projections.

Theorem B.25. Let µ1,µ2 : Set Z ⇀ [0,∞] be σ-finite measures. If there exist finite

measures m1,m2 : Set X ⇀ [0,∞] such that m1 � m2, a finite kernel k : X→ Set Y ⇀ [0,∞],

and an injective, measurable function g : Z→ X × Y such that for all D ∈ Σ 〈X,Y〉,

(m1 × k) D = µ1 (preimage g D)

(m2 × k) D = µ2 (preimage g D)
(B.23)

then µ1 � µ2 and diff+ µ1 µ2 = λz ∈ Z. diff+ m1 m2 (fst (g z)) (µ2-a.e.).

Proof. By g’s injectivity, µ1 C = (m1 × k) (image g C) for all C ∈ Σ Z, and similarly for µ2.

Let C ∈ Σ Z such that µ2 C = 0; then (m2 × k) (image g C) = 0. By Theorem B.23,

(m1 × k) (image g C) = 0, so µ1 C = 0. Therefore µ1 � µ2.

Let C ∈ Σ Z and D := image g C; then

int (diff+ µ1 µ2) µ2 C (B.24)

= µ1 C Lemma B.12

= (m1 × k) D Injectivity of g

= int (diff+ (m1 × k) (m2 × k)) (m2 × k) D Lemma B.12

= int (λ〈a, b〉 ∈ X × Y. diff+ m1 m2 a) (m2 × k) D Theorem B.24

= int ((λ〈a, b〉 ∈ X × Y. diff+ m1 m2 a) ◦map g) µ2 C Lemma B.10

= int (λz ∈ Z. diff+ m1 m2 (fst (g z))) µ2 C Def of ◦map

Apply Lemma B.6 (real function a.e. equality).

288

Thus, two measures µ1 and µ2 on infinite structures that can be decomposed into

products m1 × k and m2 × k such that diff+ m1 m2 exists—using any measurable, injective

transformation—have a Radon-Nikodým derivative that can be defined in terms of diff+ m1 m2.

Application to infinite binary trees mostly requires defining the transformation.

Theorem B.26. Let J′ ⊆ J be finite, and define X := J′ → [0, 1] and Y := (J\J′) → [0, 1].

Let P′,Q′ : Set X ⇀ [0, 1] be finite measures such that P′ � Q′, and let k : X→ Set Y ⇀ [0, 1]

be a finite kernel. Define g : Ω → X × Y by g ω := 〈restrict ω J′, restrict ω (J\J′)〉. If

P,Q : Set Ω ⇀ [0, 1] are defined so that for all Ω′ ∈ Σ Ω,

P Ω′ = (P′ × k) (image g Ω′)

Q Ω′ = (Q′ × k) (image g Ω′)
(B.25)

then P� Q and diff+ P Q = λω ∈ Ω. diff+ P′ Q′ (restrict ω J′) (Q-a.e.).

Proof. The inverse of g is g−1 : X × Y → Ω, defined by

g−1 〈ωfin,ωinf〉 = λ j ∈ J. if (j ∈ J′) (ωfin j) (ωinf j) (B.26)

Thus (P′ × k) D = P (preimage g D) for all D ∈ Σ 〈X,Y〉; similarly for (Q′ × k) D. Apply

Theorem B.25.

In particular, if additionally P′ and Q′ can be defined by densities p : (J′ → [0, 1])→ [0,∞)

and q : (J′ → [0, 1])→ [0,∞), then

diff+ P Q ω = p (restrict ω J′)
q (restrict ω J′) (Q-a.e.) (B.27)

Theorem 9.46 uses this fact to prove correct the algorithms Dr. Bayes uses to sample points

inside a sampled part.

289

References

[1] Haskell 98 language and libraries, the revised report, December 2002. URL http:
//www.haskell.org/onlinereport/.

[2] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

[3] Stephen Abbott. Understanding Analysis. Springer, 2001.

[4] Peter Aczel. An introduction to inductive definitions. Studies in Logic and the Founda-
tions of Mathematics, 90:739–782, 1977.

[5] G. Amato and F. Scozzari. The abstract domain of parallelotopes. Electronic Notes in
Theoretical Computer Science, 287:17–28, November 2012.

[6] Robert J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics,
5:614–630, 1961.

[7] Bruno Barras. Sets in Coq, Coq in sets. Journal of Formalized Reasoning, 3(1), 2010.

[8] C. Berline and K. Grue. A κ-denotational semantics for Map Theory in ZFC+SI.
Theoretical Computer Science, 179(1–2):137–202, 1997.

[9] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004. URL http://www.labri.fr/publications/l3a/2004/BC04.

[10] Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio Russo. Deriving
probability density functions from probabilistic functional programs. In Tools and
Algorithms for the Construction and Analysis of Systems, 2013.

[11] Keith A Bonawitz. Composable Probabilistic Inference with Blaise. PhD thesis, Mas-
sachusetts Institute of Technology, 2008.

[12] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and
Jurgen Van Gael. Measure transformer semantics for Bayesian machine learning. In
European Symposium on Programming, pages 77–96, 2011.

290

http://www.haskell.org/onlinereport/
http://www.haskell.org/onlinereport/
http://www.labri.fr/publications/l3a/2004/BC04

[13] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates.
The Annals of Mathematical Statistics, 29(2):351–634, 1958.

[14] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. In Principles of Programming Languages, pages 1–13, 2005.

[15] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity analysis of
programs. In Principles of Programming Languages, pages 57–70, 2010.

[16] Jian Cheng and Marek J. Druzdzel. AIS-BN: An adaptive importance sampling algorithm
for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence
Research, 13:155–188, 2000.

[17] John Clements. Portable and high-level access to the stack with Continuation Marks.
PhD thesis, Northeastern University, 2006.

[18] Ryan Culpepper. Refining Syntactic Sugar: Tools for Supporting Macro Development.
PhD thesis, Northeastern University, 2010.

[19] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Principles and
Practice of Declarative Programming, pages 162–174, 2001.

[20] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS transformations.
Journal of Functional Programming, 17(6):793–812, November 2007.

[21] M.H. DeGroot and M.J. Schervish. Probability and Statistics. Addison Wesley Publishing
Company, Inc., 2012. ISBN 9780321500465.

[22] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, August 1975.

[23] Conal Elliott. Beautiful differentiation. In International Conference on Functional
Programming (ICFP), 2009.

[24] Matthias Felleisen. On the expressive power of programming languages. In Science of
Computer Programming, pages 134–151, 1990.

[25] Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming
with units and mixins. In ACM SIGPLAN International Conference on Functional
Programming, 1998.

[26] R. C. Flagg and J. Myhill. A type-free system extending ZFC. Annals of Pure and
Applied Logic, 43:79–97, 1989.

291

[27] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT
Inc., 2010. http://racket-lang.org/tr1/.

[28] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmer-
mann. MPFR: A multiple-precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software, 33(2):13:1–13:15, June 2007.

[29] Kimball R. Germane. A CPS-like transformation of continuation marks. Master’s thesis,
Brigham Young University, 2012.

[30] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem. PhD thesis, Université de Liège, 1995.

[31] Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua Tenen-
baum. Church: a language for generative models. In Uncertainty in Artificial Intelligence,
2008.

[32] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic inference. In
Principles of Programming Languages, pages 277–289, 2007.

[33] Matthew A. Hammer, Yit Phang Koo, Michael Hicks, and Jeffrey S. Foster. Adapton:
Composable, demand-driven incremental computation. In Programming Language Design
and Implementation, 2014. To Appear.

[34] Michael Hanus. Multi-paradigm declarative languages. In Logic Programming, pages
45–75. 2007.

[35] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to
implementation. Journal of the ACM, 48(5):1038–1068, September 2001.

[36] Martin Hofmann, Benjamin C. Pierce, , and Daniel Wagner. Edit lenses. In Principles
of Programming Languages, 2012.

[37] K. Hrbacek and T.J. Jech. Introduction to set theory. Pure and Applied Mathematics.
M. Dekker, 1999.

[38] John Hughes. Generalizing monads to arrows. In Science of Computer Programming,
volume 37, pages 67–111, 2000.

[39] Joe Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University of
Cambridge, 2002.

292

http://racket-lang.org/tr1/

[40] Claire Jones. Probabilistic Non-Determinism. PhD thesis, Univ. of Edinburgh, 1990.

[41] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer jan De Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175:93–125, 1997.

[42] Oleg Kiselyov and Chung-chieh Shan. Monolingual probabilistic programming using
generalized coroutines. In Uncertainty in Artificial Intelligence, 2008.

[43] Achim Klenke. Probability Theory: A Comprehensive Course. Springer, 2006. ISBN
978-1-84800-047-6.

[44] Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian inference for
stochastic programs. In 14th National Conference on Artificial Intelligence, August 1997.

[45] Dexter Kozen. Semantics of probabilistic programs. In Foundations of Computer Science,
1979.

[46] Daniel Leivant. Higher order logic. In In Handbook of Logic in Artificial Intelligence
and Logic Programming, pages 229–321. Clarendon Press, 1994.

[47] Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electronic Notes in Theoretical Computer Science,
2008.

[48] Sam Lindley, Philip Wadler, and Jeremy Yallop. The arrow calculus. Journal of
Functional Programming, 20:51–69, 2010.

[49] David J. Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS – a
Bayesian modelling framework. Statistics and Computing, 10(4), 2000.

[50] Silvano Maffeis. Cache management algorithms for flexible filesystems. Performance
Evaluation Review, 21:16–25, December 1993.

[51] Robert Mateescu and Rina Dechter. Mixed deterministic and probabilistic networks.
Annals of Mathematics and Artificial Intelligence, 2008.

[52] The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. URL http://coq.inria.fr. Version 8.0.

[53] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1), 2008.

293

http://coq.inria.fr

[54] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI
Design. Springer, 1998. ISBN 978-3-642-58940-9.

[55] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown objects. In International Joint
Conference on Artificial Intelligence, 2005.

[56] James R. Munkres. Topology. Prentice Hall, second edition, 2000.

[57] Paul J. Nahin. Duelling Idiots and Other Probability Puzzlers. Princeton University
Press, 2000.

[58] Russell O’Connor. Certified exact transcendental real number computation in Coq. In
TPHOLs’08, pages 246–261, 2008.

[59] Toby Ord. The many forms of hypercomputation. Applied Mathematics and Computation,
178:143–153, 2006.

[60] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based
upon sampling functions. Transactions on Programming Languages and Systems, 31(1),
2008.

[61] Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
Journal of Automated Reasoning, 11:353–389, 1993.

[62] Lawrence C. Paulson. Set theory for verification: II. Induction and recursion. Journal
of Automated Reasoning, 15:167–215, 1995.

[63] Avi Pfeffer. The design and implementation of IBAL: A general-purpose probabilistic
language. In Statistical Relational Learning. MIT Press, 2007.

[64] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. ISBN
0-262-16209-1.

[65] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In Principles of Programming Languages, 2002.

[66] Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., New York, NY,
USA, 1987. ISBN 0070542341.

[67] S M Samuels. The Radon-Nikodym theorem as a theorem in probability. The American
Mathematical Monthly, 85(3):155–165, March 1978.

294

[68] D. Shannon, S. Hajra, A. Lee, Daiqian Zhan, and S Khurshid. Abstracting symbolic
execution with string analysis. In Testing: Academic and Industrial Conference Practice
and Research Techniques, pages 13–22, September 2007.

[69] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18(3):305–363, October 1997.

[70] Dorai Staram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp and
Symbolic Computation, 3(1):67–99, May 1990.

[71] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
Scheme. In Principles of Programming Languages, pages 395–406, 2008.

[72] Neil Toronto and Jay McCarthy. From Bayesian notation to pure Racket, via measure-
theoretic probability in λZFC. In Impl. and Appl. of Functional Languages, 2010.

[73] Neil Toronto and Jay McCarthy. Computing in Cantor’s paradise with λZFC. In
Functional and Logic Programming Symposium, pages 290–306, 2012.

[74] Neil Toronto, Bryan S. Morse, Kevin Seppi, and Dan Ventura. Super-resolution via
recapture and Bayesian effect modeling. In Computer Vision and Pattern Recognition,
2009.

[75] Alan M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. In Proceedings of the London Mathematical Society, volume 42, pages 230–265,
1936.

[76] Athanassios Tzouvaras. Cardinality without enumeration. Studia Logica: An Interna-
tional Journal for Symbolic Logic, 80(1):121–141, June 2005.

[77] Gabriel Uzquiano. Models of second-order Zermelo set theory. The Bulletin of Symbolic
Logic, 5(3):289–302, 1999.

[78] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In ACM SIGGRAPH,
pages 65–76, 1997.

[79] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors,
Advanced Functional Programming. 2001.

[80] Benjamin Werner. Sets in types, types in sets. In TACS’97, pages 530–546, 1997.

295

[81] David Wingate, Noah D. Goodman, Andreas Stuhlmüller, and Jeffrey M. Siskind.
Nonstandard interpretations of probabilistic programs for efficient inference. In Neural
Information Processing Systems, pages 1152–1160, 2011.

[82] David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. Lightweight implemen-
tations of probabilistic programming languages via transformational compilation. In
Artificial Intelligence and Statistics, 2011.

296

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1 Thesis
	1.1 Introduction
	1.2 Terms
	1.3 Proof and Supporting Evidence
	1.4 Reading Transition System

	2 Background
	2.1 Bayesian Practice
	2.1.1 Discrete Probability and Joint Distribution Models
	2.1.2 Probability Densities and Density Models

	2.2 Measure-Theoretic Probability
	2.2.1 Probability Measures
	2.2.2 Measure-Theoretic Models
	2.2.3 Segue: Approximating Measure Theory

	2.3 Functional Programming Theory
	2.3.1 -Calculus
	2.3.2 Evaluation Order
	2.3.3 Big-Step Operational Semantics
	2.3.4 Denotational Semantics
	2.3.5 Categorical Semantics
	2.3.6 Abstract Interpretation

	3 Related Work
	3.1 Implementations
	3.2 Semantics
	3.3 Somewhat Related Work

	4 Computing in Cantor's Paradise With ZFC
	4.1 Motivation
	4.2 Language Tower and Terminology
	4.3 Metalanguage: First-Order Set Theory
	4.3.1 The Gateway to Cantor's Paradise: Infinity
	4.3.2 Every Set Can Be Sequenced: Well-Ordering
	4.3.3 Infinity's Infinity: An Inaccessible Cardinal

	4.4 ZFC's Grammar
	4.4.1 An Infinite Set Rule For Finite BNF Grammars
	4.4.2 The Grammar of Infinite, Encoded Terms

	4.5 ZFC's Big-Step Reduction Semantics
	4.6 Syntactic Sugar and a Small Set Library
	4.7 Example: The Reals From the Rationals
	4.8 Example: Computable Real Limits
	4.8.1 The Limit Monad
	4.8.2 The Computable Limit Monad

	4.9 Related Work
	4.10 Conclusions

	5 Using ZFC
	5.1 Computations and Values
	5.2 Auxiliary Type Systems
	5.3 Using ZFC Values and Theorems
	5.4 Internal Equality and External Equivalence
	5.5 Additional Functions and Syntactic Forms
	5.6 Extensional Functions

	6 Countable Models and Implementation
	6.1 Introduction
	6.2 The Expression Language
	6.2.1 Background Theory: Random Variables
	6.2.2 Interpreting Random Variable Expressions As Computations
	6.2.3 Implementation in Racket

	6.3 The Query Language
	6.3.1 Background Theory: Probability Spaces
	6.3.2 Background Theory: Queries
	6.3.3 Interpreting Query Notation
	6.3.4 Approximating Queries
	6.3.5 Implementation in Racket

	6.4 Conditional Queries
	6.5 The Statement Language
	6.5.1 Interpreting Common Conditional Theories
	6.5.2 Interpreting Statements as Monadic Computations
	6.5.3 Approximating Models and Queries
	6.5.4 Implementation in Racket
	6.5.5 Examples

	6.6 Why Separate Statements and Queries?
	6.7 Conclusions

	7 Interlude: Uncountable Outcomes and Recursion
	8 Preimage Computation Theory: Running Programs Backwards
	8.1 Introduction
	8.1.1 Measure-Theoretic Semantics
	8.1.2 Arrow Solution Overview

	8.2 Arrows and First-Order Semantics
	8.2.1 Alternative Arrow Definitions and Laws
	8.2.2 First-Order Let-Calculus Semantics

	8.3 The Bottom Arrow
	8.4 Deriving the Mapping Arrow
	8.4.1 Composition
	8.4.2 Pairing
	8.4.3 Conditional
	8.4.4 Laziness
	8.4.5 Correctness

	8.5 Lazy Preimage Mappings
	8.5.1 Composition
	8.5.2 Pairing
	8.5.3 Disjoint Union

	8.6 Deriving the Preimage Arrow
	8.6.1 Composition
	8.6.2 Pairing
	8.6.3 Conditional
	8.6.4 Laziness
	8.6.5 Correctness

	8.7 Preimages Under Partial, Probabilistic Functions
	8.7.1 Motivation
	8.7.2 Threading and Indexing
	8.7.3 Applicative, Associative Store Transformer
	8.7.4 Partial, Probabilistic Programs
	8.7.5 Correctness
	8.7.6 Termination

	8.8 Output Probabilities and Measurability
	8.9 Approximating Semantics
	8.9.1 Implementable Lifts
	8.9.2 Approximate Preimage Mapping Operations
	8.9.3 Correctness
	8.9.4 Preimage Refinement Algorithm

	8.10 Implementations
	8.11 Conclusions

	9 Preimage Computation Implementation
	9.1 Introduction
	9.2 Abstract Sets and Concrete Values
	9.2.1 Infinite Binary Trees
	9.2.2 Disjoint Bottom and Top Unions
	9.2.3 Testing

	9.3 Preimages Under Real Functions
	9.3.1 Invertible Primitives
	9.3.2 Two-Argument Primitives
	9.3.3 Primitive Implementation
	9.3.4 Piecewise Monotone Primitives

	9.4 Sampling Methods
	9.4.1 Partitioned Sampling
	9.4.2 Partitioning Probabilistic Program Domains
	9.4.3 Approximate Partitions of Probabilistic Program Domains
	9.4.4 Random Source Sampling
	9.4.5 Self-Adjusting Probabilistic Search

	9.5 Conclusions

	10 Example Programs
	10.1 Guaranteed Termination
	10.2 Primitives
	10.3 Theories With Density Models
	10.3.1 Normal-Normal
	10.3.2 Normal-Normals
	10.3.3 Polynomial Fitting
	10.3.4 Model Selection

	10.4 Theories Without Density Models
	10.4.1 Observing Sums
	10.4.2 Bounded Measuring Devices
	10.4.3 Non-Axial Conditions
	10.4.4 Stochastic Ray Tracing
	10.4.5 Probabilistic Program Verification

	10.5 Current Shortcomings
	10.5.1 Engineering Required
	10.5.2 Research May Be Required
	10.5.3 Research Required

	10.6 Conclusions

	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Future Work
	11.2.1 Expressiveness
	11.2.2 Optimization
	11.2.3 Guarantees
	11.2.4 Branching Out

	A Measurability Theorems
	A.1 Basic Definitions
	A.2 Measurable Pure Computations
	A.2.1 Composition
	A.2.2 Pairing
	A.2.3 Conditional
	A.2.4 Laziness

	A.3 Measurable Probabilistic Computations
	A.4 Measurable Projections

	B Sampling Theorems
	B.1 Basic Definitions
	B.1.1 Measures
	B.1.2 Integration
	B.1.3 Differentiation
	B.1.4 Transition Kernels

	B.2 Sampling Proofs

	References

