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Main Results: Super-ResolutionMain Results: Super-ResolutionMain Results: Super-Resolution

• Competitor and BEI on 4x super-resolution:

Resolution Synthesis Bayesian Edge Inference

• Beat state-of-the-art on “objective” measures

• Was capable of other reconstruction tasks with few changes 3333333333333333
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Only Mostly SatisfyingOnly Mostly SatisfyingOnly Mostly Satisfying

Problem 1: Still not sure the program is right

Problem 2: smooth edges instead of discontinuous

“To approximate blurring with a spatially varying point-spread
function (PSF), we assign each facet a Gaussian PSF and
convolve each analytically before combining outputs.”

i.e. “We can’t model it correctly so here’s a hack.” 4444444444444444
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Solution Idea: Probabilistic LanguageSolution Idea: Probabilistic LanguageSolution Idea: Probabilistic Language

• Also somehow let me model correctly 5555555555555555
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Prior WorkPrior WorkPrior Work

Defined by an
implementation

Defined by a semantics       
(i.e. mathematically)

Designed for Bayesian practice Designed for functional
programmers or FP theorists

Mimic human translation May not be implemented

Can’t tell error from feature Behavior is well-defined

Limited: usually no recursion or
loops; conditions 

Limited: usually finite
distributions, no conditioning

Best of all worlds: define language using functional programming
theory, make it for Bayesians, and remove limitations 6666666666666666
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Thesis StatementThesis StatementThesis Statement

Functional programming theory and measure-theoretic
probability provide a solid foundation

for trustworthy, useful languages for constructive
probabilistic modeling and inference.

• Useful: let you think abstractly and handle details for you

• Trustworthy: defined mathematically

• Functional programming theory has the tools to define
programming languages mathematically

• Measure-theoretic probability is the most complete account of
probability; should allow shedding common limitations 7777777777777777
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• Example process: Normal-Normal
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• Density model :
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Simple Example ProcessSimple Example ProcessSimple Example Process

• Example process: Normal-Normal

• Intuition: Sample , then sample  using 

• Compute query  by integrating:
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So What Can’t Densities Model?So What Can’t Densities Model?So What Can’t Densities Model?

• Tons of useful things that are easy to write down

Distributions given non-axial, zero-probability conditions

Discontinuous change of variable (e.g. a thermometer)

Distributions of variable-dimension random variables

Nontrivial distributions on infinite products

• Tricks to get around limitations aren’t general enough 10101010101010101010101010101010
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Measure-Theoretic QueriesMeasure-Theoretic QueriesMeasure-Theoretic Queries

• Specific query:

• Generalized:

• Conditional query: if   then

Can we avoid densities when ?
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Contribution: Don’t Integrate, Compute Backwards (1)Contribution: Don’t Integrate, Compute Backwards (1)Contribution: Don’t Integrate, Compute Backwards (1)

• Integration is hard!

• But random variables and  are an abstraction boundary
hiding  and , so we can choose convenient ones

A uniform random source model:

    where  is the Normal CDF

• Stretches instead of integrates 15151515151515151515151515151515
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Contribution: Don’t Integrate, Compute Backwards (2)Contribution: Don’t Integrate, Compute Backwards (2)Contribution: Don’t Integrate, Compute Backwards (2)

• Generalized query:

i.e. output distributions are defined by preimages

• For a uniform random source model,

Compute probabilities by computing preimage areas

Compute conditional probabilities as quotients of preimage
areas

• Is this really more feasible than integrating?

16161616161616161616161616161616
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Crazy Idea is Feasible If...Crazy Idea is Feasible If...Crazy Idea is Feasible If...

• Seems like we need:

Standard interpretation of programs as pure functions from a
random source

Efficient way to compute preimage sets

Efficient representation of arbitrary sets

Efficient way to compute areas of preimage sets

Proof of correctness w.r.t. standard interpretation

• Completely infeasible! But...
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Crazy Idea is Actually Feasible If...Crazy Idea is Actually Feasible If...Crazy Idea is Actually Feasible If...

• Standard interpretation of programs as pure functions from a
random source

• Efficient way to compute approximate preimage subsets

• Efficient representation of approximating sets

• Efficient way to sample uniformly in preimage sets

Efficient domain partition sampling

Efficient way to determine whether a domain sample is
actually in the preimage (just use standard interpretation)

• Proof of correctness w.r.t. standard interpretation

22222222222222222222222222222222
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Standard InterpretationStandard InterpretationStandard Interpretation

• Grammar:

• Semantic function 

• Math has no general recursion, so  (i.e. interpretation of
program ) is a λ-calculus term

• Easy implementation in any language with lambdas

23232323232323232323232323232323
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Compositional SemanticsCompositional SemanticsCompositional Semantics

• Compositional: every term’s meaning depends only on its
immediate subterms’ meanings

• Advantage: proofs about all programs by structural induction

• Example: meaning of 

• Nonexample:

• Can preimages be computed compositionally? 24242424242424242424242424242424
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• Preimage computation:
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• Pairing types:

Theorem (correctness under pairing). If
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Nonstandard Interpretation: Preimages Under PairingNonstandard Interpretation: Preimages Under PairingNonstandard Interpretation: Preimages Under Pairing

• Pairing types:

Theorem (correctness under pairing). If

 computes preimages under 

 computes preimages under 

then  computes preimages under .

Proof sketch. Preimages distribute over cartesian products.
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Nonstandard Interpretation: Preimages Under PairingNonstandard Interpretation: Preimages Under PairingNonstandard Interpretation: Preimages Under Pairing

• Pairing types:

Theorem (correctness under pairing). If

 computes preimages under 

 computes preimages under 

then  computes preimages under .

Proof sketch. Preimages distribute over cartesian products.

• Similar theorems for every kind of term 27272727272727272727272727272727



Nonstandard Interpretation: CorrectnessNonstandard Interpretation: CorrectnessNonstandard Interpretation: Correctness

Theorem. For all programs ,  computes preimages under
.

Proof. By structural induction on program terms.

28282828282828282828282828282828



Wait a MinuteWait a MinuteWait a Minute

• Q. Don’t the interpretations of  do uncountable things?
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A. Yes. Yes, they do.

• Q. Where do I get a computer that runs them?

A. Nowhere, but we’ll approximate them soon.

• Q. Why interpret programs as uncomputable functions, then?

A. So we know exactly what to approximate.
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Wait a MinuteWait a MinuteWait a Minute

• Q. Don’t the interpretations of  do uncountable things?

A. Yes. Yes, they do.

• Q. Where do I get a computer that runs them?

A. Nowhere, but we’ll approximate them soon.

• Q. Why interpret programs as uncomputable functions, then?

A. So we know exactly what to approximate.

• Q. Where did you get a λ-calculus that could operate on arbitrary,
possibly infinite sets, anyway?

A. Well...

29292929292929292929292929292929
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functional programming, but with infinite sets

30303030303030303030303030303030



Lambda-ZFCLambda-ZFCLambda-ZFC
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+

Infinite sets and operations

=

λZFC

• Contemporary math, but with lambdas and general recursion; or
functional programming, but with infinite sets

• Can express uncountably infinite operations, can’t solve its own
halting problem
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Lambda-ZFCLambda-ZFCLambda-ZFC

λ calculus

+

Infinite sets and operations

=

λZFC

• Contemporary math, but with lambdas and general recursion; or
functional programming, but with infinite sets

• Can express uncountably infinite operations, can’t solve its own
halting problem

• Can use contemporary mathematical theorems directly

30303030303030303030303030303030
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• Easy representation; easy intersection and join (union-like)
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• Easy representation; easy intersection and join (union-like)
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Rectangular ApproximationRectangular ApproximationRectangular Approximation

• A rectangle is

An interval or union of intervals

 for rectangles  and 

• Easy representation; easy intersection and join (union-like)
operation, empty test, other operations

• Recall:

• Define:

• Derive 31313131313131313131313131313131



In Theory...In Theory...In Theory...

Theorem (sound).  computes overapproximations of the
preimages computed by .

• Consequence: Sampling within preimages doesn’t leave anything
out
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preimages computed by .

• Consequence: Sampling within preimages doesn’t leave anything
out

Theorem (monotone).  is monotone.

• Consequence: Partitioning the domain never increases
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In Theory...In Theory...In Theory...

Theorem (sound).  computes overapproximations of the
preimages computed by .

• Consequence: Sampling within preimages doesn’t leave anything
out

Theorem (monotone).  is monotone.

• Consequence: Partitioning the domain never increases
approximate preimages

Theorem (decreasing).  never returns preimages larger than
the given subdomain.

• Consequence: Refining preimage partitions never explodes
32323232323232323232323232323232
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Theorems prove this always works:
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Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:
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Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:

First, refine using preimage computation:
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Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:

Second, randomly choose from arbitrarily fine partition:

34343434343434343434343434343434



Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:

Third, refine again:

34343434343434343434343434343434



Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:

Fourth, sample uniformly:
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Importance SamplingImportance SamplingImportance Sampling

• Alternative to arbitrarily low-rate rejection sampling:

Do process “in the limit”; i.e. choose :

34343434343434343434343434343434



What About Recursion?What About Recursion?What About Recursion?

• General recursion, programs that halt with probability 1; e.g.

(define/drbayes (geometric p)
  (if (bernoulli p)

0
(+ 1 (geometric p))))
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• General recursion, programs that halt with probability 1; e.g.

(define/drbayes (geometric p)
  (if (bernoulli p)

0
(+ 1 (geometric p))))

• Consider programs as being fully inlined (thus infinite):

(if (bernoulli p)
0
(+ 1 (if (bernoulli p)

0
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0
(+ 1 ...))))))
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What About Recursion?What About Recursion?What About Recursion?

• General recursion, programs that halt with probability 1; e.g.

(define/drbayes (geometric p)
  (if (bernoulli p)

0
(+ 1 (geometric p))))

• Consider programs as being fully inlined (thus infinite):

(if (bernoulli p)
0
(+ 1 (if (bernoulli p)

0
(+ 1 (if (bernoulli p)

0
(+ 1 ...))))))

• Random domain needs to be big enough and the right shape
35353535353535353535353535353535
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• Values  are infinite binary trees:

36363636363636363636363636363636



Program Domain ValuesProgram Domain ValuesProgram Domain Values

• Values  are infinite binary trees:

• Every expression in a program is assigned a node

36363636363636363636363636363636



Program Domain ValuesProgram Domain ValuesProgram Domain Values
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• Every expression in a program is assigned a node
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Program Domain ValuesProgram Domain ValuesProgram Domain Values

• Values  are infinite binary trees:

• Every expression in a program is assigned a node

• Implemented using lazy trees of random values

• No probability density for domain, but there is a measure 36363636363636363636363636363636



Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

• Normal-Normal process:
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Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

• Normal-Normal process:

• Objective: Find the distribution of  

• Implementation:

(define/drbayes e
  (let* ([x  (normal 0 1)]

[y  (normal x 1)])
  (list x y (sqrt (+ (sqr x) (sqr y))))))
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Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

• Normal-Normal process:

• Objective: Find the distribution of  

• Implementation:

(define/drbayes e
  (let* ([x  (normal 0 1)]

[y  (normal x 1)])
  (list x y (sqrt (+ (sqr x) (sqr y))))))

• Goal: Sample in the preimage of

(set-list reals reals (interval (- 1 ε) (+ 1 ε)))
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Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

For ε = 0.01:

Preimage rectangles
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For ε = 0.01:

Preimage samples
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Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

For ε = 0.01:

Preimage samples Output samples
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Demo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular ConditionDemo: Normal-Normal With Circular Condition

For ε = 0.01:

Preimage samples Output samples

• Works fine with much smaller ε
38383838383838383838383838383838



Demo: ThermometerDemo: ThermometerDemo: Thermometer

• Normal-Normal thermometer process:
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• Normal-Normal thermometer process:

• Objective: Find the distribution of  

39393939393939393939393939393939



Demo: ThermometerDemo: ThermometerDemo: Thermometer

• Normal-Normal thermometer process:

• Objective: Find the distribution of  

• Implementation:

(define/drbayes e
  (let* ([x  (normal 90 10)]

[y  (normal x 1)])
  (list x (if (> y 100) 100 y))))
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Demo: ThermometerDemo: ThermometerDemo: Thermometer

• Normal-Normal thermometer process:

• Objective: Find the distribution of  

• Implementation:

(define/drbayes e
  (let* ([x  (normal 90 10)]

[y  (normal x 1)])
  (list x (if (> y 100) 100 y))))

• Goal: Sample in the preimage of

(set-list reals (interval 100 100)) 39393939393939393939393939393939



Demo: ThermometerDemo: ThermometerDemo: Thermometer

Preimage rectangles

40404040404040404040404040404040



Demo: ThermometerDemo: ThermometerDemo: Thermometer

Preimage samples

40404040404040404040404040404040



Demo: ThermometerDemo: ThermometerDemo: Thermometer

Preimage samples Density of 

40404040404040404040404040404040



Demo: ThermometerDemo: ThermometerDemo: Thermometer

Preimage samples Density of 

Calculated from samples: mean 105.1, stddev 4.6
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Demo: Stochastic Ray TracingDemo: Stochastic Ray TracingDemo: Stochastic Ray Tracing

• Idea: Model light transmission and reflection, condition on paths
that pass through aperture
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Demo: Stochastic Ray TracingDemo: Stochastic Ray TracingDemo: Stochastic Ray Tracing

• Part of the implementation (totals ~50 lines):
(define/drbayes (ray-plane-intersect p0 v n d)
  (let ([denom  (- (vec-dot v n))])

  (if (positive? denom)
(let ([t  (/ (+ d (vec-dot p0 n)) denom)])
  (if (positive? t)

(collision t (vec+ p0 (vec-scale v t)) n)
#f))

#f)))
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Demo: Stochastic Ray TracingDemo: Stochastic Ray TracingDemo: Stochastic Ray Tracing

• Part of the implementation (totals ~50 lines):
(define/drbayes (ray-plane-intersect p0 v n d)
  (let ([denom  (- (vec-dot v n))])

  (if (positive? denom)
(let ([t  (/ (+ d (vec-dot p0 n)) denom)])
  (if (positive? t)

(collision t (vec+ p0 (vec-scale v t)) n)
#f))

#f)))

• Constrained light path outputs:

Paths Through Aperture Projected and Accumulated
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Other Inference TasksOther Inference TasksOther Inference Tasks

• Typical

Hierarchical models

Bayesian regression

Model selection
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Other Inference TasksOther Inference TasksOther Inference Tasks

• Typical

Hierarchical models

Bayesian regression

Model selection

• Atypical

Programs that halt with probability < 1, or never halt

Probabilistic program verification (sample in preimage of error
condition)
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Thesis StatementThesis StatementThesis Statement

Functional programming theory and measure-theoretic
probability provide a solid foundation

for trustworthy, useful languages for constructive
probabilistic modeling and inference.
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True.

44444444444444444444444444444444



Thesis StatementThesis StatementThesis Statement

Functional programming theory and measure-theoretic
probability provide a solid foundation

for trustworthy, useful languages for constructive
probabilistic modeling and inference.

True.

• Was it falsifiable?
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say  itself is measurable

Theorem (measurability). For all programs ,   is measurable,
regardless of errors or nontermination, if language primitives are
measurable.
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Theorem (measurability). For all programs ,   is measurable,
regardless of errors or nontermination, if language primitives are
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• Primitives include uncomputable operations like limits
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MeasurabilityMeasurabilityMeasurability

• Only measurable sets can have probabilities

• Computing preimages under  must preserve measurability—we
say  itself is measurable

Theorem (measurability). For all programs ,   is measurable,
regardless of errors or nontermination, if language primitives are
measurable.

• Primitives include uncomputable operations like limits

• Applies to all probabilistic programming languages
45454545454545454545454545454545
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What I DidWhat I DidWhat I Did

The core calculus for this:
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Future WorkFuture WorkFuture Work

• Expressiveness

Lambdas and macros

Exceptions, parameters (or continuations and marks)
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• Optimization

Direct implementation is  in depth; cut to 

Incremental computation

Adaptive sampling algorithms

Static analysis
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Future WorkFuture WorkFuture Work

• Expressiveness

Lambdas and macros

Exceptions, parameters (or continuations and marks)

• Optimization

Direct implementation is  in depth; cut to 

Incremental computation

Adaptive sampling algorithms

Static analysis

• Branching out: investigate preimage computation connection with
type systems and predicate transformer semantics 46464646464646464646464646464646


