
Design and Analysis of Algorithms

Ekesh Kumar∗

April 8, 2021

These are my course notes for CMSC 451: Design and Analysis of Algorithms, taught
by Professor Clyde Kruskal. Gaps in lecture material are filled in with CLRS and
Kleinberg & Tardos. Please send corrections to ekumar1@terpmail.umd.edu.

Contents

1 Tuesday, January 28, 2020 4
1.1 Introduction . 4
1.2 Stable Marriage Problem . 4

2 Thursday, January 30, 2020 6
2.1 Optimality and Correctness of Gale-Shapley 6

3 Tuesday, February 4, 2020 7
3.1 Graph Terminology . 7
3.2 Graph Representations . 7
3.3 Graph Traversal . 8

4 Thursday, February 6, 2020 10
4.1 Articulation Points . 10

5 Tuesday, February 11, 2020 13
5.1 Articulation Point Algorithm Implementation 13
5.2 Strongly Connected Components . 13
5.3 Classifying Edges in a DFS Tree . 15

6 Thursday, February 13, 2019 16
6.1 Kosaraju’s Algorithm . 16
6.2 Topological Sorting . 17
6.3 Bipartite Graphs . 20

7 Tuesday, February 18, 2020 22
7.1 The Union-Find Data Structure . 22

7.1.1 Motivating the Union-Find Data Structure 22

∗Email: ekumar1@terpmail.umd.edu

1

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

7.1.2 Implementation of the Union-Find Data Structure 24
7.1.3 Analysis of Union-Find Operations 26

7.2 The Minimum Spanning Tree Problem 27
7.2.1 Problem Statement . 27
7.2.2 Kruskal’s Algorithm . 27
7.2.3 Prim’s Algorithm . 29

8 Thursday, February 20, 2020 31
8.1 Interval Scheduling . 31

8.1.1 Extensions: Minimizing Lateness 33
8.2 Caching . 33
8.3 Farthest in Future Algorithm . 34

9 Tuesday, February 25, 2020 35
9.1 Prefix Codes . 35

9.1.1 Constructing a Huffman code 36
9.2 Matrix Multiplication . 38

10 Thursday, February 27, 2020 39
10.1 Strassen’s Algorithm . 39
10.2 Closest Pair of Points . 40

11 Tuesday, March 3, 2020 41
11.1 Closest Pair of Points . 41
11.2 Counting Inversions . 42

12 Thursday, March 5, 2020 45
12.1 Convolutions . 45
12.2 The Fast Fourier Transform . 46

12.2.1 Polynomial Evaluation . 47
12.2.2 Polynomial Interpolation . 48

13 Tuesday, April 7, 2020 50
13.1 Subset Sum Problem . 50

14 Tuesday, April 14, 2020 52
14.1 Matrix-Chain Multiplication . 52

14.1.1 Motivation . 52
14.1.2 Dynamic Programming Solution 52

15 Tuesday, April 21, 2020 54

16 Thursday, April 23, 2020 55
16.1 An Review of NP Completeness . 55

16.1.1 Preliminaries . 55
16.1.2 Decision vs. Optimization Problems 55
16.1.3 Reductions . 56
16.1.4 Cook-Levin Theorem . 57

2

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

16.2 3-SAT ≤NP Hamiltonian Cycle . 57

3

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§1 Tuesday, January 28, 2020

§1.1 Introduction

This is CMSC 451: Design and Analysis of Algorithms. We will cover graphs, greedy
algorithms, divide and conquer algorithms, dynamic programming, network flows,
NP-completeness, and approximation algorithms.

• Homeworks are due every other Friday or so; NP-homeworks are typically due
every other Wednesday.

• There is a 25% penalty on late homeworks, and there’s one get-out-of-jail free
card for each type of homework.

§1.2 Stable Marriage Problem

As an introduction to this course, we’ll discuss the stable marriage problem,
which is stated as follows:

Given a set of n men and n women, match each man with a woman in
such a way that the matching is stable.

What do we mean when we call a matching is “stable”? We call a matching unstable
if there exists some man M who prefers a woman W over the woman he is married
to, and W also prefers M over the man she is currently married to.

In order to better understand the problem, let’s look at the n = 2 case. Call the two
men M1 and M2, and call the two women W1 and W2.

• First suppose M1 prefers W1 over W2 and W1 prefers M1 over M2. Also,
suppose that M2 prefers W2 over W1 and W2 prefers M2, then

• If both W1 and W2 prefer M1 over M2, and both M1 and M2 prefer W1 over
W2, then it’s still easy to see what will happen: Mi will always match with Wi.

• Now let’s say M1 prefers W1 to W2, M2 prefers W2 to W1, W1 prefers M2 to M1,
and W2 prefers M1 to M2. In this case, the two men rank different women first,
and the two women rank different men first. However, the men’s preferences
“clash” with the women’s preferences. One solution to this problem is to match
M1 with W1 and M2 with W2. This is stable since both men get their top
preference even though the two women are unhappy.

The solution to the problem starts to get a lot more complicated when the people’s
preferences do not exhibit any pattern. So how do we solve this problem in the
general case? We can use the Gale-Shapley algorithm. Before discussing this
algorithm, however, we can make the following observations about this problem:

4

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

• Each of the n men and M woman are initially unmarried. If an unmarried
man M chooses the woman W who is ranked highest on their list, then we
cannot immediately conclude whether we can match M and w in our final
matching.This is clearly the case since if we later find out about some other
man M2 who prefers W over any other woman, W may choose M2 if she likes
him more than M . However, we cannot immediately rule out M being matched
to W either since a man like M2 may not ever come.

• Just because everyone isn’t happy doesn’t mean a matching isn’t stable. Some
people might be unhappy, but there might not be anything they can do about
it (if nobody wants to switch).

Moreover, we introduce the notion of a man proposing to a woman, which a woman
can either accept or reject. If she is already engaged and accepts a proposal, then
her existing engagement breaks off (the previous man becomes unengaged).

Now that we’ve introduced these basic ideas, we can now present the algorithm:
Input: A list of n men and n women to be matched.

Output: A valid stable matching.

stable matching {

set each man and each woman to "free"

while there exists a man m who still has a woman w to propose to {

let w be the highest ranked woman m hasn’t proposed to.

if w is free {

(m, w) become engaged

} else {

let m’ be the man w is currently engaged to.

if w prefers m’ to m {

(m’, w) remain engaged.

} else {

(m, w) become engaged and m’ loses his partner.

}

}

}

}

Proposition 1.1

The Gale-Shapley algorithm terminates in O(n2) time.

Proof. In the worst case, n men end up proposing to n women. The act of proposing
to another person is a constant-time operation. Thus, the O(n2) runtime is clear.

5

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§2 Thursday, January 30, 2020

§2.1 Optimality and Correctness of Gale-Shapley

Last time, we introduced the Gale-Shapley algorithm to find a stable matching.
Today, we’ll prove that the algorithm is correct (i.e. it never produces an unstable
matching), and it is optimal for men (i.e. the men always end up for their preferred
choice).

First, we’ll show that the algorithm is correct:

Proposition 2.1

The matching generated by the Gale-Shapley algorithm is never an unstable
matching.

Proof. Suppose, for the sake of contradiction, that m and w prefer each other over
their current partner in the matching generated by the Gale-Shapley algorithm. This
can happen either if m never proposed to w, or if m proposed to w and w rejected m.
In the former case, m must prefer his partner to w, which implies that m and w do
not form an unstable pair. In the latter case, w prefers her partner to m, which also
implies m and w don’t form an unstable pair. Thus, we arrive at a contradiction.

Next, we’ll prove that the algorithm is optimal for men. However, before presenting
the proof, observe that it is not too hard to see intuitively that the algorithm “favors”
the men. Since the men are doing all of the proposing and the women can only do
the deciding, it turns out that the men always ends up with their most preferred
choice (as long as the matching remains stable).

Proposition 2.2

The matching generated by the Gale-Shapley algorithm gives men their most
preferred woman possible without contradicting stability.

Proof. To see why this is true, let A be the matching generated by the men-proposing
algorithm, and suppose there exists some other matching B that is better for at least
one man, say m0. If m0 is matched in B to w1 which he prefers to his match in A,
then in A, m0 must have proposed to w1 and w1 must have rejected him. This can
only happen if w1 rejected him in favor of some other man — call him m2. This
means that in B, w1 is matched to m0 but she prefers m2 to m0. Since B is stable,
m2 must be matched to some woman that he prefers to w1; say w3. This means that
in A, m2 proposed to w3 before proposing to w1, and this means that w3 rejected
him. Since we can perform similar considerations, we end up tracing a “cycle of
rejections” due to the finiteness of the sets A and B.

6

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§3 Tuesday, February 4, 2020

Today, we’ll recap graph terminology and elementary graph algorithms.

§3.1 Graph Terminology

Definition 3.1. A graph G = (V ,E) is defined by a set of vertices V and a set of
edges E.

The number of vertices in the graph, |V |, is the order of the graph, and the number
of edges in the graph, |E|, is the size of the graph. Typically, we reserve the letter n
for the order of a graph, and we reserve m for the size of a graph.

Definition 3.2. We say a graph is directed if its edges can only be traversed in
one direction. Otherwise, we say the graph is undirected.

Definition 3.3. A graph is called simple if it’s an undirected graph without any
loops (edges that start and end at the same vertex).

Definition 3.4. A graph is connected if for every pair of vertices u, v, there exists
a path between u and v.

§3.2 Graph Representations

There are two primary ways in which we can represent graphs: adjacency matrices
and adjacency lists.

An adjacency matrix is an n× n matrix A in which A[u][v] is equal to 1 if the edge
(u, v) exists in the graph; otherwise, A[u][v] is equal to 0. Note that the adjacency
matrix is symmetric if and only if the graph is undirected.

On the other hand, an adjacency list is a list of |V | lists, one for each vertex. For each
vertex u ∈ V , the adjacency list Adj[u] contains all vertices v for which there exists
an edge (u, v) in E. In other words, Adj[u] contains all of the vertices adjacent to u
in G.
Each graph representation has its advantages and disadvantages in terms of runtime.
This is summarized by the table below.

Adjacency List Adjacency Matrix
Storage O(n+m) O(n2)
Add vertex O(1) O(n2)
Add edge O(1) O(1)
Remove
vertex

O(n+m) O(n2)

Remove
edge

O(m) O(1)

Figure 1: Adjacency Matrix vs Adjacency List

An explanation of these runtimes are provided below:

7

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

• An adjacency list requiresO(n+m) since there are n lists inside of the adjacency
list. Now for each vertex vi, there are deg(vi) vertices in the ith adjacency list.
Since

∑
i deg(vi) = O(m), we conclude that the adjacency list representation

of a graph requires O(n+m) space. On the other hand, the adjacency matrix
representation of a graph requires O(n2) space since we are storing an n× n
matrix.

• We can add a vertex in constant time in an adjacency list by simply inserting
a new list into the adjacency list. On the other hand, to insert a new vertex
in an adjacency matrix, we need to increase the dimensions of the adjacency
matrix from n×n to (n+ 1)× (n+ 1). This requires O(n2) time since we need
to copy over the old matrix to a new matrix.

• We can insert an edge (u, v) into an adjacency list in constant time by simply
appending v to the end of u’s adjacency list (and u to the end of v’s adjacency
list if the graph is undirected). Similarly, we can insert an edge in an adjacency
matrix in constant time by setting A[u][v] to 1 (and also seting A[v][u] to 1
if the graph is undirected).

• Removing a vertex requires O(n+m) time in an adjacency list since we need
to traverse the entire adjacency list and remove any incoming our outgoing
edges to the vertex being removed. Similarly, this operation takes O(n2) time
in an adjacency matrix since we need to traverse the entire matrix to remove
incoming and outgoing edges.

• Removing an edge (u, v) requires O(m) time in an adjacency matrix since we
only need to search the adjacency lists of u and v (in the worst case, these
vertices have all m edges in their adjacency list). On the other hand, this
operation takes constant time in an adjacency matrix since we’re just setting
A[u][v] to 0.

§3.3 Graph Traversal

Before discussing recapping the two primary types of graph traversal, we will intro-
duce some more terminology.

Definition 3.5. A connected component of a graph is a maximially connected
subgraph of G. Each vertex belongs to one connected component as does each edge.

There are two primary ways in which we can traverse graphs: using breadth-first
search or depth-first search. These two methods of graph traversal are very
similar, and they allow us to explore every vertex in a connected components of a
graph.

1. Breadth-first search starts at some source vertex v and all vertices with distance
k away from v before visiting vertices with distance k+1 from v. This algorithm
is typically implemented using a queue, and it can be used to find the shortest
path (measured by the number of edges) from the source vertex.

8

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

2. Depth-first search starts from a source vertex and keeps on going outward until
we cannot proceed any further. We must subsequently backtrack and begin
performing the depth-first search algorithm again. This algorithm is typically
implemented using a stack, whether it be the data structure or the function
call stack.

Both of these algorithms run in O(n2) time on an adjacency matrix and O(n+m)
time on an adjacency list.

Since breadth-first search and depth-first search are guaranteed to visit all of the
vertices in the same connected component as the starting vertex, we can easily write
an algorithm that counts the number of connected components in a graph.

Some C++ code is provided below.

/* visited[] is a global Boolean array. */

/* AdjList is a global vector of vectors. */

void dfs(int v) {

visited[v] = true;

for (int i = 0; i < AdjList[v].size(); i++) {

int u = AdjList[v][i];

if (!visited[u]) {

dfs(v);

}

}

}

int main(void) {

/* Assume AdjList and other variables have been declared. */

int numCC = 0;

for (int i = 0; i < num_vertices; i++) {

if (!visited[i]) {

numCC = numCC + 1;

dfs(i);

}

}

}

9

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§4 Thursday, February 6, 2020

Today, we’ll discuss algorithms to find articulation points and biconnected compo-
nents.

§4.1 Articulation Points

Definition 4.1. An articulation point or cut vertex is a vertex in a graph
G = (V ,E) whose removal (along with any incident edges) would disconnect G.

Definition 4.2. A graph is said to be biconnected if the graph not have any
articulation points.

For example, consider the following graph:

A

B

C

D

E

F

Figure 2: A Graph with an Articulation Point

In the diagram above, Vertex D is an articulation point. To see why, note that if we
were to remove Vertex D (and any incident edges to D) from the graph, then we would
end up with two connected components: the first component would contain the ver-
tices A,B,C, and F , whereas the second component would only contain the vertex E.

Why are articulation points important? One example in which searching for articula-
tion points is important is in the study of networks. In a network modeled by a graph,
an articulation point represents a vulnerability: it is a single point whose failure
would split the network into two or more components (preventing communication
between the nodes in different networks).

How do we find an articulation points? The brute force algorithm is as follows:

1. Run an O(V +E) depth-first search or breadth-first search to count the number
of connected components in the original graph G = (V ,E).

10

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

2. For each vertex v ∈ V , remove v from G, and remove any of v’s incident edges.
Run an O(V +E) depth-first search or breadth-first search again, and check if
the number of connected components increases. If so, then v is an articulation
point. Restore v and any of its incident edges.

This naive algorithm calls the depth-first search or breadth-first search algorithm
O(V) times. Hence, it runs in O(V × (V + E)) = O(V 2 + V E) time.

While this algorithm works, it is not as efficient as we can get. We will now describe a
linear-time algorithm that runs the depth-first search algorithm just once to identify
all articulation points and bridges. This algorithm is often accredited to Hopcraft
and Tarjan.

In this modified depth-first search, we will now maintain two numbers for each vertex
v: dfs_num(v) and dfs_low(v). The quantity dfs_num(v) represents a label that
we will assign to nodes in an increasing fashion. For instance, the vertex from which
we call depth-first search would have a dfs_num of 0. The subsequent vertex we visit
would be assigned a dfs_num of 1, and so on.

On the other hand, the quantity dfs_low(v), also known as the low-link value
of the vertex v, represents the smallest dfs_num reachable from that node while
performing a depth-first (including itself).

Here’s an example. Consider the following directed graph:

A B C D

Figure 3: Articulation Point Example

Suppose we perform a depth-first search starting at Vertex A.

• Vertex A will be assigned a dfs_num of 0 since this is the first vertex that
we’re visiting. Moreover, 0 is the smallest dfs_num that is reachable from A
(all other vertices have their dfs_num set to nil or INFINITY). Hence, we set
dfs_num(A) = 0 and dfs_low(A) = 0.

• Next, we visit vertex B. Vertex B is assigned a dfs_num of 1 since it’s the
second vertex we’re visiting. Moreover, Vertex B has a dfs_low value of 0 since
we can reach a vertex with a dfs_num value of 0 through the path B → C → A.
Note that it would be invalid to say that the path B → A causes dfs_low(B)
to equal 0 since we cannot go backwards in the depth-first search traversal.

• Applying similar reasoning, we find that vertex C ends up with a dfs_num

value of 2, and it also has a dfs_low value of 0 (we can reach vertex A).

11

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

• Finally, vertex B ends up with a dfs_num value of 3; however, no vertices with
a lower dfs_num value are reachable from D. Hence, the dfs_low value of
D is also equal to 3. Note that it is incorrect to say that D has a dfs_low

value of 0 through the path D → C → A since we cannot revisit vertices while
performing the depth-first search algorithm.

Why do we care about these dfs_num and dfs_low values? It becomes more clear
when we consider the depth-first search tree produced by calling the depth-first
search algorithm. The quantity dfs_low(v) represents the smallest dfs_num value
reachable from the current depth-first search spanning subtree rooted at the vertex
v. The value dfs_low(v) can only be made smaller if there’s a back edge (an edge
from a vertex v to an ancestor of v) in the depth-first search tree.

This leads us to make the following observation: If there’s a vertex u with neighbor
v satisfying dfs_low(v) >= dfs_num(u), then we can conclude that vertex u is an
articulation point. Note that this makes sense intuitively since it means that the
smallest numbered vertex that we can ever reach starting from vertex v is greater
than or equal to the number we assigned to u. Hence, removing u would disconnect
v from any vertex with smaller dfs_num than dfs_num(u).

Going back to the previous graph figure, we can note that the following:

3 = dfs_num(D) >= dfs_low(C) = 0

As stated previously, this implies that Vertex C is an articulation point. Note that
removing Vertex C would disconnect the vertices A and B from Vertex D.

Now, there’s one special case to this algorithm. The root of the depth-first search
spanning tree (the vertex that we choose as the source in the first depth-first search
call) is an articulation point only if it has more than one children. This one case is
not detected by the algorithm; however, it is easy to check in implementation.

12

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§5 Tuesday, February 11, 2020

§5.1 Articulation Point Algorithm Implementation

Last time, we introduced the algorithm to find articulation points. Recall that
if there’s a vertex u with neighbor v satisfying dfs_low(v) >= dfs_num(u), then
vertex u is an articulation point.

In terms of the depth-first search tree, the quantity dfs_low(v) is the lowest value
that you can reach by going down the depth-first search tree rooted at v and possibly
taking a back edge up (we can’t visit the immediate parent of v). The inequality
dfs_low(v) >= dfs_num(u) implies that we cannot visit any vertex with dfs_num

less than dfs_num(u) when we start a depth-first search from v (there aren’t any
back edges that go to a vertex visited before vertex u).

Furthermore, recall that the root of the depth-first search tree is an exception — this
vertex is an articulation point only if it has more than one child.

When actually implementing this algorithm, we need to be clever in order to
maintain a linear time complexity. A pseudocode implementation is provided at
http://www.cs.umd.edu/class/spring2020/cmsc451/biconnected.pdf.

§5.2 Strongly Connected Components

Recall that an undirected graph G = (V ,E) is called connected provided that for
any pair of vertices u, v ∈ V , there exits a path between u and v.

The corresponding analogue for connectivity in a directed graph is presented below:

Definition 5.1. We call a directed graph strongly connected if, for every pair of
vertices u, v ∈ V , there exists a directed path u p.

We’re often interested in checking whether or not a graph is strongly connected (e.g.
starting from anywhere in a directed graph, is it possible to reach everywhere else?).

Like connected components in an undirected graph, strongly connected components
in a directed graph form a partition of the set of vertices. This is formalized through
the following result:

Lemma 5.2 (Klekleinberg and Tardos, 3.17)

For any two nodes s and t in a directed graph, their strong components are
either identical or disjoint.

Proof. Consider any two nodes s and t that are mutually reachable. We claim that
the strong components containing s and t are identical. This is clearly true due to
the definition of a strongly connected component — for any node v, if s and v are

13

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

mutually reachable, then t and v are mutually reachable as well (we can always go
s t v). Similarly, if t and v are mutually reachable, then s and v must be
mutually reachable as well.

Conversely, suppose s and t are not mutually reachable. Then there cannot be a node
v in the strong component of both s and t. Suppose such a node v existed. Then s
and v would be mutually reachable, and v and t would be mutually reachable. But
this would imply that s and t are mutually reachable, which is a contradiction.

A brute force algorithm to check whether a grpah is strongly connected is presented
below:

1. For each vertex v ∈ V in our input graph G = (V ,E), perform a depth-first
search starting with vertex v.

2. If there exists some vertex u that we cannot from a vertex v, then we can
conclude that G is not strongly connected.

3. If we finish iterating over all vertices with no issues, we can conclude that our
graph is strongly connected.

Since we perform O(V) depth-first search calls in the algorithm above, the runtime
of this algorithm runs in O(V × (V +E)) = O(V 2 + V E) time on an Adjacency List.
However, this is not as efficient as we can get.

It turns out that we can solve the problem of determining whether a graph is strongly
connected in linear time using two depth-first search calls. Before presenting this
algorithm, we’ll need the following terminology:

Definition 5.3. Given a directed graph G = (V ,E), the transpose graph of G is
the directed graph GT obtained by reversing the orientation of each edge from (u, v)
to (v,u).

A summary of Kosaraju’s algorithm is presented below:

1. Pick an arbitrary vertex v ∈ V in our initial graph G = (V ,E).

2. Perform a depth-first search from v and verify that every other vertex in the
graph can be reached from v. If there exists some vertex u that cannot be
reached from v, then we can immediately conclude that G is not strongly
connected.

3. Compute GT , the transpose graph of GT . Perform a depth-first search on GT

with the same source vertex v. If we can reach every vertex from v in GT as
well, then we can conclude that G is strongly connected.

Why does this work? Because a graph and its transpose always have the same
connected components (for each directed u v path, we can just go in the reverse
direction).

14

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Now, this algorithm tells us if a graph is strongly connected; however, it doesn’t tell
us what the strongly connected components are (i.e. if a graph has many strongly
connected components, which component does an arbitrary vertex v belong in?). To
answer this question, we’ll first present a way to classify the edges in a depth-first
search tree.

We will see that this edge-classification system is very closely related to finding
strongly connected components in a graph.

§5.3 Classifying Edges in a DFS Tree

While performing a depth-first search traversal, we generate a depth-first search
spanning tree. In particular, this DFS tree’s root is the source vertex from which we
started the DFS traversal, and we add the edge (u, v) if we traverse the edge (u, v)
during the DFS procedure.

Within the depth-first search tree, we can classify each edge into exactly one of four
disjoint categories:

1. Tree edges are edges traversed by the depth-first search traversal (i.e. they
are neighbors in the original graph, and we go from one of the vertices to the
other). These are the only type of edges that are actually explored.

2. Back edges are edges that are part of a cycle in the original graph. In
particular, a back edge is an edge (u, v) that we discover when we have started
(but not finished) a DFS traversal from v and we’re exploring the neighbors of
vertex u.

3. Forward edges and cross edges are edges of the form (u, v) where we have
started (but not finished) the depth-first search traversal from u, and we find a
vertex v that has already been fully explored.

15

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§6 Thursday, February 13, 2019

Last time, we started discussing strongly connected components, and we presented an
edge-classification system. Today, we’ll show how we can use our edge-classification
system to identify what vertices lie in strongly connected components.

§6.1 Kosaraju’s Algorithm

Now, we’ll show how we can identify strongly connected components in linear time.
The algorithm that we will describe is Kosaraju’s algorithm.

The pseudocode corresponding to the algorithm is presented below:

procedure kosarajuSCC(graph G) {

for each node v in G:

color v gray.

let L be an empty list.

for each node v in G:

if v is gray:

run DFS starting at v, appending each node to list L when it

is we’ve finished processing that node.

let G’ be the transpose graph of G

for each node v in G’:

color v gray.

let SCC be a new array of length n.

let index = 0

for each node in v in L, in reverse order:

if v is gray:

run DFS on v in G’ and set scc[u] = index

for each node u visited during the traversal.

index = index + 1

return scc

}

How is this working?

1. Firstly, we look at the original graph G = (V ,E), and we perform a depth-first
search on the components of G. Once we’ve finished visiting each node v,
we append v to the end of a list L (we are placing the vertices into L in
reverse-topological order). The list L ends up being sorted in reverse-order of

16

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

finishing time. The entire purpose of this first depth-first search traversal is to
be able to number the vertices according to their finish time.

2. Next, we’ll construct the transpose graph GT , and we’ll iterate over L in
reverse-order. Recall that the strongly connected components in GT are exactly
the same as those in G. Also, we mark each

3. For each vertex v we visit in L, if we haven’t already call DFS on while iterating
over L, any set of vertices that we visit forms a strongly connected component.

Some more intuition is provided below.

Note that, when performing a depth-first search in GT in post-order from a node
v, the depth-first search first visits nodes that can reach v followed by v itself, and
finally followed by nodes that cannot reach v. On the other hand, when we perform a
depth-first search in pre-order on the original graph G from a node v, the depth-first
search first visits v, followed by any nodes reachable from v, and finally the nodes
that are not reachable from v.

§6.2 Topological Sorting

Next, we’ll begin discussing our next problem. First, we’ll present a couple of
definitions.

Definition 6.1. A directed acyclic graph, also known as a “DAG,” is (as its
name suggests), a directed graph that doesn’t have any cycles.

Definition 6.2. A topological sort of a directed acyclic graph G = (V ,E) is
a linear ordering of all its vertices such that if G contains an edge (u, v), then u
precedes v in the ordering.

Clearly, a graph with a cycle cannot be topologically sorted — we wouldn’t be able
to order the vertices that form the cycle.
It’s important to remember that, unlike number sorting algorithms, topological sorts
are not unique. Each graph G can have multiple valid topological sorts.

Topological sorts are really helpful when we’re considering a graph that represents
precedences among events or objects. Here are a few examples:

Example 6.3 (Figure 22.7, CLRS)

Professor Bumstead gets dressed in the morning. The professor must wear
certain garments before others (e.g. socks before shoes), whereas other pairs
of items can be put on in any order (e.g. socks and pants). We can represent
this situation with a directed acyclic graph G = (V ,E) in which a directed edge
(u, v) indicates that garment u must be donned before garment v. The professor
can topologically sort this graph in order to get a valid order for getting dressed.

Here’s another example.

17

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Example 6.4 (Pick-up Sticks)

The game of pick-up sticks involves two players. The game consists of dropping a
bundle of sticks. Subsequently, players take turns trying to remove sticks without
disturbing any of the others. In order to model this game, we can use a directed
graph G = (V ,E) in which each vertex represents a stick. We place a directed
edge (u, v) between sticks u and v if stick u is on top of stick v. By topologically
sorting the graph, we can find a valid way to pick up the sticks on top first.

Now, we’ve seen a couple of examples in which topological sorts can be useful, but
how do we perform a topological sort?

It turns out we can topologically sort a graph in linear time. We will present two
algorithms.

Firstly, we present Kahn’s algorithm, which relies on the following fact:

Proposition 6.5

Every directed acyclic graph has at least one vertex with in-degree 0.

Proof. Suppose not. For each vertex v, we can move backwards through an incoming
edge. But due to the finiteness of the graph G and absence of a cycle, this process
must eventually terminate. The vertex we terminate must have in-degree 0.

Now that we’ve established this fact, a summary of Kahn’s algorithm is presented
below:

1. Enqueue all vertices with in-degree 0 into a priority queue Q. At least one
such vertex must exist due to Proposition 6.5.

2. Let L be an empty list. This will store our vertices in topologically sorted
order.

3. While the Q isn’t empty, extract the next vertex u from Q. Remove the vertex
u from the original graph G along with any incident edges, and add u to L. If
this removal causes another vertex v to have in-degree 0, then enqueue v into
Q.

4. Once the while-loop terminates, L will contain every vertex in topologically
sorted order.

While we won’t prove correctness for this algorithm, it should be a little clear as to
why it works. Since we’re always choosing vertices with in-degree 0, we know that
there is no other vertex that should come before the vertex we’re choosing. Hence,
the vertices we pick are always “safe.” This is pretty similar to the selection sort
algorithm used to sort numbers in which we repeatedly pick the minimum element
in an array to place at the front of the array. This algorithm runs in O(V +E) time

18

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

on an adjacency list.

Here’s a second algorithm that correctly performs a topological sort. This is just a
slight modification to the DFS algorithm.

1. Let G = (V ,E) be our original graph. Mark each vertex v ∈ V as “unvisited.”

2. For each unvisited vertex, call DFS(v), and prepend v into an array A once
we’ve finished visiting all of its neighbors.

3. Once we’ve finished visiting every vertex in G, the array A will be in reverse-
topological order. We can reverse the array in linear time, and we’re done.

This algorithm runs in O(V +E) time as the runtime is dominated by our depth-first
search calls.

Once again, we won’t prove correctness of this algorithm, but it should be clear why
this algorithm works. Our call to depth-first search will end pushing vertices with
out-degree 0 onto the stack first (because they won’t have any more neighbors to
visit), which are always safe to place at the end of the topological ordering since no
vertex is “greater” than them. This is followed by other vertices in ascending order
of out-degree.

A C++ implementation of this algorithm is presented below:

vector<vector<int>> AdjList; /* Our graph. */

vector<int> toposort; /* Global array to store topological sort. */

bool visited[10000];

void dfs(int u) {

visited[u] = true;

for (int i = 0; i < AdjList[u].size(); i++) {

int v = AdjList[u][i];

if (!visited[v]) {

dfs(v);

}

}

toposort.push_back(u);

}

int main(void) {

memset(visited, false, sizeof(visited));

for (int i = 0; i < V; i++) {

if (!visited[i]) {

dfs(i);

}

}

reverse(toposort.begin(), toposort.end());

/* Topological sort is complete. */

}

19

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§6.3 Bipartite Graphs

Finally, we’ll discuss bipartite graphs.

Definition 6.6. A graph G = (V ,E) is called bipartite if we can partition its
vertex set V into two disjoint sets U and V such that each edge (u, v) ∈ E has one
endpoint in U and the other endpoint in V .

Here’s an equivalent definition that we sometimes like to use:

Definition 6.7. A graph G = (V ,E) is said to be bipartite if we can color each
vertex either black or white such that no two adjacent vertices have the same color.

In order to test whether a graph is bipartite, we can perform a graph search in which
we color vertices as we go along. Although we can use either breadth-first search
or depth-first search for this check, breadth-first search is often the more natural
approach. Pretty much, we start by coloring the source vertex with value 0, color
the direct neighbors of the source vertex with 1, the neighbors of the neighbors of
the source vertex with color 0, and so on. If we encounter any violations (i.e. two
adjacent vertices with the same color) as we go along, then we can conclude that the
given graph is not bipartite.

A C++ implementation is provided below:

vector<vector<int>> AdjList; /* Our graph. */

bool isBipartite(int src) {

queue<int> q;

q.push(src);

vector<int> color(V, INFINITY);

color[src] = 0;

bool isBipartite = true;

while (!q.empty() && isBipartite) {

int u = q.front(); q.pop();

for (int i = 0; i < AdjList[u].size(); i++) {

int v = AdjList[u][i];

if (color[v] == INFINITY) {

/* We haven’t colored v yet. */

color[v] = 1 - color[u];

q.push(v);

} else if (color[v] == color[u]) {

/* We’ve found a violation. */

isBipartite = false;

break;

}

}

}

return isBipartite;

}

20

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

The runtime of this algorithm is dominated is O(V + E) on an adjacency list since
we’re just performing a breadth-first search.

Another useful fact regarding bipartite graphs is the following:

Fact 6.8. A graph is bipartite if and only if it has no odd cycles (i.e. cycles of length
3, 5, 7, etc).

21

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§7 Tuesday, February 18, 2020

Last time, we finished graph algorithms. Today, we’ll begin greedy algorithms,
which are a class of algorithms that repeatedly make “locally optimal” decisions in
an attempt to find a globally optimal solution.

§7.1 The Union-Find Data Structure

§7.1.1 Motivating the Union-Find Data Structure

Before we introduce Kruskal’s algorithm, we’ll need to first introduce a data structure
known as the union-find or disjoint-set data structure. Why? Because this data
structure is used in the implementation of Kruskal’s algorithm, which is one of the
two minimum spanning tree algorithms we will be talking about.

The union-find data structure consists of a collection of disjoint sets (i.e. a set of
sets). Each disjoint set is uniquely determined by a set representative, which is
some member of the set. In most applications, it doesn’t actually matter which
member of the set is used as the representative; all we care is that, if we ask for the
representative of a set twice without making any modifications, we should get the
same answer both times.

The union-find data structure supports the following operations:

1. The MAKE-SET(x) operation creates a new set whose only member is x. Since x
is the only member of this newly created set, x must also be the representative
of this set. Moreover, since we require the sets to be disjoint, we require that x
not already be in some other set.

2. The UNION(x, y) operation unites the two sets that contain the elements x and
y. More precisely, if Sx and Sy are the sets containing x and y, then we remove

both of these sets from our collection of sets, and we form a new set S
def
= Sx∪Sy,

which is subsequently added to the collection of sets. What element becomes
the representative of the new set? Typically, if Sx was originally larger than
Sy, then we make the representative of Sx the representative of S. Otherwise,
we make the representative of Sy the representative of S.

3. The FIND-SET(x) method takes in an element x and returns the representative
of the set containing x. Note that this means that FIND-SET(x) might return
x itself (if x is the representative of its set).

There are several applications of the union-find data structure. One of the many
applications arises when we are trying to determine the connected components in an
undirected graph. In particular, we can answer queries of the form “Are vertices u
and v in the same connected component?” with a quick running time by using this
data structure.

Consider the following pseudocode:

22

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Input: A graph G.

Output: Nothing. This function is called as a preprocessing step

in order to use the function SAME-COMPONENT(u, v).

CONNECTED-COMPONENTS(G) {

for each vertex v ∈ G {

MAKE-SET(v)

}

for each edge (u, v) ∈ G {

if FIND-SET(u) != FIND-SET(v) {

UNION(u, v)

}

}

}

Input: Two vertices u and v. CONNECTED-COMPONENTS(G) must be

called prior to using this function.

Output: True if u and v are in the same connected component;

otherwise false.

SAME-COMPONENT(u, v) {

return (FIND-SET(u) == FIND-SET(v))

}

How does these functions work?

• We use a single union-find data structure that is initially empty. At first, we
create a new disjoint set for each vertex. Each disjoint set in our union-find
data structure will represent a connected component in our graph.

• Next, we traverse every edge in our graph G. For each edge (u, v), we merge
the two disjoint sets containing u and v (since they must be in the same
component).

• Finally, we can call the SAME-COMPONENT function with two vertices u and v
which simply compare the representatives of the sets u and v are in to determine
whether the two vertices are in the same component.

23

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§7.1.2 Implementation of the Union-Find Data Structure

In our connected components example, we use a union-find data structure, but we
never explain how the functions MAKE-SET, UNION, or FIND-SET are implemented. In
this section, we’ll discuss how to implement these three methods.

Union-find data structures are typically implemented as a disjoint-set forest in
which each member only points to its parent (the root of each tree is the representative
of the disjoint set, and it is its own parent). The following figure from CLRS illustrates
this idea:

Figure 4: A Disjoint Forest

The disjoint-set forest above represents the two sets {c,h, b, e} with representative c
and {f , d, g} with representative f . Note that the parent of any representative is itself.

How do we keep track of the parent of each vertex? This is easy — we can just
include an array called parent as a part of our data structure implementation. For
any vertex v, we can store the parent of v in parent[v].

Now, we will discuss two heuristics to improve the running-time of various union-find
operations. The first heuristic, known as the union by rank heuristic, is a heuristic
that is applied when performing the UNION operation. In particular, this heuristic
specifies to make the root of the tree with fewer nodes to point to the root of the tree
with more nodes. Why? Because following the union by rank heuristic minimizes
the overall depth of the resulting tree.

The following diagram illustrates the resulting tree that comes from performing the
UNION operation on two elements in the disjoint sets from the previous figure:

24

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Figure 5: Our Disjoint Forest after performing UNION

Note that f is the representative of the resulting tree since we make the tree with
fewer nodes point to the root of the tree with more nodes.

It would be computationally expensive to keep on recomputing the number of roots
in each tree whenever we perform a UNION operation. Thus, we can instead just
maintain an array rank which stores an upper bound on the height of each node.
During a UNION operation, we simply make the root with a smaller rank point to the
root with the larger rank.

The second heuristic, known as path compression is a heuristic that is used during
FIND-SET operations to make each node on the find path point directly to the root.
This technique is fairly easy to implement, and its purpose is to keep the depth of
the tree small.

A C++ implementation of the union-find data structure is presented below:

/* An implementation of the union-find data structure. */

class UnionFind {

private:

vector<int> parent;

vector<int> rank;

public:

/* A constructor to initialize a union-find data structure with

capacity N. */

UnionFind(int N) {

parent.assign(N, 0);

rank.assign(N, 0);

/* Each vertex is initially its own parent. */

for (int i = 0; i < N; i++) {

parent[i] = i;

}

25

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

}

/* findSet(u) returns the representative of the set that u belongs

to. */

int findSet(int u) {

if (parent[u] == u) {

/* u is the representative of its set. */

return u;

}

/* Path compression heuristic. */

return parent[u] = findSet(parent[u]);

}

/* inSameSet(u, v) returns true if u and v are in the same set; false

otherwise. */

bool inSameSet(int u, int v) {

/* We compare the set representatives. */

return findSet(u) == findSet(v);

}

/* Union the sets that u and v belong in. */

void unionSet(int u, int v) {

if (!inSameSet(u, v)) {

int rep1 = findSet(u);

int rep2 = findSet(v);

/* Union by rank heuristic. */

if (rank[rep1] > rank[rep2]) {

parent[rep2] = rep1;

} else {

parent[rep1] = rep2;

if (rank[rep1] == rank[rep2]) {

rank[rep2]++;

}

}

}

}

};

§7.1.3 Analysis of Union-Find Operations

In order to discuss the running time of each of the union-find operations, we will
need to use the inverse Ackermann function, denoted α(n). For our purposes,
all we need to know is that this is an extremely slowly growing function (for all
practical purposes, its value never exceeds 5).

While we won’t derive the bound, we will take it for granted that the UNION and
FIND-SET operations run in O(α(n)) time (approximately constant time). A full
derivation is provided in CLRS 21.4.

26

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§7.2 The Minimum Spanning Tree Problem

§7.2.1 Problem Statement

The minimum spanning tree problem is stated as follows:

“Given a graph G = (V1,E1), find a connected subgraph H = (V2,E2)
such that V1 = V2 and the quantity∑

(u,v)∈E2

weight(u, v)

is as minimal as possible.”

The following proposition shows that H will always be a tree:

Proposition 7.1

If H = (V2,E2) is a connected subgraph of G = (V1,E1) with the properties
described above, then H is a tree.

Proof. By definition, H must be connected. Thus, it suffices to show that H doesn’t
have any cycles. Suppose H contained a cycle C. Let e be an edge on C, and
consider the graph H \ {e}. This graph is still connected since removing an edge in
a cycle can’t disconnect a graph, but this graph is also “cheaper” than H; this is a
contradiction.

A simple brute force algorithm to find the minimum spanning tree would work by
generating each possible spanning tree and storing the generated tree if its cost is less
than our previously stored minimum. Unfortunately, this algorithm is not feasible
since graph has exponentially many different spanning trees. Thus, we are compelled
to look for more efficient solutions.

Tody, we will discuss Kruskal’s algorithm and Prim’s algorithm, both of which
are used to find the minimum spanning tree of a graph.

Both of these algorithms are classified as greedy algorithms — they repeatedly
make locally optimal choices in an attempt to find a globally optimal solution.

§7.2.2 Kruskal’s Algorithm

Let S be an initially empty set, and let G = (V ,E) be our graph. Kruskal’s algorithm
works by iteratively adding edges the least weight to S as long as (u, v) does not form
a cycle with any of the other edges in S. The algorithm terminates when adding any
edge in E \ S to S would result in a cycle.

How do we quickly check if adding an edge (u, v) to S will result in a cycle? This
can be done quite easily using the union-find data structure.

The pseudocode for Kruskal’s algorithm is below:

27

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Input: A graph G.

Output: A set of edges that form a minimum spanning tree of G.

KRUSKAL(G) {

let S be an empty set.

for each vertex v ∈ G {

MAKE-SET(v)

}

sort the edges in G.Edges into nondecreasing order by weight.

for each edge (u, v) ∈ G.Edges taken in sorted order {

if FIND-SET(u) != FIND-SET(v) {

(u, v) won’t form a cycle.

Add the edge (u, v) to S.

UNION(u, v)

}

}

return S

}

As mentioned earlier, there isn’t too much to this algorithm:

1. First, we sort the edges in non-decreasing order by weight so that we can
traverse the list of edges from lowest weight to highest weight.

2. For each weight we look at, we check whether we can add the weight without
adding a cycle. This is done by maintaining a union-find data structure.

3. Finally, we return the set of edges that form our minimum spanning tree.

How fast is Kruskal’s algorithm? Firstly, note that the first for-loop performs V
MAKE-SET operations. Subsequently, we sort the list of edges; doing so requires
O(E log(E)) time. Finally, the second for-loop performs O(E) FIND-SET and UNION

operations. Putting everything together, we have a runtime of O((V + E)α(V))
time. But since α(|V |) = O(log(V)) = O(log(E)) (where the second equality follows
due to the fact that |E| ≥ |V | − 1 in a connected graph), the total running time of
Kruskal’s algorithm as O(E log(E)).

28

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§7.2.3 Prim’s Algorithm

Prim’s algorithm works by starting with an empty set S and iteratively adding edges
to S until our minimum spanning tree is complete. We start by adding an arbitrary
vertex to S, and at each step we add a vertex that is connected to some other vertex
in S.

Some pseudocode illustrating how Prim’s algorithm works is shown below:

Input: A graph G and a source vertex v.

Output: A set S containing the edges that represent a minimum

spanning tree.

PRIM(G, v) {

let key[1...V] be an array.

let Q be an empty minimum priority queue

for each vertex u ∈ G {

key[u] = ∞
parent[u] = NIL

enqueue u into Q.

}

key[v] = 0

This is the main loop.

while Q isn’t empty {

let u = EXTRACT-MIN(Q)

for each vertex v in Adj[u] {

if v ∈ Q and weight(u, v) < key[v] {

key[v] = weight(u, v)

parent[v] = u

}

}

}

}

How does this algorithm work?

• We start building our minimum spanning tree from an arbitrary vertex v. This
vertex is passed in as a parameter to our function.

29

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

• Next, we process enqueue all of our vertices into a minimum priority queue Q
which allows us to extract elements with the minimum key value in logarithmic
time.

• While Q isn’t empty, we take the vertex with the smallest key value from Q;
denote this vertex by u. Note that, on the first iteration, the vertex we grab is
always v.

• For each neighbor v of u, we check whether the edge (u, v) is cheaper than the
stored key value of v. If so, we update the key value of v to the weight of edge
(u, v). We additionally store the vertex u from which we took v.

The purpose of the minimum priority queue is to iteratively identify the cheapest
edge that we can add to our minimum spanning tree. The key value of a vertex v
represents the “cheapest” amount that we can pay in order to add that vertex to
our spanning tree.

Prim’s algorithm greedily selects the pair (u, v) in front of the priority queue—which
has the minimum weight w—if the end point of this edge, namely v, has not been
taken before. When the while loop terminates, the minimum spanning tree consists
of the set of edges

A = {(v, parent[v]) | v ∈ V − {r} −Q}.

30

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§8 Thursday, February 20, 2020

Today, we’ll discuss two more algorithmic problems, both of which have greedy
optimal solutions.

§8.1 Interval Scheduling

The first problem we’ll discuss is known as the interval scheduling problem,
which is stated as follows:

Given a pair of parallel arrays start[1...N] and finish[1...N], call a
set of indices S compatible if, for any pair of indices i, j ∈ S, the inter-
vals (start[i], finish[i]) and (start[j], finish[j]) are disjoint.
Moreover, call a compatible set S optimal if its cardinality is maximal.
The goal is to find an optimal set.

Why do we care about this problem? For each index 1 ≤ k ≤ N , we can interpret
the quantity start[k] and finish[k] as the starting time and ending time of an
event. Under this interpretation, our task is to fit as many events as possible into
our calendar.

There are several algorithms that we can implement that following the greedy
heuristic:

1. One approach is to always select the next available event that always starts the
earliest (i.e. keep on picking argmink∈{1,2,...N} start[k]), and remove k from
our set afterwards. This method, however, is not optimal. A counterexample
can be generated by considering the case in which the event with the earliest
start time is very very long. By accepting this request, we’ll miss out on many
other events.

2. A second approach is to keep on picking argmink∈{1,2,...,N} finish[k] - start[k]

and remove the index we picked from our set. While this is better than the
other approach, this isn’t optimal either.

3. A third approach is to pick the next request that finishes first (that is, pick
k = argmink∈{1,2,...,N} finish[k]) over and over again. This algorithm seems
similar to our first idea. Surprisingly, however, this is the optimal solution.

Some pseudocode illustrating how this procedure works is presented below:

Input: A set S representing the

Output: An optimal solution A.
SCHEDULING(S) {

let A be the empty set.

31

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

while S isn’t empty {

let e be the event in S with the smallest finishing time.

add request e to set A.

remove any events that aren’t compatible with e from S.

}

return A

}

Next, we’ll prove that the set A returned by this algorithm is an optimal solution.

Proposition 8.1

The set A returned by our algorithm is a compatible set of events.

Proof. On each iteration, we add an event, and we remove any events that aren’t
compatible with the event we just added. Since the compatibility relationship
between events is symmetric, we know that we’ll never have a pair of incompatible
events in A.

Now we need to show that the set A produced by this algorithm has maximal cardinal-
ity. In order to do so, let O be an optimal set of intervals. We want to show |O| = |A|.

In other words, if A = {i1, i2, . . . , ik} and O = {j1, j2, . . . , jm}, then our goal is to
show k = m.

In order to show that this is true, we need to make use of the following lemma:

Lemma 8.2

For any indices r ≤ k, we have finish[ir] ≤ finish[jr].

Proof. For brevity, this proof writes f(k) and s(k) represent finish[k] and start[k],
respectively.

When r = 1, the statement holds since our algorithm always picks the index i1
corresponding to the event with the minimum finish time. Now suppose f(ir−1) ≤
f(jr−1). We want to show f(ir) ≤ f(jr). But this is clearly true since f(jr−1) ≤ s(jr)
implies f(ir−1) ≤ s(jr). This means that jr is in the set S of compatible events at
the time when the greedy algorithm chooses ir. Since the greedy algorithm always
picks the event with the minimum finish time, we must have f(ir) ≤ f(jr).

Lemma 8.2 means precisely that our greedy algorithm’s intervals are finished at least
as soon as the corresponding intervals in O.

We can now prove our original claim:

32

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Proposition 8.3

The set A returned by our greedy algorithm has maximal cardinality.

Proof. If A doesn’t have maximal cardinality, then an optimal set O must have more
requests. In other words, we require m > k. Applying our previous lemma with
r = k, we find f(ik) ≤ f(j − k). But since m > k, there exists some request jk+1 in
O. Since this request starts after the event corresponding to jk ends, deleting all of
the requests that aren’t compatible with i1, . . . , ik will still contain jk+1. However,
this means that the greedy algorithm stops with a request present in set, when it’s
actually only supposed to stop when S is empty.

§8.1.1 Extensions: Minimizing Lateness

Once again, consider the situation in which we have a set of n events that we want
to schedule in an interval of time. But now, instead of a start time and a finish time,
each event has a deadline. We say an event k is late if our finish time is greater
than its deadline. Moreover, we define the lateness of a late event as the difference
between the time at which it was finished and the time of the deadline. The objective
of this problem is to minimize the number of late events.

The greedy algorithm in this problem is to sort the jobs in increasing order of their
deadlines, and schedule them in this order (i.e. we process the events with the earliest
deadline first). We will not prove the correctness of this algorithm.

§8.2 Caching

A cache is a piece of hardware or software that stores data in a special location so
that future requests for that data can be served in a high-speed manner. The idea
of caching is to store frequently-used values in a special area so that we can access
the values in a quick manner. If a value is not cached, then we say that the value is
stored in main memory.

In order to have an effective cache, it should usually be the case that when we’re
trying to access a piece of data, it’s already present in the cache. Today, we’ll talk
about a cache maintenance algorithm that determines what to keep in the cache and
what to toss out of the cache when new data is brought in.

Our problem is stated as follows:

Let U be a set containing n pieces of data stored in main memory, and
let C denote our cache that can hold k < n pieces of memory. Given
a sequence of data items d1, d2, . . . , dm drawn from U , we must process
them in order and determine which of the k items to keep in the cache.
When an item di is presented that isn’t in C, we say a cache miss occurs
(we want to minimize these), and we have the option to evict some other

33

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

data element in C in exchange for di. Thus, our problem consists of
computing the minimum number of cache misses necessary to process
our data sequence.

Example 8.4 (Caching Example)

Suppose U = {a, b, c}, and our cache size is k = 2. Moreover, suppose we are
presented with the sequence

a, b, c, b, c, a, b.

If the cache initially contains items a and b, then on the third item in the
sequence, we can evict a to bring in c, and on the sixth item, we could evict c
to bring in a. This results in two total cache misses. It can be shown that no
solution can have fewer than two cache misses.

§8.3 Farthest in Future Algorithm

Surprisingly, the solution to the caching problem is fairly short. When data element
di needs to be brought into the cache, we should always evict the item that is needed
the farthest into the future. This is known as the Farthest-in-Future algorithm,
and it was discovered by Belady.

We won’t prove optimality; however, it’s important to take note that that greedy
algorithms might not always be obvious (why do we evict the element farthest in the
future as opposed to the least frequent element?)

34

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§9 Tuesday, February 25, 2020

§9.1 Prefix Codes

One particular class of encoding schemes are prefix codes. A prefix code for a set
S of letters is a function γ that maps each letter x ∈ S to some sequence of zeros
and ones in such a way that for any x, y ∈ S with x 6= y, the sequence γ(x) is not
a prefix of the sequence γ(y). Why do many encoding schemes fall into this class?
Because it removes ambiguity: — if there exists a pair of letters where the bit string
that encodes one letter is a prefix of the bit string that encodes the other, then there
might be multiple interpretations of the same string.

The ambiguity of encoding schemes that aren’t prefix codes is demonstrated through
the following example:

Example 9.1 (Ambiguity Morse Code)

In Morse code, we typically encode letters with dashes and dots. For our purpose,
we can think of dots and dashes as zeros and ones. Suppose e maps to 0 (a single
dot), t maps to 1, and a maps to 01. Then the string 0101 can have several
interpretations: it can mean eta, aa, etet, or aet. If the morse code were a prefix
code, then this problem wouldn’t be present.

Now, here’s an example illustrating the ease of using a prefix code:

Example 9.2 (Prefix Code Example)

Suppose we have a set S = {a, b, c, d, e} with the encoding γ(a) = 11, γ(b) =
01, γ(c) = 001, γ(d) = 10, γ(e) = 000. This defines a prefix code since no
encoding is a prefix of any other. The string cecab is encoded as 0010000011101,
and a recipient of this message can decipher this message to our single unique
message.

In order to efficiently decipher a prefix code, we need an effective way to represent
the prefix code so that we can easily pick off the codeword. This is typically done
with a binary tree in which the leaves of the tree store the characters of our alphabet.
How does this work? We interpret the binary codeword for a character as a simple
path from the root to that character; the bit 0 tells us to go to the left child, whereas
the bit 1 tells us to go to the right child.

The following binary search tree illustrates a prefix code representation:
If we had the sequence 001011101, then we could start at the root, and we’d scan our
sequence from left to right. First, we counter two zeros, so we go to the left twice.
At this point, we’d be at the vertex labelled 58. Next, we encounter a 1, so we go to
the right. Thus, we obtain the character b. Next, we start at the root again, and we
follow our procedure again. The next character that we decipher is d. This process
continues until there are no more bits to process.

35

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Figure 6: Prefix Code Representation

Given a tree T corresponding to a prefix code, we can now easily compute the number
of bits required to encode a file. In particular, for each character c in our alphabet
S, we can let freq[c] denote the frequency of c in our file. Moreover, we can let
dT (c) denote the depth of c’s leaf in the tree. With this notation, the number of bits
required to encode a file is given by∑

c∈S

freq[c] · dT (c).

We call this the cost of the tree T .

§9.1.1 Constructing a Huffman code

Now that we’ve introduced prefix codes, we’ll talk about an optimal prefix code
known as a Huffman code, whose tree representation has minimum cost. The
algorithm constructing the tree is presented below:

36

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Input: A set C representing the set of all possible characters that

might appear in our text, and an array freq[] in which freq[k] represents

the frequency of the character k in our text.

Output: The root of a binary representing our encoding minimum cost.

HUFFMAN(C, freq) {

let Q be a minimum priority queue

for each element c in C { enqueue c into Q }

for i = 1 to n - 1 {

let z be a new node

x = EXTRACT-MIN(Q)

y = EXTRACT-MIN(Q)

z.left = x

z.right = y

freq[z] = freq[x] + freq[y]

insert z into Q.

}

return EXTRACT-MIN(Q) /* Return the root of the tree. */

}

How does this algorithm work?

1. Firstly, we enqueue all of the characters in C into our minimum priorty queue
Q.

2. The for-loop repeatedly extracts the two vertices with the lowest frequency
and replaces them in the queue with a new node representing their “merger”
(parent). The frequency of z is the sum of the frequencies of x and y.

3. After n− 1 merges, there’s only one node left in the queue, which is the root
of the code tree.

If we’re using a binary heap, then the algorithm runs in O(n log(n)) time since we
perform O(n) calls to EXTRACT-MIN, which is an O(log(n)) operation.
While we won’t show it, it can be shown that this construction of a tree is optimal.
This procedure counts as a greedy algorithm since, at each step, we greedily extract
the characters with the lowest frequency.

37

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§9.2 Matrix Multiplication

The next problem we’ll discuss is stated as follows:

Given two n× n matrices A and B, compute the n× n matrix C whose
(i, j)th entry is defined by cij =

∑n
k=1 aikbkj. In other words, we want to

compute the product C = AB.

The brute force solution is O(n3). In this algorithm, we just use three loops, and we
compute each value cij in C as the summation provided in the problem statement.
Of course, we want to do better.

Another idea is to perform a divide-and-conquer technique on the matrix. In
particular, we can divide the matrix into four submatrices (top left corner, top
right corner, bottom left corner, bottom right corner), and we can calculate the
products recursively. The time complexity of this algorithm is given by the recurrence
T (n) = 8T (n/2) +O(n2). Unfortunately, by Master’s Theorem, we know that the
solution to this recurrence will be O(n3), which isn’t any better.

38

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§10 Thursday, February 27, 2020

Last time, we introduced the matrix multiplication problem whose brute force solution
runs in O(n3) time. Today, we’ll introduce Strassen’s algorithm, a quicker solution
to the matrix multiplication problem.

§10.1 Strassen’s Algorithm

Suppose we want to compute the matrix product C = AB. Strasen’s algorithm is a
divide-and-conquer algorithm that works by partitioning the three matrices A, B,
and C into equally sized block matrices as follows:

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
C =

(
C1,1 C1,2

C2,1 C2,2

)
Our naive algorithm would compute the following quantities:

1. C1,1 = A1,1B1,1 + A1,2B2,1,

2. C1,2 = A1,1B1,2 + A1,2B2,2,

3. C2,1 = A2,1B1,1 + A2,2B2,1,

4. C2,2 = A2,1B1,2 + A2,2B2,2,

With this construction, however, we require 8 total multiplications to calculate our
matrix. Strassen’s algorithm works by cleverly rewriting some of these expressions
so that we only require 7 multiplications (similar to how Karatsuba’s algorithm for
large-integer multiplication). More precisely, we define the following matrices:

1. M1
def
= (A1,1 + A2,2)(B1,1 + B2,2),

2. M2
def
= (A2,1 + A2,2)B1,1,

3. M3
def
= A1,1(B1,2 −B2,2),

4. M4
def
= A2,2(B2,1 −B1,1),

5. M5
def
= (A1,1 + A1,2)B2,2

6. M6
def
= (A2,1 −A1,1)(B1,1 + B1,2),

7. M7
def
= (A1,2 −A2,2)(B2,1 + B2,2).

Note that computing the values of these matrices requires only 7 multiplications
(one for each Mk) instead of the usual 8. We can now express our block matrices in
terms of the Mk matrices as follows:

1. C1,1 = M1 + M4 −M5 + M7,

39

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

2. C1,2 = M3 + M5,

3. C2,1 = M2 + M4

4. C2,2 = M1 −M2 + M3 + M6.

We can iterate the procedure of dividing our matrices into blocks recursively until
the submatrices are just numbers.

How fast does Strassen’s algorithm run? Let f(n) denote the number of multipli-
cation operations we perform on a 2n × 2n matrix. By the recursive application
of Strassen’s algorithm, we find f(n) = 7f(n − 1) + c4n, where c is some positive
constant that depends on the number of additions performed at each step of the
operation. Thus, we find f(n) = (7 + o(1))n. Letting N = 2n, we conclude that
Strassen’s algorithm runs in O(N log2(7)+o(1)) ≈ O(N2.8074) time.

§10.2 Closest Pair of Points

The closest pair of points problem is stated as follows:

Given n points in the plane P = {p1, p2, p3, . . . , pn}, find two points pi
and pj such that the Euclidean distance between pi and pj is minimal.

A simple brute force solution is to consider all
(
n
2

)
pairs of points, and keep track of

the minimum distance value seen so far (this minimum variable would initially be set
to∞). The runtime of this algorithm is O(n2) since computing the distance between
two points is a constant-time operation.
Next class, we’ll present a more efficient solution.

40

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§11 Tuesday, March 3, 2020

Recall the closest pair of points problem:

Given n points in the plane P = {p1, p2, p3, . . . , pn}, find two points pi
and pj such that the Euclidean distance between pi and pj is minimal.

Last time, we discussed a brute force O(n2) solution to this problem. Today, we’ll
see a more efficient solution. We’ll also introduce two new problems.

§11.1 Closest Pair of Points

Our plan is to use a divide and conquer approach. We’ll find the closest pair among
the points in the “left half” of our plane, and we’ll find the closest pair of points in
the “right half” of our plane. Using this information, we’ll construct our final answer
in linear time. If we develop an algorithm with this structure, then our recurrence
will have an O(n log(n)) solution. Note that our “combining” phase is more tricky
than it seems: we haven’t considered the case in which one point is in the left half of
the plane and another point is in the right half of the plane.

Before any recursion begins, we sort all of our points in P by x-coordinate and again
by y-coordinate, producing two lists Px and Py. Moreover, we define Q to be the set of
points in the first dn/2e positions of Px (i.e. the “left half” of the plane), and we let R
be the set of points in the final bn/2c positions of Px (i.e. the “right half” of the plane).

With a single for-loop, we can iterate over Px and Py and create the lists Qx, consist-
ing of the points in Q sorted by increasing x-coordinate, Qy, the set of points in Q
sorted by increasing y-coordinate, and analogous lists for Rx and Ry.

Next, we’ll discuss how to combine the solutions.

Suppose q0 and q1 are returned as a closest pair of points in Q. Moreover, suppose r0
and r1 are returned as a closest pair of points in R. How do we combine our solution
to get the closest pair of points in the plane? First, we need to introduce some more
notation.

Let δ be the minimum distance between q0 and q1 and between r0 and r1. That is,

let δ
def
= min{d(q0, q1), d(r0, r1)}. We want to figure out whether there exist points

q ∈ Q and r ∈ R such that d(q, r) < δ (if no such points exists, then δ is our answer;
otherwise, q and r are even closer points in our plane).

Let x? denote the rightmost x-coordinate in Q, and let L denote the vertical line
x = x?. This line L separates the sets Q and R in the sense that any point in Q is
either on the line or to the left of the line, and any point in R is strictly to the right
of the line.

The following key observation is used to help us combine our solutions:

41

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Proposition 11.1 (Existence of a Better Solution)

If there exists q ∈ Q and r ∈ R for which d(q, r) < δ, then each of q and r lies
within a distance of δ within the line L.

Proof. Suppose such q and r exist. The inequality qx ≤ x? ≤ rx implies

x? − qx ≤ rx − qx ≤ d(q, r) < δ,

which yields
rx − x? ≤ rx − qx ≤ d(q, r) < δ.

However, this means precisely that each q and r has an x-coordinate within δ of x?.
Hence, they lie within distance δ of L.

The immediate consequence of Proposition 11.1 is that, once we’ve found the two
closest pairs of points from our recursive calls, we only need to search for a better
solution within a strip of length δ of the line L. We now present a method to do this
in linear time.

Let S ⊆ P be the set of points in P within δ of L. Let Sy denote the list consisting
of the points in S sorted by increasing y-coordinate. We can now restate Proposition
11.1 in terms of S as follows:

There exist q ∈ Q and r ∈ R for which d(q, r) < δ if and only if there
exist s, s′ ∈ S for which d(s, s′) < δ.

Now, it can be show that if s, s′ ∈ S have the property that d(s, s′) < δ, then s and
s′ are within 15 positions of each other in the sorted list Sy (proof omitted). While
this bound is not tight, the important note is that the distance between the points is
is an absolute constant. We can now conclude the algorithm by making a single pass
through Sy and, for each s ∈ Sy, computing the distance to the next 15 points in
Sy. The runtime of this procedure is linear, so we’ve successfully figured out how to
combine our solutions in linear time.

Thus, the recurrence for our algorithm takes the form

T (n) = 2T (n/2) +O(n).

By Master’s Theorem, we conclude T (n) = O(n log(n)).

§11.2 Counting Inversions

Definition 11.2. Given an array A, an inversion if a pair of indices (i, j) for which
both i < j and A[i] > A[j] hold.

The inversion problem is stated as follows:

Given an array A, count the number of inversions in A.

We can think of the number of inversion in an array as the number of “bubble sort
swaps” (swap between pairs of consecutive items) needed in order to sort the array.

42

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Example 11.3 (Reverse-Sorted Array)

The array A = [3, 2, 1] has exactly 3 inversions. Namely, (1, 2), (1, 3) and
(2, 3).

Example 11.4 (Unsorted Array)

The array A = [3, 2, 1, 4] also has 3 inversions.

The most obvious solution is to simply use two nested for-loops and increment an
answer variable every time we find an inversion. Here’s an implementation of the
brute force solution:

int main(void) {

/* Assume we have initialized an array "A" */

int answer = 0;

for (int i = 0; i < N; i++) {

for (int j = i + 1; j < N; j++) {

/* The condition i < j is always true. */

if (A[i] > A[j]) {

/* (i, j) is an inversion. */

answer = answer + 1;

}

}

}

cout << "Number of inversions: " << answer << endl;

}

The runtime of this algorithm is O(n2), but of course, we want to do better.

Once again, we can take a divide and conquer approach for the inversion problem.
More precisely, we can just modify the MergeSort algorithm. The key observation is
that during the merge process of merge sort, if the frnot of the right sorted sublist is
taken rather than the front of the left sorted sublist, then we can say that one or
more inversions occur. We increment our inversion counter by the size of the current
left sublist since all of those indices cause an inversion with the current element we
are looking at in our right sublist.

The runtime of this algorithm is O(n log(n)) since we’re only adding a few constant-
time operations to the merge sort procedure.

A full implementation is provided on the next page.

43

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

int merge(vector<int>& A, int l, int m, int r) {

vector<int> B(r - l + 1);

int i = l, j = m + 1, k = 0;

int inversions = 0;

while (i <= m && j <= r) {

if (A[i] <= A[j]) {

B[k++] = A[i++];

} else {

B[k++] = A[j++];

inversions += (m + 1 - i);

}

}

/* Only one of the following two while-loops

will be executed. */

while (i <= m) B[k++] = A[i++];

while (j <= r) B[k++] = A[j++];

for (int i = l; i <= r; i++) {

A[i] = B[i - l];

}

return inversions;

}

int mergesort(vector<int> &A, int l, int r) {

int inversions = 0;

if (r > l) {

int m = l + (r - l)/2;

inversions += mergesort(A, l, m);

inversions += mergesort(A, m + 1, r);

inversions += merge(A, l, m, r);

}

return inversions;

}

/* (i, j) is an inversion if A[i] > A[j] and i < j.

O(n*log(n)) inversion counting. */

int inversion_count(vector<int>& A) {

return mergesort(A, 0, A.size() - 1);

}

44

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§12 Thursday, March 5, 2020

Today, we’ll begin discussing our last divide-and-conquer topic: the Fast Fourier
(“four-ee-aye”) Transform. The problem that we are trying to solve is stated as
follows:

Given two vectors a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1), com-
pute the convolution a ? b of a and b.

Before discussing the algorithm that lets us do this, let’s first discuss convolutions
and why they’re important.

§12.1 Convolutions

A convolution of two vectors a and b is a method of “combining” the two vectors.
More precisely, we define the convolution of the vectors a = (a0, a1, . . . , an−1) and
b = (b0, b1, . . . , bn−1) by the vector c = (c0, c2, . . . , c2n−2) in which

ck =
∑

(i,j)|i+j=k

aibj.

In other words, we have,

a ? b = (a0b0, a0b1 + a1b0, . . . , an−1bn−1).

Note that each summand in the kth component of this vector exhausts all possi-
ble pairs of indices that sum to k. Moreover, note that the convolution of two
n-dimensional vectors produces a (2n− 1)-dimensional vector. However, unlike the
vector sum and inner product, the convolution can easily be generalized to vectors of
different lengths: if a = (a0, a1, . . . , am−1) and b = (b0, b1, . . . , bn−1), then we define
a ? b to be a vector with m+ n− 1 coordinates, where the kth coordinate is equal to
the sum over all aibj in which i+ j = k, i < m and b < n.

Why do we care about the convolution? Here are some examples in which convolutions
are useful:

Example 12.1 (Polynomial Multiplication)

Suppose we have two polynomials A(x) = a0 + a1x + a2x
2 + · · · + am−1x

m−1

and B(x) = b0 + b1x + b2x
2 + · · · + bn−1x

n−1 and we wish to compute the
product C(x) = A(x) · B(x). In order to do so, we can define the vectors
a = (a0, a1, . . . , am−1) and b = (b0, b1, . . . , bn−1) and compute the convolution
c = a ? b. In the polynomial C(x), the coefficient of xk is equal to the kth

component of c.

45

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Example 12.2 (Combining Histograms)

Suppose we’re studying a population of people, and we have two histograms. The
first histogram shows the annual income of all the men in the population, and
the other shows the annual income of all the women. We would like to produce a
new histogram showing for each k the number of pairs (M ,W) for which man M
and woman W have a combined income of k. This problem can be restated as a
convolution. More precisely, let a = (a0, . . . , am−1) and b = (b0, . . . , bn−1) be our
histograms, and let ck denote the number of (m,w) pairs with combined income
k. Observe that ck is the number of ways to choose a man with income ai and
woman with income bj with i+ j = k. This quantity is given by a convolution.

Example 12.3 (Sum of Independent Random Variables)

If one is familiar with probability theory, then they may have encountered a
theorem which tells us that the probabiliy distribution function for the sum of
two random variables is a convolution of the distributions of the summands.

Now that we’ve motivated the importance of convolutions, we’ll now discuss how to
compute convolutions efficiently. For simplicity, we consider the case in which our
two vectors have equal length (i.e. m = n); however, our results hold for vectors of
unequal length.

Computing a convolution efficiently is more difficult than it seems. If, for each
k, we just calculate the sum

∑
(i,j)|i+j=k aibj and use it as the kth coordinate in

our convolution vector, we end up with an O(n2) algorithm. Fortunately, we can
do better — the fast Fourier Transform allows us to compute convolutions in
O(n log(n)) time.

§12.2 The Fast Fourier Transform

In order to compute convolutions quickly, we will make use of the connection be-
tween the convolution and polynomial multiplication. However, rather than using
convolutions to perform polynomial multiplication, we will exploit the connection in
the opposite direction.

Given two vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1), we define A(x) and B(x)
to be the polynomials a0 +a1x+ · · ·+an−1x

n−1 and b0 + b1x+ · · ·+ bn−1x
n−1, respec-

tively. Under this interpretation, we wish to compute the product C(x) = A(x)B(x)
in O(n log(n)) time. From there, we can simply “read off” the convolution directly
from the coefficients of C(x).

Now, instead of multiplying A and B directly, we can treat them as functions of the
variable x and multiply them with the following three steps:

1. Choose 2n values x1,x2, . . . ,x2n and evaluate A(xj) and B(xj) for each j =
1, 2, . . . , 2n.

46

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

2. Now for each index 1 ≤ j ≤ 2n, we can easily compute C(xj). In particular,
C(xj) is equal to the product of the two numbers A(xj) and B(xj).

3. Finally, we need to recover the polynomial C from its values on x1,x2, . . . ,x2n.
Since any polynomial of degree d is fully determined by a set of d+ 1 or more
points, this is clearly possible. Since each A and B have degree at most n− 1,
their product C has degree at most 2n− 2. Thus, it can be reconstructed from
the values C(x1),C(x2), . . . ,C(x2n) that we computed earlier.

This approach to multiplying polynomials sounds promising, but there are a couple
of issues we need to address. Evaluating the polynomials A and B on a single
point takes Ω(n) operations (using Horner’s method1, and our plan calls for per-
forming 2n such evaluations. This brings us back up to quadratic time immediately.
Moreover, we need a way to quickly reconstruct the polynomial C from the points
C(x1),C(x2), . . . ,C(x2n).

We address these two issues separately.

§12.2.1 Polynomial Evaluation

We need to evaluate the polynomials A and B on 2n different points quickly. The
key idea to doing this quickly is to find a set of 2n points x1, . . . ,x2n that are related
in some way so that the work in evaluating A and B on all of them can be shared
across different evaluations. A set that works very well for us is the roots of unity.

Definition 12.4. An nth root of unity is a number z satisfying the equation
zn = 1.

It can be shown that there are n nth roots of unity. Moreover, these roots are given
by e2kπi/n for k = 0, 1, . . . ,n− 1. Clearly, each of these complex numbers satisfy our
definition since

(e2kπi/n)n = e2kπi = (e2πi)k = 1k = 1.

For our numbers x1, . . . ,x2n on which to evaluate A and B, we will choose the
(2n)th roots of unity, and we propose a recursive procedure to compute A on each
of the (2n)th roots of unity. For simplicity, we henceforth assume that n is a power of 2.

Let Aeven(x) and Aodd(x) be two polynomials that consist of the even and odd
coefficients of A, respectively. That is, we have,

Aeven(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

(n−2)/2,

and

Aodd(x) = a1 + a3x+ a5x
2 + · · ·+ a(n−1)x

(n−2)/2.

By simple algebra, we can see that we can express A(x) as

1https://en.wikipedia.org/wiki/Horner%27s_method

47

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

A(x) = Aeven(x2) + xAodd(x2),

which demonstrates that we can compute A(x) in a constant number of operations
provided that we already have Aeven and Aodd. Now suppose we evaluate both Aeven

and Aodd on the nth roots of unity. This is an exact replica of the problem we face
with A and the (2n)th roots of unity, except the input is half as large; the degrees of
our two polynomials are (n− 2)/2 rather than n− 1. Moreover, we have n roots of
unity rather than 2n. Thus, we can perform these evaluations recursively in time
T (n/2) for each of Aeven and Aodd, for a total of 2T (n/2) time.

But, how do we perform these evaluations? This can be done with O(n) addi-
tional operations given the results from the recursive calls on Aeven and Aodd. Let
ω = e2πik/2n be a (2n)th root of unity for some integer k. The quantity ω2 is equal to
e2πki/n, which is an nth root of unity.

Thus, when we go to compute A(ω) = Aeven(ω2) + ω · Aodd(ω2),we find that both
evaluations on the right-hand side have been performed in a recursive step, which
means that we can compute A(ω) in a constant number of operations. Repeating for
each of the 2n roots of unity is therefore O(n) additional operations.

Therefore, our bound T (n) on the number of operations satisfies T (n) = 2T (n/2) +
O(n), which gives us the desired O(n log(n)) bound for the first step of our algorithm.

§12.2.2 Polynomial Interpolation

Next, we’ll discuss how to Now, we’ve seen how to evaluate A and B on the set of all
(2n)th roots of unity using O(n log(n)) operations. Also, we can clearly perform the
second step of our algorithm naively in linear time. Thus, to conclude the algorithm
for multiplying A and B, we need to reconstruct the polynomial C from its values
on the (2n)th roots of unity in O(n log(n)) time.

The reconstruction of C can be achieved by defining an appropriate polynomial and
evaluating it at the (2n)th roots of unity. This is exactly what we’ve just seen how to
do using O(n log(n)) operations, so we’ll do it here again. This requires an additional
O(n log(n)) operations, and it concludes our algorithm.

Consider a polynomial C(x) =
∑2n−1

s=0 csx
s that we want to reconstruct from its

values at the C(ωs,2n) at the (2n)th roots of unity. Define a new polynomial D(x)
def
=∑2n−1

s=0 dsx
s where ds = C(ωs,2n. We now consider the values of D(x) at the (2n)th

roots of unity:

48

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

D(ωj,2n) =
2n−1∑
s=0

C(ωs,2n)ωsj,2n

=
2n−1∑
s=0

(
2n−1∑
t=0

ctω
t
s,2n

)
ωsj,2n.

Now since ωs,2n = (e2πi/2n)s, we get that

D(ωj,2n) =
2n−1∑
t=0

ct

2n−1∑
s=0

ωst+j,2n).

However, note that for any (2n)th root of unity ω 6= 1, we have
∑2n−1

s=0 ωs = 0. Thus,
the only term that of the last line’s outer sum that is not equal to 0 is for ct such
that ωt+j,2n = 1. This happens precisely when t+ j = 2n− j.

It follows immediately that for any polynomial C(x) =
∑2n−1

s=0 csx
s and corresponding

polynomial D(x) =
∑2n−1

s=0 C(ωs,2n)xs, we have cs = 1
2n
D(ω2n−s,2n).

Thus, we can reconstruct the polynomial C from its values on the (2n)th roots of
unity, and the coefficients of C are the coordinates in the convolution vector a ? b
that we were originally seeking. Therefore, we are done.

49

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§13 Tuesday, April 7, 2020

§13.1 Subset Sum Problem

Today, we’ll discuss another classical dynamic programming problem, known as the
subset sum problem.2 The subset problem is stated as follows:

Suppose we are given n items {1, 2, . . . ,n} each with nonnegative weight
wi. We are also given a bound W . How do we select a subset S of the
items so that

∑
i∈S wi is maximized subject to

∑
i∈S wi ≤ W?

In other words, given n items each with nonnegative weights, what’s the closest we
can get to a weight of W without going over?

Example 13.1 (Subset Sum Example)

Suppose n = 3 with w1 = 2, w2 = 3, w3 = 4, and W = 5. The solution to this
instance of the subset problem is 5 — it is optimal to choose w1 and w2.

Does a greedy solution work? One greedy rule might be to sort the items in ascending
order by weight and always pick the item with maximal weight that hasn’t been
taken yet. However, this greedy rule fails in Example 13.1; we’ll end up with a total
weight of 4, which is sub-optimal.

We demonstrate how we can use dynamic programming to solve this problem. Recall
that the main principles of dynamic programming are to come up with a recurrence
so that we can relate the problem we want to solve to “smaller” subproblems. The
tricky issue is determining what a good set of subproblems consists of.

One general strategy in dynamic programming is to consider subproblems consisting
of only the first i “requests,” or items. We can use this strategy here. Formally,
let OPT(i) denote the best possible solution using only the subset {1, . . . , i} of the
original set of items. Now, the key to this problem is to concentrate on an optimal
solution and consider two different cases, depending on whether or not the last item
n we processed is part of this optimum solution or not. Let O denote an optimal
solution.

If n 6∈ O, then OPT(n) = OPT(n − 1). This is obvious — if the last item we
processed isn’t a part of our optimal solution, then the optimal solution using only
{1, 2, . . . ,n− 1} shouldn’t change when n is included (we now have the option to
take n, but we don’t want n anyways!).

2The subset sum problem is a special case of another classical dynamic programming problem,
known as the knapsack problem. In the knapsack problem, each item 1 ≤ i ≤ n has a value
vi and weight wi. For each item, we want to assign a number xi ∈ {0, 1} so that

∑
i xivi is

maximized subject to
∑

i xiwi ≤W .

50

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

The only other case we have to consider is the case in which n ∈ O. What we
need to find is a simple recursion that tells us the best possible value we can obtain
for solutions containing the last request n. Note that accepting request n does not
immediately imply that we have to reject any other requests. Instead, it means
that for the subset of requests S ⊆ {1, 2, . . . ,n − 1} that we will accept, we have
less available weight left. More precisely, we will have W − wn weight left for the
remaining set of items we accept.

This suggests that we need more subproblems: we cannot just use the value OPT(n−1)
when we’re including item n since the combined weight of the items in OPT(n− 1)
and item n might exceed W . What we precisely need is the best solution using
the first n − 1 items when the total weight allowed is W − wn. Thus, we require
many more subproblems: one for each initial set {1, 2, . . . , i} of the items, and each
possible value for the remaining weight available w.

More precisely, if each of our items 1, 2, . . . ,n have integer weights wi and our
maximum weight bound is W , then we have a subproblem for each i = 0, 1, . . . ,n
and each integer 0 ≤ w ≤ W . We henceforth use OPT(i,w) to denote the value
of the optimal solution using the subset of the items {1, 2, . . . , i} with maximum
allowed weight w. That is,

OPT(i,w) = max
S⊆{1,2,...,i}

∑
j∈S

wj subject to
∑
j∈S

wj ≤ w.

Using this new set of subproblems, we can note that the final answer we want is
OPT(n,W). Moreover, we can express the value OPT(i,w) as an expression from
smaller problems. These results are summarized below:

1. If n 6∈ O, then OPT(n,W) = OPT(n− 1,W) since we can ignore the item n.

2. If n ∈ O, then OPT(n,W) = wn + OPT(n− 1,W −wn) since we now want to
use the remaining capacity W − wn in an optimal way across the first n− 1
items.

If W < wn for some item n, then we require OPT(n,W) = OPT(n− 1,W) since we
aren’t allowed to take item n due to our constraint. Now that we’ve considered both
cases, we can get the optimum solution by simply taking the better of these two
options. Therefore, we obtain the following recurrence:

OPT(i,W) =

max(OPT(i− 1,w),wi + OPT(i− 1,W − wi)) if wi ≤ W

OPT(i− 1,w) otherwise.

Also, we have the base cases OPT(i,w) = 0 provided that i = 0 since we aren’t
allowed to take any items when i = 0.

With our recurrence and base cases established, we are done.

51

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§14 Tuesday, April 14, 2020

§14.1 Matrix-Chain Multiplication

§14.1.1 Motivation

Suppose we have three matrices, A,B, and C, of dimensions 50 × 20, 20 × 1 and
1× 10, respectively. We want to find the matrix product A×B × C in an efficient
manner.

Recall that matrix multiplication is not commutative (A × B 6= B × A), but it
is associative, which means that A × (B × C) = (A × B) × C holds. As a direct
consequence, this means that we’re not allowed to switch up the order of our matrix
product, but it does mean that we’re allowed to compute the product in two different
ways depending on how we parenthesize it.

Is one parenthesization better than the other?

It turns out that the answer is YES — the order of multiplication when computing
matrix products makes a significant difference in the final running time. Multiplying
an m× n matrix by an n× p matrix takes mnp multiplications. Using this formula,
we can note the following:

• Computing A× (B×C) requires 20 ·1 ·10 = 200 multiplications to compute the
product (B ×C), and it requires another 50 · 20 · 10 = 10000 multiplications to
compute the product A×(B×C). Thus, we use a total of 10200 multiplications.

• Computing (A×B)× C requires 50 · 20 · 1 = 1000 multiplications to compute
the product A×B, and it requires another 50 · 1 · 10 = 500 multiplications to
compute the product (A×B)× C. In total, we use 1500 multiplications.

Clearly, there is a significant difference in the number of multiplications performed
just by changing the order in which we multiply our matrices. This difference is
amplified when we’re multiplying more than just three matrices.

Some initial thoughts might be to just be greedy. But the example demonstrates that
the greedy algorithm of always picking the locally cheapest matrix multiplication
available does not necessarily produce the optimal solution (computing A× (B × C)
is locally optimal to begin with, but it ends up being much worse. Also, it might be
tempting to just to just exhaustively check all possible parenthesizations. However,
the number of valid parenthesizations of n parenthesis follows the sequence of Cata-
lan numbers, which grows exponentially in n.

Thus, we are compelled to find a better solution.

§14.1.2 Dynamic Programming Solution

Before introducing an optimal solution, we can firstly generalize our problem and
state it in a formal manner:

52

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

Given a sequence of matrices A1,A2, . . . ,An, where for i = 1, 2, . . . ,n, ma-
trix Ai has dimensions pi−1×pi, we want to fully parenthesize the product
A1A2 · · ·An in a way that minimizes the number of scalar multiplications.

The sequence of matrices A1,A2, . . . ,An is more commonly referred to as a chain of
matrices. Also, we generalize the notion of “parenthesization” as follows:

Definition 14.1. We say a product of matrices is fully parenthesized if it is
either a single matrix or the product of two fully parentheszied matrix products,
surrounded by parentheses.

For instance, if the matrices A1,A2,A3,A4 can be fully parenthesized in exactly five
distinct ways: (A1(A2(A3A4))), (A1((A2A3)A4)), ((A1A2)(A3)(A4)), ((A1(A2A3))A4),
or (((A1A2)A3)A4).

Now, we can discuss our solution.

The key observation of to apply dynamic programming to this problem is the follow-
ing: When evaluating a product of the form AiAi+1 · · ·Aj , we must split the product
between Ak and Ak+1 for some index 1 ≤ k < j. The cost of parenthesizing this way
is equal to the cost of computing the matrix product AiAi+1 · · ·Ak plus the cost of
computing the matrix product Ai+1 · · ·Aj, plus the cost of multiplying these two
matrix products together.

Now, it’s also crucial to note that the “prefix” subchain AiAi+1 · · ·Ak and the “suffix”
subchain Ak+1Ak+2 · · ·Aj must be optimal parenthesizations for their subchains. The
reason why this is true is because, if there were a less costly way to parenthesize
these subchains, then we could just substitute the less costly parenthesization with
our current parenthesization to form a better solution than the optimal solution
(which is a contradiction).

Using these observations, we can define m[i, j] as the minimum cost of parenthe-
sizing AiAi+1 · · ·Aj. Under this notation, our goal is to compute m[1, n].
We can define m[i, j] recursively as follows:

• If i = j, then the matrix chain consists of only one matrix: Ai. Thus,
no multiplications are necessary to compute the product, and we conclude
m[i, i] = 0 for any 1 ≤ i ≤ n.

• If i < j, then we make use of the fact that the prefix and suffix subchains must
be optimal solutions to the problem as well. Then, m[i, j] equals the minimum
cost for computing the subproducts Ai · · ·Ak and Ak+1 · · ·Aj plus the cost of
multiplying these two matrices together. Since each matrix Ai has dimensions
pi−1 × pi, we conclude m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj.

Note that this recursive formulation assumes that we know the value of k at which we
want to split at, which is actually not the case. However, there are only j− i possible
values for k, so we can just take the minimum oer all possible values. Thus, our

53

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

recursive definition for the optimal parenthesization of the matrix product Ai · · ·Aj
becomes

m[i, j] =

{
0 if i = j,

min1≤k<j m[i, k] + m[k + 1, j] + pi−1pkpj if i < j.

With our base cases and recurrence established, we’re done. A simple implementation
of this algorithm with three nested for-loops would yield a running time of O(n3)
time.

§15 Tuesday, April 21, 2020

Exam review today. We discussed homework solutions.

54

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

§16 Thursday, April 23, 2020

§16.1 An Review of NP Completeness

Today, we’ll review the NP-Completeness content we learned in CMSC 351. We will
discuss three classes of problems: P , NP , and NPC.

§16.1.1 Preliminaries

The first class is P , which consists of those problems that are solvable in polynomial
time. More precisely, they are problems that can be solved in O(nk) time for some
constant k, where n is the size of the input problem. Most of the problems we’ve
discussed this semester belong to P .

The second class is NP, which consists of those problems that are “verifiable” in
polynomial time. In order to be more precise about what we mean about “verifiability,”
we introduce the notion of a certificate of a solution (also known as a witness),
which can be used to verify whether the answer to the performed computation is
correct.

Example 16.1 (Hamiltonian Cycle Certificate)

In the Hamiltonian cycle problem, given a directed graph G = (V ,E), a certificate
would be a sequence of |V | vertices representing the order in which one should
visit the vertices in the cycle. Given this list, we can easily check in polynomial
time that the sequence is, in fact, a valid certificate. Thus, the Hamiltonian
Cycle problem is in NP .

Fact 16.2. P ⊆ NP. Why? Because any problem in P is also in NP; we could
just take the problem in P and solve it without even being supplied a certificate.

The open P vs. NP problem asks whether NP ⊆ P (combined with Fact 16.2, this
would imply P = NP). Most theoretical computer scientists believe this is not the
case — they believe P 6= NP .

The third and final class is NPC. Informally, a problem is in NPC (and we say refer
to the problem as being NP-complete provided that it is in NP and it is as “hard”
as any problem in NP). We will formalize this later, but for now, it’s important
to know that if any problem in NPC can be solved in polynomial time, then every
problem in NP has a polynomial-time algorithm.

§16.1.2 Decision vs. Optimization Problems

We can classify many of our problems of interest as either decision problems or
optimization problems.
A optimization problem seeks to pick the “best” solution among all possible
solutions (often, optimization problems as us to minimize or maximize some quantity,

55

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

and the answer to the problem is some value). The problem of finding the path
between two vertices u, v in a graph G that uses the fewest number of edges (known
as the SHORTEST-PATH problem) is an optimization problem (we want to minimize
the number of edges used).
Conversely, a decision problem is a problem whose answer can be represented by
a single “yes” or “no” value (typically, this is either a “1” or a “0”).

NP-completeness does not apply directly to optimization problem but rather to
decision problems. However, we can usually be clever and “cast” a given optimization
problem as a related decision problem by imposing bounds on the value to be
optimized.

Example 16.3 (SHORTEST-PATH Cast)

A decision problem related to SHORTEST-PATH is PATH, which is stated as follows:
Given a directed graph G, vertices u and v, and an integer k, does there exist a
u v path consisting of at most k edges.

In some sense, the optimization problem is “harder” than the decision problem. In
the provided example, we can solve PATH by solving SHORTEST-PATH and simply com-
paring the number of edges in the shortest path to the value of the decision-problem’s
parameter k.

More generally, if we can provide evidence that a decision problem is hard, then we
can also provide evidence that its related optimization problem is hard. Therefore,
even though NPC problems restrict their attention to decision problems, there are
many implications for optimization problems as well.

§16.1.3 Reductions

As we just saw, we were able to show that PATH is “no harder” than SHORTEST-PATH.
This notion of showing that one problem is “no harder” or “no easier” than another
problem even applies when both problems are decision problems. Now, we will
formalize this notion.
Let’s consider a decision problem A, which we want to solve in polynomial time.
We can the input to a particular problem an instance of that problem (i.e. an
instance of PATH would be a graph G, two vertices u and v, and an integer k). Now
suppose we already know how to solve some other decision problem B in polynomial
time. Moreover, suppose we have some other procedure capable of transforming an
instance α of A into some instance β of B in polynomial time. If the answer for α
is “yes” if and only if the answer for β is also “yes”, then we call this procedure a
polynomial-time reduction algorithm, and it presents a way to solve problem A
in polynomial time.

In other words, we can solve A by taking an instance α of A, using our polynomial-
time reduction algorithm to transform it into an instance β of B, running our

56

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

polynomial-time decision algorithm for B on β, and reporting the answer for β as
the answer for α.
Is it possible to show that no polynomial-time algorithm can exist for a particular
problem B? The answer is yes — suppose we have a decision problem A for which we
already know that no polynomial-time algorithm exists. Moreover, suppose further
that we have a polynomial-time reduction transforming an instance α of A into
an instance β of B. If this is the case, then our result follows (if we did have a
polynomial-time algorithm for B, then we would have a polynomial-time algorithm
for A).

§16.1.4 Cook-Levin Theorem

Recall that we earlier stated that a problem in NPC is in NP and it is as hard as
any other problem in NP . This is a somewhat recursive definition: we need to have
some sort of “first” problem in NP-complete in order to prove that others are as
hard as this problem.
We won’t discuss how, but the Cooke-Levin Theorem demonstrated that the
circuit-satisfiability problem (in which we’re provided a combinatorial circuit of
AND, OR, and NOT gates) was in NP-complete. We will use this as our “first”
problem.

§16.2 3-SAT ≤NP Hamiltonian Cycle

Now, we’ll do our first reduction. Recall that the HAMILTONIAN-CYCLE problem asks
whether there is a cycle a closed loop on the provided graph in which every vertex
is visited exactly once. In this class, we will treat the case in which the underlying
graph is directed, but this can easily be extended to the undirected case. We wish to
show that HAMILTONIAN-CYCLE is NP-complete.

Theorem 16.4

HAMILTONIAN-CYCLE is NP-complete.

Proof. In order to show that HAMILTONIAN-CYCLE is NP-complete, we will first show
that it belongs to NP . In other words, its certificate can be verified in polynomial
time. In this porblem, a certificate can be represented by a sequence of |V | ver-
tices (v1, v2, . . . , v|V |) representing the order in which one should visit the vertices
of the graph. It is now clear that we can verify whether (vi, vi+1 (mod |V |)) is an
edge in our graph for each index i = 1, 2, . . . , |V | − 1 in polynomial time. Thus,
HAMILTONIAN-CYCLE is in NP .

Next, we need to show that HAMILTONIAN-CYCLE is as hard as any problem in NP .
Equivalently, we want to find some other problem in NP-complete and show that
HAMILTONIAN-CYCLE is harder than it. We will show that the 3SAT problem — which
is known to be in NP-complete — can be reduced to the HAMILTONIAN-CYCLE prob-
lem (If a problem Y is polynomial-time reducible to another problem X, then we

57

Ekesh Kumar (April 8, 2021) Design and Analysis of Algorithms

denote this by Y ≤P X. Thus, here, we are showing 3SAT ≤P HAMILTONIAN-CYCLE).

We can represent an instance of 3SAT by a list of Boolean variables x1,x2, . . . ,xn
and a list of clauses C1,C2, . . . ,Ck.

58

	Tuesday, January 28, 2020
	Introduction
	Stable Marriage Problem

	Thursday, January 30, 2020
	Optimality and Correctness of Gale-Shapley

	Tuesday, February 4, 2020
	Graph Terminology
	Graph Representations
	Graph Traversal

	Thursday, February 6, 2020
	Articulation Points

	Tuesday, February 11, 2020
	Articulation Point Algorithm Implementation
	Strongly Connected Components
	Classifying Edges in a DFS Tree

	Thursday, February 13, 2019
	Kosaraju's Algorithm
	Topological Sorting
	Bipartite Graphs

	Tuesday, February 18, 2020
	The Union-Find Data Structure
	Motivating the Union-Find Data Structure
	Implementation of the Union-Find Data Structure
	Analysis of Union-Find Operations

	The Minimum Spanning Tree Problem
	Problem Statement
	Kruskal's Algorithm
	Prim's Algorithm

	Thursday, February 20, 2020
	Interval Scheduling
	Extensions: Minimizing Lateness

	Caching
	Farthest in Future Algorithm

	Tuesday, February 25, 2020
	Prefix Codes
	Constructing a Huffman code

	Matrix Multiplication

	Thursday, February 27, 2020
	Strassen's Algorithm
	Closest Pair of Points

	Tuesday, March 3, 2020
	Closest Pair of Points
	Counting Inversions

	Thursday, March 5, 2020
	Convolutions
	The Fast Fourier Transform
	Polynomial Evaluation
	Polynomial Interpolation

	Tuesday, April 7, 2020
	Subset Sum Problem

	Tuesday, April 14, 2020
	Matrix-Chain Multiplication
	Motivation
	Dynamic Programming Solution

	Tuesday, April 21, 2020
	Thursday, April 23, 2020
	An Review of NP Completeness
	Preliminaries
	Decision vs. Optimization Problems
	Reductions
	Cook-Levin Theorem

	3-SAT NP Hamiltonian Cycle

