
Integrating Planning and Acting With a Re-Entrant HTN Planner

Yash Bansod1, Dana Nau1,2, Sunandita Patra2, Mak Roberts3

1Institute for Systems Research and 2Dept. of Computer Science, Univ. of Maryland, College Park, MD, USA
3The U.S. Naval Research Laboratory, Code 5514, Washington, DC, USA

{yashb, nau, patras}@umd.edu, {mak.roberts}@nrl.navy.mil

Abstract

A major problem with integrating HTN planning and acting
is that, unless the HTN methods are very carefully written,
unexpected problems can occur when attempting to replan if
execution errors or other unexpected conditions occur dur-
ing acting. To overcome this problem, we present a re-entrant
HTN planning algorithm that can be restarted for replanning
purposes at the point where an execution error occurred, and
an HTN acting algorithm that can restart the HTN planner at
this point. We show through experiments that our algorithm
is an improvement over a widely used approach to planning
and control.

1 Introduction
HTN planners use descriptive models of actions tailored to
compute the next states in a state transition system effi-
ciently. In most cases1 they assume a world that is closed,
static, and deterministic. However, executing the plan in
open, dynamic, and nondeterministic environments, charac-
teristic of many practical problems, generally leads to fail-
ure. The planning domain will rarely be an entirely accurate
model of the actor’s environment, and execution of the plan
may fail due to (i) failure in execution of actions, (ii) occur-
rence of unexpected events, (iii) because the planning was
solved with incorrect or partial information.

Plans are needed for deliberative acting, but are not suf-
ficient for it (Pollack and Horty 1999). Many deliberative
acting approaches seek to combine the descriptive models
used by the planner with the operational models used by the
actor (Ingrand and Ghallab 2017). In contrast, others seek
to directly integrate planning and acting using operational
representations (Patra et al. 2019, 2020).

An early version of HTN planning was the Simple Hier-
archical Ordered Planner (SHOP) (Nau et al. 1999), and its
successors SHOP2 and SHOP3 (Nau et al. 2003; Goldman
and Kuter 2019). SHOP and its successors are written in the
LISP programming language, which limits its adoption.

Python is a much more widely adopted programming lan-
guage used by roboticists, game developers, machine learn-
ing engineers, and AI engineers. The Pyhop planner (Nau

1There are some exceptions, e.g., (Kuter and Nau 2005; Hogg,
Kuter, and Muñoz-Avila 2009; Chen and Bercher 2021).

2013a,b) adapts the SHOP planning algorithm so that meth-
ods and actions are written directly in Python. GTPyhop
(Nau et al. 2021), a recent extension to Pyhop, combines
both HTN planning and hierarchical goal-network (HGN)
planning (Shivashankar et al. 2012).

One difficulty with integrating acting with HTN planning
is responding to action failures at execution time. If one tries
to replan by calling the HTN planner with the new current
state but the same task as before, unfortunate results can oc-
cur (Section 5.1). In this paper we describe a way to over-
come that problem. Our primary contributions are:

1. We describe IPyHOP, a planner that can respond to plan-
execution failures by resuming the planning process at the
point where the failure occurred. IPyHOP’s planning al-
gorithm is based on GTPyhop (Nau et al. 2021), but with
the following key changes: it uses iteration rather than
recursion, and it preserves the hierarchy in the planning
solution and returns a solution task network rather than
a simple plan. Thus, if an unexpected problem occurs
during plan execution, the actor can call IPyHOP with a
pointer to the point in the task network where the execu-
tion failure occurred, and IPyHOP can resume planning
from that point onward.

2. Inspired by the RAE actor in (Ghallab, Nau, and Traverso
2016, Chapter 3), we provide a new acting algorithm,
Run-Lazy-Refineahead, that integrates efficiently with
IPyHOP. Run-Lazy-Refineahead calls IPyHOP to get a
solution task network and executes the actions in the task
network by sending them to its execution platform. If an
execution failure occurs, it gives IPyHOP a pointer to
where the failure occurred and requests replanning.

After discussing related work in Section 2, Section 3 ex-
plains our notation and briefly provides background on Py-
hop and GTPyhop. Section 4 explains the HTN planning in
IPyHOP. Section 5 explains the Run-Lazy-Lookahead and
Run-Lazy-Refineahead algorithms and how IPyHOP can be
used in integrated HTN planning and acting or deliberative
HTN acting. Sections 6 and 7 describe an experimental do-
main for HTN planning and experiments that compare Run-
Lazy-Lookahead and Run-Lazy-Refineahead algorithms for
deliberative HTN acting. Finally, Section 8 summarizes our
work and discusses limitations and some avenues for future
research.

Dana Nau
ICAPS Workshop on Hierarchical Planning (HPlan), July 2021



2 Related Work

AI planning. HTN planning is a widely adopted approach
to AI planning in the gaming industry (Neufeld et al. 2017).
One of the first HTN planners was Nets of Action Hierar-
chies (NOAH) (Sacerdoti 1975). Since then, numerous HTN
planners have been developed. Some of the best-known ones
are Nonlin (Tate 1977), System for Interactive Planning and
Execution (SIPE) and SIPE-2 (Wilkins 1990), Open Plan-
ning Architecture (O-Plan) (Currie and Tate 1991) and its
successor O-Plan2 (Tate, Drabble, and Kirby 1994), Uni-
versal Method Composition Planner (UMCP) (Erol 1996),
SHOP (Nau et al. 1999) and its successor SHOP2, and
SHOP3 (Nau et al. 2003; Goldman and Kuter 2019), and
SIADEX (Castillo et al. 2005). Additionally, there are var-
ious HTN planners like Simple Hierarchical Planning En-
gine (SHPE) (Menif, Jacopin, and Cazenave 2014) that are
specifically developed for AI planning in video games.

A wide body of literature also exists on Monte Carlo tree
search based planning in games. Monte Carlo tree search
refers to simulated execution (Feldman and Domshlak 2013,
2014), sampling outcomes of action models (Yoon, Fern,
and Givan 2007; Teichteil-Koenigsbuch, Infantes, and Kuter
2008), and hindsight optimization (Yoon et al. 2008).

Planning and acting. Musliner et al (2008) propose a way
to do online planning and acting. The old plan is executed
repeatedly in a loop while the planner synthesizes a new
plan (which the authors say can take a significant amount
of time), and the new plan is not installed until planning has
been finished. This way of repeated planning and acting is
similar to the Run-Concurrent-Lookahead algorithm defined
in (Ghallab, Nau, and Traverso 2016, Chapter 2).

Other similar algorithms, e.g., Run-Lookahead and Run-
Lazy-Lookahead, are also defined in (Ghallab, Nau, and
Traverso 2016, Chapter 2). Here Lookahead is any online
planning algorithm. Each time Run-Lookahead calls the
Lookahead planner, it performs only the first action of the
plan that Lookahead returned. This way of execution is ef-
fective, for example, in unpredictable or dynamic environ-
ments in which some of the states are likely to be differ-
ent from what the planner predicted. In contrast, Run-Lazy-
Lookahead executes each plan as far as possible, calling
Lookahead again only when the plan ends, or a plan sim-
ulator says that the plan will no longer work properly.

BDI Architectures. BDI (Belief-Desire-Intention) architec-
tures (De Silva and Padgham 2005; Bauters et al. 2014; Yao
et al. 2021; Sardina, De Silva, and Padgham 2006) have
some similarity to our work, but BDI systems are mostly
reactive. They differ from us with respect to their primitives
as well as their methods or plan-rules. In general, BDI sys-
tems will not replan, but they will select and execute an un-
tried method when failure occurs. Some BDI approaches,
e.g., (Yao et al. 2021) can also replan, but their agent model
is non-hierarchical. (Clement, Durfee, and Barrett 2007) in-
tegrates BDI architecture with hierarchical agent models for
temporal planning and coordination in multi-agent systems.

3 Background: Pyhop and GTPyhop
In this paper an HTN planning domain is defined as a pair
Σ = (O,M), and an HTN planning problem is defined as a
4-tuple P = (s0, w,O,M), where s0 is the initial state, w is
the inital task network,O is a set of operators, andM is a set
of HTN methods. For details, see (Bansod 2021). We assume
that primitive tasks can be directly executed by the execution
engine but non-primitive tasks need refinement before exe-
cution. We also assume that the planning domain is deter-
ministic and fully observable, but the execution environment
is nondeterministic—hence a solution plan returned by the
planner might not always work correctly at execution time.

GTPyhop (Nau et al. 2021) is a domain-independent Goal
Task Network (GTN) planning system written in Python.
GTPyhop is a progressive totally-ordered GTN planner i.e. it
plans for a sequence of tasks and goals in the same order that
they will later be executed. This behavior helps avoid some
of the goal-interaction issues that arise in other HTN plan-
ners, making the planning algorithm relatively simple. The
planning algorithm is sound and complete over a large class
of problems. Since GTPyhop knows the complete world-
state at each step of the planning process, it can use highly
expressive domain representations.

GTPyhop uses recursion for task and goal refinement.
Writing the algorithm as a recursive algorithm is intuitive,
and it follows the description of HTN planning algorithm
in many texts. The algorithm is also simple to implement,
and the recursion stack efficiently handles the refinement
and backtracking during task planning.

Like most HTN planners, GTPyhop has two limitations
that limit its ability to do effective replanning. First, the use
of recursion prevents the code from being re-entrant. If it
is necessary to replan because of an action failure, the only
alternative is to call GTPyhop again, which can lead to in-
correct results (see Section 5.1). Second, GTPyhop returns
a plan π, but not the refinement tree that produced π. In or-
der to replan if an action failure occurs, it is necessary for a
planner to know not only the action that failed but what tasks
it was trying to achieve at that point in the planning process.
That requires a copy of the refinement tree.

4 HTN Planning in IPyHOP
IPyHOP overcomes the limitations of GTPyhop in two
ways. First, it uses an iterative tree traversal procedure
for task refinement, with the refinement and backtracking
done by tree traversal algorithms. This supports consider-
ably more control over how the algorithm refines tasks. Sec-
ond, it accepts a (partial) task tree and returns the entire solu-
tion task network. This change supports adding hierarchical
knowledge for the replanning process. IPyHOP implements
GTN planning like GTPyhop. However, in this paper, we
discuss only the HTN planning functionality of IPyHOP.

Let u represent a grounded task node. Then, task(u) de-
fines the grounded task t = t(r1, ..., rk) corresponding to
u. refined(u) ∈ {true, false} represents if the node has been
refined. operator(u) represents the operator o ∈ O that is
relevant to task t if the task was primitive. visited(u) ∈
{true, false} represents if the node has been visited. state(u)



Algorithm 1: HTN Planning in IPyHOP.
1 IPyHOP(s, w,O,M):
2 p← root(w)
3 while true do
4 u← first unrefined bfs successor(w, p)
5 if u = ∅ then
6 if p = root(w) then
7 break
8 else
9 p← parent(p)

10 continue
11 t← task(u)
12 if t is primitive then
13 o← operator(u) \\ here o ∈ O
14 s′ ← o(s, r1, ..., rk)
15 if s′ is valid then
16 s← s′

17 refined(u)← true
18 else
19 w, u← backtrack(w, u)
20 p← parent(u)
21 if t is non-primitive then
22 if visited(u) then
23 s← state(u)
24 else
25 visited(u)← true
26 state(u)← s
27 foreach m ∈ methods(u) where m ∈M do
28 t′ ← m(s, r1, ..., rk)
29 methods(u)← methods(u)\m
30 if t′is valid then
31 refined(u)← true
32 add nodes(u, t′)
33 p← u
34 break;

35 if not refined(u) then
36 w, u← backtrack(w, u)
37 p← parent(u)

38 return w

represents the state when the node was first visited. And
methods(u) represents the methods applicable to the task t
that haven’t been used for refinement of u, given that the
task is non-primitive.

Algorithm 1 is IPyHOP’s HTN planning algorithm. The
first unrefined bfs successor(w, p) returns the first unrefined
node found during a breadth first search in w, starting from
node p. In IPyHOP, backtrack(w, u) is a subroutine (see Al-
gorithm 2) that modifies the task network given that refine-
ment of node u failed. Wp is a list of nodes in a depth first
search pre-ordering in w, starting from node p. After back-
tracking, the non-primitive task node u′, the node refined
before the current task node u, is again marked for refine-
ment. The add nodes(u, t′) subroutine adds the sub-tasks t′
as nodes to the refined node u.

Algorithm 2: IPyHOP Backtracking.
1 backtrack(w, u):
2 p← parent(u)
3 Wp ← dfs preorder nodes(w, p)
4 foreach v ∈ reversed(Wp) do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 return w, v

10 w ← {root(w)}
11 return w, root(w)

5 Integrating IPyHOP with an Actor
As explained in Section 2, a popular way of integrating
a planner and an actor is by using algorithms like Run-
Lazy-Lookahead. In Section 5.1 we describe the Run-Lazy-
Lookahead algorithm and some of its features. We explain
its use in deliberative HTN acting and point to some of
its limitations. In Section 5.2 we describe the Run-Lazy-
Refineahead algorithm for deliberative HTN acting.

5.1 Where Run-Lazy-Lookahead Fails
The Run-Lazy-Lookahead algorithm, previously introduced
in Ghallab, Nau, & Traverso (Chapter 2 2016) is a delib-
erative acting algorithm. It executes each plan π as far as
possible, calling Lookahead again only when π ends or a
plan simulator says that π will no longer work properly.
This way of execution can help in environments where it
is computationally expensive to call Lookahead, and the ac-
tions in π are likely to produce the predicted outcomes. It
can also use a plan simulator, which may use the planner’s
prediction function γ or may do a more detailed computation
(e.g., a physics-based simulation, a Monte-Carlo simulation,
et cetera.) that would be too time-consuming for the planner
to use. The simulator should return failure if its simulation
indicates that π will not work correctly. For example, if it
finds that an action in π will have an unsatisfied precondi-
tion, or if the simulation indicates that the π will not achieve
the goal g when it is supposed to.

We can use IPyHOP as the Lookahead planner in Run-
Lazy-Lookahead to integrate HTN planning and acting.
However, this repeated planning and acting procedure does
not work well with HTN planners. The problem can be vi-
sualized with the following abstract example.
Example 1. Suppose we want to plan for a task network
consisting of two tasks t1 and t2. Let there be two methods
m1 t1 and m2 t1 that are applicable to t1. And two meth-
odsm1 t2 andm2 t2 that are applicable to t2. Let primitive
tasks be represented in syntax o〈i〉, ex. o1, o2 et cetera. Let
m1 t1 refine t1 into o1 and o2. Let m2 t1 refine t1 into o3,
o4, and o5. Let m1 t2 refine t2 into o4, o5 and o6. And let
m2 t2 refine t2 into o7 and o8. Also, for the sake of this ex-
ample assume that all tasks, methods, and the operators de-
fined here are grounded. These individual refinements can be
visualized in Figure 1. We will assume that all the methods
and operators have no pre-conditions and all are applicable



m1_t1

o2o1

m2_t1

o5o3

m2_t2

o8o7

o4

m1_t2

o6o4 o5

Figure 1: Refinement of task t1 using m1 t1 and m2 t1.
And refinement of task t2 using m1 t2 and m2 t2. (Exam-
ple 1).

m1_t1

o2o1

m1_t2

o6o4 o5

ROOT

(a)

m1_t1

o2o1

ROOT

m2_t2

o8o7

(b)

Figure 2: Task network visualizations: (a) After first plan-
ning attempt. (b) Re-planning after failure in execution of
o6.

anytime in the planning process. Also, assume that the HTN
planner always prioritizes refinement of tasks using the first
method over second.

The solution tree that IPyHOP will return is visualized
by Figure 2(a). This solution implies that the plan repre-
sented in the form of a primitive task sequence will be
π = 〈o1, o2, o4, o5, o6〉. The primitive task sequence is
found by performing a Depth First Search (DFS) tree traver-
sal on the solution tree. Let us assume that while exe-
cuting this plan, o6 nondeterministically fails. We update
our model of o6 ∈ O (if required) used by the plan-
ner and perform re-planning again. The new solution tree
that IPyHOP will return is visualized by Figure 2(b). The
actor will now execute the plan π = 〈o1, o2, o7, o8〉.
This means that the action sequence executed by our ac-
tor is α = 〈o1, o2, o4, o5, o6, o1, o2, o7, o8〉, when in fact
it should have been α = 〈o1, o2, o4, o5, o6, o7, o8〉 for the
given scenario. This action sequence was executed because
we did re-planning for the completed task t1 along with the
failed task t2. �

Technically, it is possible to prevent degenerate execu-
tions like in Example 1 from happening by cleverly de-
signing methods that consider failures or having some flags

in the state that gets modified. However, as the complex-
ity of the task network increases, this approach quickly be-
comes infeasable. One of the most significant limitations of
HTN planning is the substantial domain engineering effort
required in writing HTN methods. Domain authoring is es-
pecially hard because the HTN formalism requires users to
provide methods to cover every possible scenario that the
agent could encounter. If the HTN planner finds itself in a
situation the user had not anticipated, it will behave unex-
pectedly or fail without returning a solution. Moreover, there
are many scenarios where it is impossible to account for such
occurrences while authoring the domain.

5.2 Run-Lazy-Refineahead
The problems with Run-Lazy-Lookahead occur due to in-
compatibilities between the definition of the Lookahead
planner and the definition of an HTN planner. The signature
of a Lookahead planner is (Σ, s, g), whereas the signature
of HTN planners is (s, w,O,M). However, the goal g and
task network w are notably different. The goal for a planner
might stay unchanged as the plan is executed. However, the
task network is constantly modified. Replacing the Looka-
head planner with IPyHOP leads to repeated planning for
some of the completed tasks from the original task network
w in a new state s′.

By visualizing the planning problem as a graph, however,
the solution seems apparent. We compute the modified task
network based on the location of the failure in the task net-
work. Then modify the task network again using the back-
track feature of the planner. And then resume the planning
process. During re-planning, the planner marks the nodes
that were refined because of this re-planning process.

The task network described in Example 1 is simplistic,
and finding the modified task network is trivial. We com-
pute the parent task node of the failed primitive task node
and only re-plan for the computed task node. However, for a
more complicated task network, this will not work. We will
have to come up with a more sophisticated algorithm. Let us
understand this with another example.

Example 2. We want to plan for a task network with
tasks t1, t2, and t3. Let us assume that the planner gener-
ated the solution task network represented in Figure 3(a).
We start implementing the primitive tasks in this solution
tree as encountered in a DFS tree traversal from the root
node. The primitive task sequence or the plan is π =
〈o1, o2, ..., o11, o12〉. However, while executing this plan,
assume that o7 nondeterministically fails. We need to find
the new task network our planner should use for re-planning.
Unlike the previous example, replanning just for the parent
task node t4 of the failed primitive task node o7 is incorrect
because the failure in executing o7 means that o11’s precon-
ditions will not be satisfied later in the plan. Thus, additional
replanning will be needed in order to prevent the entire plan
from failing.

In the above explained scenario, we should modify the so-
lution task network by removing refinements of all the tasks
that come after the failed node o7 in the Pre-ordered DFS
traversal. Alternatively, this could be done more efficiently



ROOT

m1_t1

o9

m1_t2

m2_t4 m1_t5 m1_t5

o8

m1_t4

m1_t6o3 o4o1 o2

o6o5

m2_t3

o10

o7's effects are o11's
preconditions

m2_t4

o11 o12o7

(a)

ROOT

m1_t1 m1_t2

m2_t4 m1_t5 t5m1_t4

m1_t6o3 o4o1 o2

o6o5

t3

o7 Unrefined
Nodes

(b)

ROOT

m1_t1 m1_t2

m2_t4 m1_t5 t5m1_t4

t6o3 o4o1 o2

t3

o7 Unrefined
Nodes

(c)

Figure 3: (a) Solution task network after initial planning. (b)
Modified task network after failure in execution of o7. (c)
Modified task network after backtracking from o7 on the
modified task network in (b). (Example2).

using the Un-Refine-Post algorithm (Algorithm 3). At this
point, the modified task network should look like Figure
3(b). Now, we again modify this task network by backtrack-
ing on the failed node o7. At this point, the modified task
network should look like Figure 3(c). We update our model
of o7 ∈ O (if required) used by the planner and perform
re-planning again. The planner marks the nodes it refines in
this re-planning problem and returns another solution task
network for us to execute.

Note that during execution, we only execute the primi-
tive tasks that the planner marked during re-planning. We
compute the marked primitive tasks in this solution tree by
performing a DFS tree traversal from the root node. �

This way of repeated planning and acting leads to the for-
mulation of Algorithm 4, Run-Lazy-Refineahead.

Run-Lazy-Refineahead is a repeated planning and acting
algorithm for integrating HTN planning and acting. Here,
Refineahead is any online HTN planner that provides the

Algorithm 3: Un-Refine-Post. Algorithm used to
modify a task network w after failure at u.

1 Un-Refine-Post(w, u):
2 while true do
3 p← parent(u)
4 foreach v ∈ BFS Successors(p) s.t. v after u do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 u← p
10 if u = root(w) then
11 break
12 return w

Algorithm 4: Run-Lazy-Refineahead.
1 Run-Lazy-Refineahead(Σ, w):
2 s← abstraction of observed state ξ
3 while true do
4 w ← Refineahead(Σ, s, w)
5 if w = failure then
6 return failure
7 π ← marked primitive tasks in DFS(w)
8 a← first action in π
9 while π 6= 〈〉 and Simulate(Σ, s, π) 6= failure do

10 a← pop-first-action(π)
11 perform(a)
12 s← abstration of observed state ξ
13 if π 6= 〈〉 then
14 w ← Un-Refine-Post(w, a)
15 w, a← Backtrack(w, a)
16 else
17 break

solution as a refined task network and provides control over
its backtracking feature.

Run-Lazy-Refineahead executes each plan π as far as pos-
sible, calling Refineahead again only when π ends or a plan
simulator says that π will no longer work properly. This
way of execution can help in environments where it is com-
putationally expensive to call Refineahead, and the actions
in π are likely to produce the predicted outcomes. Simu-
late is the plan simulator, which may use the planner’s pre-
diction function γ or may do a more detailed computation
(e.g., a physics-based simulation, a Monte-Carlo simulation,
et cetera.) that would be too time-consuming for the planner
to use. Simulate should return failure if its simulation indi-
cates that π will not work correctly. For example, if it finds
that an action in π will have an unsatisfied precondition.

On failure in executing the plan, the tasks refined after
the failed task a in the task network w are un-refined us-
ing the Un-Refine-Post (Algorithm 3), and backtracking is
performed using the Backtrack algorithm of an HTN plan-
ner, e.g., Algorithm 2. The resulting task network obtained



after these modifications is re-used for the next re-planning
process.

Intuitively, deliberative HTN acting implemented in Run-
Lazy-Refineahead is more efficient than in Run-Lazy-
Lookahead. Since for every re-planning, the Refineahead
needs to re-plan only for a subset of the task network, com-
pared to the entire task network for Lookahead, the plan-
ning time on average will be lower. Also, since the actions
corresponding to the tasks that have already been executed
are no longer planned for during re-planning, repetition of
already executed tasks will be minimized. Thus, Run-Lazy-
Refineahead will lead to executing action sequences with an
overall cost less than that by Run-Lazy-Lookahead.

6 Experimental Setup
We used the Robosub Domain (citation removed for blind
reviewing) for our experimental evaluation. The Robosub
Domain was derived from the RoboSub 2019 competition,2
where an autonomous underwater vehicle performs various
compulsory and optional tasks autonomously to score points
in the competition. A planning domain was written for the
refinement of these tasks. The planning domain consisted of
seventeen primitive task operators and twenty-one task re-
finement methods for refining ten non-primitive tasks.

We statistically analyzed the performance of Run-Lazy-
Lookahead and Run-Lazy-Refineahead approaches for de-
liberative HTN acting for the above-defined tasks. For the
RoboSub competition, we fixed the initial location of the
robot and a few other constraints. However, we varied the
location of various objects in the planning problem. The
initial task network always contains a single task named
competition-task that needs to be refined to complete all the
required tasks based on the competition deliverable.

The planning problem is solved using the IPyHOP plan-
ner, and the resulting plan is executed by a simple actor com-
municating with an execution platform. The execution envi-
ronment is nondeterministic, which leads to occasional fail-
ures in the execution of actions. The repeated planning and
acting is done using Run-Lazy-Lookahead and Run-Lazy-
Refineahead algorithms. The complete refinement and exe-
cution for one such planning problem is termed as a test case
x, where xi corresponds to the ith planning problem with the
initial state si, where si is the ith state in I . We repeat this
deliberative HTN acting process for all initial states. The ex-
ecution of all the test cases xi is known as an experiment, e,
where e = 〈x1, x2, ..., xj〉, where j = ‖I‖. We repeat the
experiment 11 times, i.e. E = 〈e1, e2, ..., e11〉.

We evaluate performance with three metrics:

• Total iterations taken: This metric calculates the total
number of iterations taken by the planner for a given test
case. Calculating iterations provides a good estimate of
the planner’s total planning time for a test case.

• Total action cost: This measures the total cost of an ac-
tion sequence for a given test case. Execution of smaller
action sequences will generally lead to lower total action
costs.
2https://robosub.org/programs/2019/

• Final state reward: This measures the reward obtained
based on the final state of the robot in a test case. This
is a good indicator of how well the competition task was
completed.

The raw data collected draw in each experiment e ∈
E described earlier was accumulated into a single dataset
Draw, where Draw = 〈d1, d2, ..., d11〉. Draw was post-
processed to calculate the required metrics and the results
were stored in a single numpy array representing the re-
sults dataset Dresults. Let the size of the dataset Dresults

be [‖e‖ × ‖a‖ × ‖x‖ × ‖m‖]. Here ‖e‖ = 11 is the number
of experiments performed, ‖a‖ = 2 is the number of deliber-
ative HTN acting algorithms being compared, ‖x‖ = 10000
is the number of test cases solved, and ‖m‖ = 3 is the num-
ber of metrics evaluated.

The Dresults dataset was processed further by doing a re-
duce mean operation across the zeroth axis of the dataset.
Thus the dataset Dexp mean of size [‖a‖ × ‖x‖ × ‖m‖] was
generated. Each element in the datasetDexp mean represents
the mean value of a metric for a given test case across ex-
periments. Since the value of a metric for a given test case
varies across experiments due to the non-determinism of the
execution environment, taking the mean across experiments
gives us a more reliable estimate of that metric for a given
test case. The metrics calculated in the dataset Dexp mean

are illustrated in Figures 4(a), 4(b), and 4(c).
It is possible that different numbers of failures occur with

each test case and a more fair assessment would compare
only situations with the same number of failures. Another
form of post-processing was done on Draw to generate the
Deqv dataset to balance this concern and these results are
presented in Figures 4(d), 4(e), and 4(f). The values repre-
sented by the Deqv dataset are less accurate since they only
use a single data point for a metric of a given test case.
Comparatively, the metric measurements from Dexp mean

are computed by performing a mean operation across 11 val-
ues for each metric in a test case. To improve the accuracy
of the metric measurements by Deqv dataset, we will need
to perform more experiments such that multiple data points
are available for each metric in the dataset.

7 Results and Discussion
Our results suggest that Run-Lazy-Refineahead is a better
algorithm for deliberative HTN acting compared to Run-
Lazy-Lookahead. In Figure 4(a), we show the values of the
metric - the total number of iterations taken by the planner,
for Run-Lazy-Lookahead (blue histogram) and Run-Lazy-
Refineahead (purple histogram). The relation of this metric
for the two deliberative acting algorithms is visualized in
Figure 4(d) as a scatter plot. Based on our results, we can
state that the Run-Lazy-Refineahead leads to the generation
of shorter and easily solvable re-planning problems. Also,
we can see in Table 2 that the average time spent in planning
during Run-Lazy-Refineahead is≈ 80% of the average time
spent in planning during Run-Lazy-Lookahead.

Figure 4(b) shows the values of the total-action-cost met-
ric, for Run-Lazy-Lookahead and Run-Lazy-Refineahead.
The relation of this metric for the two deliberative acting al-



200 250 300 350 400 450 500
Total iterations taken

0

200

400

600

800

1000

1200

1400
N

um
be

r o
f t

es
t c

as
es

run_lazy_lookahead
run_lazy_refineahead

(a)

120 140 160 180 200 220
Total action cost

0

200

400

600

800

1000

1200

N
um

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(b)

65 70 75 80 85
Final state reward

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(c)

100 200 300 400 500 600 700
run_lazy_lookahead

100

200

300

400

500

600

700

ru
n_

la
zy

_r
ef

in
ea

he
ad

Total iterations taken
diagonal
best_fit_line
data_points

(d)

100 150 200 250
run_lazy_lookahead

100

150

200

250

ru
n_

la
zy

_r
ef

in
ea

he
ad

Total action cost
diagonal
best_fit_line
data_points

(e)

50 60 70 80 90 100
run_lazy_lookahead

50

60

70

80

90

100

ru
n_

la
zy

_r
ef

in
ea

he
ad

Final state reward

diagonal
best_fit_line
data_points

(f)

Figure 4: Results of three metrics: total iterations (left), action cost (middle), and final state reward (right). Each pair shows the
distribution visualized using histograms (top, using Dexp mean) and the relation visualized by fitting a line on the scatter plot
(bottom, using Deqv).

Metric Run-Lazy-Lookahead Run-Lazy-Refineahead
Mean SD Mean SD

Total iterations taken 364.470 34.178 290.592 32.639
Total action cost 165.928 16.002 115.478 1.339
Final State Reward 74.368 3.183 74.326 3.242

Table 1: Overview of results obtained using Dmean exp

Metric Refineahead /
Lookahead Mean

Best-fit line
Slope Y-intercept

Total iterations taken 0.796 0.639 58.296
Total action cost 0.682 0.044 108.282
Final State Reward 1.049 0.805 14.540

Table 2: Overview of results obtained using Deqv

gorithms is visualized in Figure 4(e). Thus, we can state that
the Run-Lazy-Refineahead leads to the execution of smaller
action sequences. In Table 2 we can see that the average cost
of executing action sequences generated from Run-Lazy-
Refineahead is ≈ 70% of the average cost of executing ac-
tion sequences generated from Run-Lazy-Lookahead.

Figure 4(c) shows show the values of the final-state-
reward metric, for Run-Lazy-Lookahead and Run-Lazy-
Refineahead. The relation of this metric for the two delib-
erative acting algorithms is shown in Figure 4(f). The results
show that the improvements mentioned earlier were realized
without sacrificing the average final state reward.

There is also a hidden burden associated with using the
Run-Lazy-Lookahead algorithm not portrayed by our ex-
periments. Authoring the domain for use in the Run-Lazy-
Lookahead algorithm requires accounting for numerous sce-
narios where failures would lead to repeated tasks, getting
stuck in infinite task loops, getting stuck in non-recoverable
states, et cetera. These problems can be addressed by clever
definitions of task methods and flags in the state. However, it
might not be possible to eliminate these undesirable behav-
iors. In more modest domain model definitions like ours, this
problem is not as pronounced. However, as the domain mod-
els get more and more comprehensive, this problem quickly
worsens. In Run-Lazy-Refineahead, however, the planner al-
ways resumes after backtracking on the node that caused the
failure. Thus, repetition of tasks and other unexpected be-
haviors are minimized.

For our experiments, every effort was made to make de-
liberative HTN acting using Run-Lazy-Lookahead as effi-
cient as possible. Optimizing the performance of the Run-
Lazy-Lookahead algorithm was our prime focus. The task
methods, operators, and state definition were designed pri-
marily for use in the Run-Lazy-Lookahead algorithm. Then
the same domain model definition and state definition were
used for the Run-Lazy-Refineahead algorithm. This reuse
of domain definition leads to the planner performing many
unnecessary constraint checks during task refinement re-
quired for Run-Lazy-Lookahead but are not required for
Run-Lazy-Refineahead. The domain authoring for use in



Run-Lazy-Refineahead is much more straightforward and
concise. If the domain model definition was primarily de-
signed for Run-Lazy-Refineahead, the results would consid-
erably shift in its favor. The metrics would remain the same
for Run-Lazy-Refineahead but significantly worsen for the
Run-Lazy-Lookahead. However, even though the calculated
metrics would remain the same, the second execution would
be computationally faster than the first since simpler domain
model definitions are being used for task refinement process.

Hence we can comfortably state that Run-Lazy-
Refineahead is a better alternative to Run-Lazy-Lookahead
for deliberative HTN acting.

8 Summary and Future work
In this paper we have presented new algorithms for inte-
grated HTN planning and acting.

The first main contribution is an HTN planner, IPyHOP.
IPyHOP is an iterative tree traversal-based HTN planning
algorithm written in Python that provides extensive con-
trol over its task network refinement. Since the algorithm is
iteration-based, the task network refinement can be paused,
modified, and resumed at the user’s discretion. This level
of control makes it a great choice for planning in scenar-
ios where re-planning is required. Since IPyHOP uses the
Python programming language, authoring domain model
definitions does not require developers to learn specialized
programming languages. Instead, developers can write the
task methods as Python functions. Also, since it follows an
object-oriented design, it is effortless to integrate and debug
it with other computer programs. IPyHOP is envisioned to
make HTN planning accessible to a much broader audience
who were earlier reluctant to adopt it for their planning prob-
lems due to a lack of HTN planners in Python.

The second main contribution is a deliberative HTN ac-
tor, Run-Lazy-Refineahead. Run-Lazy-Refineahead is a re-
peated planning and acting algorithm specially designed for
deliberative HTN acting. We showed experimentally that it
performs better for deliberative HTN acting than Run-Lazy-
Lookahead, a popular acting-and-planning algorithm. Run-
Lazy-Refineahead uses the hierarchical nature of the refined
task network generated by HTN planners like IPyHOP to
develop smaller and smaller task refinement problems as the
execution proceeds. The improvement can be beneficial in
deliberative HTN acting in fast-moving dynamic worlds like
in games or in robotics scenarios.

We hope that the large community of roboticists and game
developers who program their systems in Python adopt IPy-
HOP, and Run-Lazy-Refineahead for HTN planning, and in-
tegrated planning and acting.

8.1 Limitations and Future Work
In some aspects, HTN planning is quite controversial.
The controversy lies in its requirement for well-conceived
and well-structured domain knowledge. Such knowledge is
likely to contain rich information and guidance on how to
solve a planning problem, thus encoding more of the solu-
tion than was envisioned for classical planning systems. This
structured and rich knowledge gives a primary advantage to

HTN planners in terms of speed and scalability when ap-
plied to real-world problems compared to their counterparts
in the classical planning world. However, this also makes
their performance depend on the users’ definition of suitable
domain-specific task methods.

IPyHOP faces many of the same challenges as other HTN
planners, namely:
• Domain engineering effort in writing methods: The HTN

formalism requires implementing methods to cover every
possible scenario that the agent could encounter. An HTN
planner trying to plan for an unanticipated state may fail
without returning a solution.

• Brittleness in open and dynamic environments: The pre-
vious problem is intensified in open, dynamic environ-
ments. Nondeterministic events or outcomes can result in
unanticipated situations, and HTN planners are not well
suited to work in open and dynamic environments.

• Effective domain-independent HTN planning heuristics:
Heuristics are crucial in guiding an algorithm toward
high-quality solutions. HTN planners often rely heavily
on the user-provided knowledge through the definition of
methods in providing the necessary guidance.

These limitations are important areas for future research on
improving IPyHOP.

In some aspects, the integration of HTN planning and act-
ing using Run-Lazy-Refineahead that we proposed here can
be interpreted as a simple HTN planner guided acting. Some
algorithms directly integrate a planner’s descriptive model
into a hierarchical actor to select refinement methods, while
others directly integrate planners that plan using operational
representations with the actor RAE e.g., (Patra et al. 2019,
2020). Combining a hierarchical planner and an actor using
this strategy leads to much more efficient and tighter integra-
tion. We believe a similar form of integration is also possi-
ble for HTN planners and HTN actors. An HTN planner like
IPyHOP could be directly integrated with an HTN actor like
RAE-lite, where the HTN actor would decide on the method
it uses for task refinement based on recommendation of the
HTN planner.

For hierarchical acting and planning, there are two main
ways to represent an objective: tasks and goals. A task is an
activity to be accomplished by an actor, while a goal is a fi-
nal state that should be reached. Depending on a domain’s
properties and requirements, users can choose between task-
based and goal-based approaches. Since IPyHOP is based on
GTPyhop (Nau et al. 2021), it supports both HTN and HGN
planning. However, we have not made any use of HGN plan-
ning in this paper. For future work, we intend to do exper-
imental evaluations of Run-Lazy-Refineahead versus Run-
Lazy-Lookahead on HGN versions of our test domains.

9 Acknowledgments
This work has been supported in part by ONR grant
N000142012257 and NRL grants N0017320P0399 and
N00173191G001. The information in this paper does not
necessarily reflect the position or policy of the funders, and
no official endorsement should be inferred.



References
Bansod, Y. 2021. Refinement Acting vs. Simple Execution
Guided by Hierarchical Planning. Master’s thesis, Univer-
sity of Maryland. URL https://www.cs.umd.edu/users/nau/
others-papers/bansod2021refinement.pdf.
Bauters, K.; Liu, W.; Hong, J.; Sierra, C.; and Godo, L. 2014.
Can(Plan)+: Extending the operational semantics of the BDI
architecture to deal with uncertain information. In UAI.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, Ó.; and Palao,
F. 2005. Temporal enhancements of an HTN planner. In
Conf. Spanish Assoc. for Artificial Intelligence, 429–438.
Chen, D.; and Bercher, P. 2021. Fully observable nonde-
terministic HTN planning – formalisation and complexity
results. In ICAPS, volume 31, 74–84.
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract reasoning for planning and coordination. Journal of
Artificial Intelligence Research 28: 453–515.
Currie, K.; and Tate, A. 1991. O-Plan: the open planning
architecture. Artificial intelligence 52(1): 49–86.
De Silva, L.; and Padgham, L. 2005. Planning on demand in
BDI systems. In ICAPS (Poster).
Erol, K. 1996. Hierarchical task network planning: formal-
ization, analysis, and implementation. Ph.D. thesis, Univer-
sity of Maryland.
Feldman, Z.; and Domshlak, C. 2013. Monte-Carlo plan-
ning: Theoretically fast convergence meets practical effi-
ciency. arXiv preprint arXiv:1309.6828 .
Feldman, Z.; and Domshlak, C. 2014. Monte-Carlo tree
search: To MC or to DP? In ECAI, 321–326.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical task net-
work planning in Common Lisp: the case of SHOP3. In
Proc. European Lisp Symposium, 73–80.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2009. Learning
hierarchical task networks for nondeterministic planning do-
mains. In IJCAI, 1708–1714.
Ingrand, F.; and Ghallab, M. 2017. Deliberation for au-
tonomous robots: a survey. Artificial Intelligence 247: 10–
44.
Kuter, U.; and Nau, D. S. 2005. Using domain-configurable
search control for probabilistic planning. In AAAI, 1169–
1174.
Menif, A.; Jacopin, É.; and Cazenave, T. 2014. SHPE:
HTN planning for video games. In Workshop on Computer
Games, 119–132. Springer.
Musliner, D.; Pelican, M. J.; Goldman, R. P.; Kresbach,
K. D.; and Durfee, E. H. 2008. The evolution of CIRCA,
a theory-based AI architecture with real-time performance
guarantees. In AAAI Spring Symp.: Emotion, Personality,
and Social Behavior.
Nau, D. 2013a. Game applications of HTN planning with
state variables. In ICAPS Workshop on Planning in Games.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proc. 16th
IJCAI, 968–973.
Nau, D.; Patra, S.; Roberts, M.; Bansod, Y.; and Li, R. 2021.
GTPyhop: A hierarchical goal+task planner implemented
in Python. In ICAPS Workshop on Hierarchical Planning
(HPlan).
Nau, D. S. 2013b. Pyhop, version 1.2.2: A simple HTN
planning system written in Python. Software release. URL
https://bitbucket.org/dananau/pyhop/src/master/.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. JAIR 20: 379–404.
Neufeld, X.; Mostaghim, S.; Sancho-Pradel, D. L.; and
Brand, S. 2017. Building a planner: A survey of planning
systems used in commercial video games. IEEE Transac-
tions on Games 11(2): 91–108.
Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019. Act-
ing and planning using operational models. In AAAI, 7691–
7698.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating acting, planning, and learning
in hierarchical operational models. In ICAPS, 478–487.
Pollack, M. E.; and Horty, J. F. 1999. There’s more to life
than making plans: plan management in dynamic, multia-
gent environments. AI Magazine 20(4): 71–71.
Sacerdoti, E. 1975. The Nonlinear Nature of Plans. In IJCAI,
206–214.
Sardina, S.; De Silva, L.; and Padgham, L. 2006. Hierarchi-
cal planning in BDI agent programming languages: A for-
mal approach. In Proc. 5th AAMAS, 1001–1008.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm
for single-agent planning. In AAMAS, 981–988.
Tate, A. 1977. Generating project networks. In Proc. 5th
IJCAI, 888–893.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: an open
architecture for command, planning and control. In Zweben,
M.; and Fox, M. S., eds., Intelligent Scheduling. Morgan
Kaufmann.
Teichteil-Koenigsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A robust, FF-based MDP planning algorithm for gen-
erating policies with low probability of failure. In Sixth In-
ternational Planning Competition at ICAPS.
Wilkins, D. E. 1990. Can AI planners solve practical prob-
lems? Computational intelligence 6(4): 232–246.
Yao, Y.; Alechina, N.; Logan, B.; and Thangarajah, J. 2021.
Intention progression using quantitative summary informa-
tion. In Proc. 20th AAMAS, 1416–1424.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: a
baseline for probabilistic planning. In ICAPS, 352–359.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In AAAI, 1010–1016.


