
Concurrency
Dr. Michael Marsh

Department of Computer Science
University of Maryland

This set includes a number of games that can be incor-
porated into lectures or used as study aids. The pur-
pose of these card games is to help students see the
mechanics of concurrency in a simplified model, with-
out the baggage of a full programming framework and
memory model. As such, we focus less on a formal pro-
gramming language and architecture, instead employing
pseudocode and pseudoassembly ; the former ties con-
cepts to familiar programming methods, while the latter
highlights the fact that, at the processor level, a single
line of code might translate to several CPU instructions.

We divide the games into a number of sections, dealing
with specific topics. Most courses covering concurrency
would begin with the first section, but after that some of
the sections might be covered in a different order than
we have here, or omitted entirely. The section order here
corresponds to the order of topics covered in the Uni-
versity of Maryland course CMSC 433: Programming
Language Technologies and Paradigms.

Each game should take 5 to 10 minutes in a classroom
setting. Where appropriate, we provide variations that
might take longer for use in studying. The games are
designed for 4 to 6 players.

In addition to the contents of the game set, you
will need enough paper and writing instruments for
all players, as well as for the shared machine state.

1 General Concurrency

These games cover topics like data races, synchroniza-
tion, and starting and waiting for threads.

1.1 Introducing the Game Set

Each set includes a deck of cards and six 6-sided dice.
The deck includes thread cards and shared cards, which
are indicated on the backs of the cards, as well as by a
card number in the lower-left corner. Each player should
have a complete set of thread cards, though not every
game will use all of the thread cards. The shared cards
represent machine state, limited resources, and things
like data to pass between threads or processes.

Thread cards represent tasks for threads to perform.
Here is an example of a task:

Task: Add

T8 c⃝2019 Michael Marsh, Univ. of MD 20190821

Roll a die, and increment the
shared value by that amount.

r = rand(6)

1. load arg1 #6

2. call rand

3. mv var1 ret

val = val + r

4. mv var2 val [read]

5. add var2 var1

6. mv val var2 [write]

1



This shows the general layout of a task. At the top, you
see that this task performs an add. Beneath that, we
have a high-level description of the task. In this case,
we’re just going to add a random number to a shared
value.

In green, we have the pseudocode for this task, which
in this case is two statemnts:

1. Choose a random number.
2. Add this number to the shared value val.

The variable val will always refer to the single shared
value in main memory.

In red, we have the pseudoassembly for the task, num-
bered consecutively from the first line of pseudocode.
Each assembly instruction takes one step of the CPU,
unless it is a sleep or wait. The format of an instruction
is

operation arg1 . . .
For an operation like add, the format is

add dest rval
This replaces the variable referred to by dest with the
sum of the original value of dest and rval.

Note that two of the operations have addition text to the
right, in blue. That’s because these operations involve
events that impact shared state. These will become
important in games that involve event traces, but for
now we can ignore these.

The dice serve two purposes: they add randomness, and
they record the status of the current task. Some tasks
will have a prompt to roll a die to generate a random
number. We will also use die rolls to select threads to
run, as a random scheduler. The random scheduler will
also use a die roll to determine the number of operations
that a thread will run before yielding to the scheduler.
Each thread has a thread number card, which the player
should keep in front of them. If the random scheduler
die roll selects a thread number that is not present,
simply roll it again.

The other use of dice is to record where in a task a
thread currently is. This is a convienient way to keep
track of where you are when your thread is interrupted
for another thread. The easiest way to do this is to put
the number of the next operation to run facing up and
sitting on the appropriate task card. A few of the tasks

have more than six operations, so some other mecha-
nism will be necessary for these, such as placement of
the die on the card.

1.2 Unsynchronized Access to a Shared
Variable

This game requires each thread to use the following
tasks:

T15 Sleep
T13 Increment

Threads will also have a thread number card (T1–T6),
for scheduling.

Each thread will also need some way to record its view
of the shared value, as well as some way to record the
current shared value in main memory. Paper and pencil
work well for this.

The shared value begins at 0. Each thread begins
ready to execute the first instruction of the Sleep task.
Scheduling is performed randomly:

1. One player rolls a die to select the next thread to
run.

2. The selected thread rolls a die to determine the
number of instructions to run before the next round
of scheduling.

3. The running thread then executes up to this num-
ber of instructions, stopping when it completes
both tasks or reaches the step call sleep.

Since each thread should increment the shared value by
1, when all threads have completed, the shared value
should be equal to the number of players. Is this the
result you obtained, or did you end up with a smaller
number?

1.3 Synchronized Access to a Shared
Variable

This game requires each thread to use the following
tasks:

2



T15 Sleep
T17 Lock A
T13 Increment
T19 Unlock A

Threads will also have a thread number card (T1–
T6), for scheduling. You will also use a single
Lock/Semaphore A (S1) card from the set of shared
resource cards.

This is very similar to the previous game, with the ad-
dition of the locking cards. A thread that is sleeping or
waiting to acquire the lock will yield back to the sched-
uler immediately.

When completed, you should always obtain the number
of players as the shared value. Did this game take longer
to complete than the previous one?

1.4 Deadlock

This game builds on the previous by adding a second
lock. Half of the players (rounded up) have the following
list of tasks:

T15 Sleep
T17 Lock A
T18 Lock B
T13 Increment
T20 Unlock B
T19 Unlock A

The other half (rounded down) have:

T15 Sleep
T18 Lock B
T17 Lock A
T13 Increment
T19 Unlock A
T20 Unlock B

Is every thread able to complete? If you have enough
time, try playing through this game multiple times.

2 Task Pools

I think the existing cards support this

2.1 Fork/Join

2.2 Work Queues

something with work-stealing

one player is the scheduler

deals random tasks to threads’ deques

tasks just used to count computation times – no sleep-
ing/blocking/waiting

steal from other threads if deque empty

3 Streams

this seems like it would require a different type of card

I think we need:

• numbers (these can be incorporated into other
games)

• generator operations

• intermediate operations

• terminal operations

The operations would have arrow indicating whether
something must come before or after them, like the
queue items.

Since this would not be threaded, we can use the thread
numbers for any modular operations.

4 Messaging

akka and MPI

3



what new cards do we need for this?

stream cards might work for this, as well as for map-
reduce

5 Nonblocking Algorithms

this will need some new cards

6 Acknowledgements

An early prototype for this set was playtested in my
CMSC 433 section at the end of the Spring 2019
semester. The following students provided invaluable
feedback and suggestions:

• Ben Carlisle

• Michael Dressner

• Brent Hazman

• Sean Malone

• Marco Mocchetti

• Kevin Pagkatipunan

• Tristan Perry

• Trulee Riley

• Fernando Rodriguez

• Jeff Sweeny

• William Sentosa Tio

• Minh Truong

I would also like to thank the teaching staff of CMSC
433, who also provided great feedback:

• Dr. Anwar Mamat, with whom I co-taught the
course

• Rimon Melamed

• Mehdi Moaddeb

• Alex Proctor

• Nao Rho

• Julian Vanecek

4


	General Concurrency
	Introducing the Game Set
	T8
	Unsynchronized Access to a Shared Variable
	Synchronized Access to a Shared Variable
	Deadlock

	Task Pools
	Fork/Join
	Work Queues

	Streams
	Messaging
	Nonblocking Algorithms
	Acknowledgements

