
Studio Ousia’s Quiz Bowl Question Answering
System at NIPS HCQA 2017

Ikuya Yamada
Studio Ousia

3-27-15 Jingumae, Shibuya, Tokyo, Japan
ikuya@ousia.jp

Ryuji Tamaki
Studio Ousia

3-27-15 Jingumae, Shibuya, Tokyo, Japan
ryuji@ousia.jp

Hiroyuki Shindo
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, Japan
shindo@is.naist.jp

Yoshiyasu Takefuji
Keio University

5322 Endo, Fujisawa, Kanagawa, Japan
takefuji@sfc.keio.ac.jp

Abstract

This paper describes the question answering system that we submitted to the
Human–Computer Question Answering Competition at the Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS). The competition
requires participants to address a factoid question answering task referred to as quiz
bowl. We use two novel neural network models to address the task. We combine
these models with conventional information retrieval models using a supervised
learning to rank algorithm. Our system achieved the best performance among the
systems submitted to the competition.

1 Introduction

This paper presents the system we submitted at the Human–Computer Question Answering Competi-
tion held at the Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)
2017. This competition requires a system to address a unique factoid question answering (QA) task
referred to as quiz bowl. This task has been studied frequently [1, 2, 3, 4]. Given a question, the
system is required to guess the entity that is described in the question (see Table 1). One unique
characteristic of this task is that the question is given one word at a time, and the system can output
an answer at any time. Moreover, the answer must be an entity that exists in Wikipedia.

To address this task, we propose a system that combines the outputs of neural network models and
conventional information retrieval (IR) models using supervised machine learning. We adopt a
point-wise learning to rank algorithm to combine these outputs; given a question text, our system
assigns a relevance score to answers, and output an answer if the score of the top answer exceeds a
predefined threshold.

We use two types of neural network models to address this task. Similar to past work [2, 3, 4], our
first neural network model directly solves the task by casting it as a text classification problem. As
the entities mentioned in the question (e.g., Gregor Samsa and The Metamorphosis in the question
shown in Table 1) play a significant role in guessing the answer, we use words and entities as inputs
to the model. We train the neural network model based on Deep Averaging Networks [3] to predict
the answer from a set of words and entities that appear in the question.

Given a question, our second neural network model predicts the types of the answers. For example,
the expected entity types of the question shown in Table 1 are author and person. We train the neural
network model to predict the entity types of the answer to a question. We address this task as a text

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Question: The protagonist of a novel by this author is evicted from the Bridge Inn and is
talked into becoming a school janitor by a character whose role is often translated as the
Council Chairman. A character created by this writer is surprised to discover that he no longer
likes the taste of milk, but enjoys eating rotten food. The quest for Klamm, who resides in the
title structure, is taken up by K in his novel The Castle. For 10 points, name this author who
wrote about Gregor Samsa being turned into an insect in "The Metamorphosis."

Answer: Franz Kafka
Table 1: Example of a quiz bowl question

classification problem. In particular, we adopt a convolutional neural network (CNN) [5] to predict
the corresponding entity types for a question.

The outputs of these neural network models are used as the features of the learning to rank model.
We train the learning to rank model by combining these neural network-based features with other
features including the outputs of conventional IR models. The neural network models and learning to
rank model are trained using our quiz bowl QA dataset, which is developed based on two existing
datasets. As a result, our system achieves the best performance among the systems submitted to the
competition.

2 Proposed system

In this section, we provide an overview of the proposed system. We first describe the data used to
develop our system and then present the technical details of our system.

2.1 Data

We used several data sources to develop our system. First, we used the Protobowl QA dataset, which
is the official dataset provided by the competition organizers.1 The dataset contained over 100,000
quiz bowl questions and their answers, which were originally obtained from the Protobowl website2.
The dataset contained several questions whose answers did not exactly match their corresponding
Wikipedia titles. We resolved the answers to the corresponding Wikipedia titles using simple string
matching methods and a crowd-sourcing service and excluded the questions whose answers could
not be matched to Wikipedia.

In addition, we concatenated the Protobowl QA dataset with the public QA dataset provided by
Iyyer et al. [2], containing 20,407 quiz bowl questions and their answers.3 Unlike the Protobowl
dataset, the answers contained in this dataset were provided as Wikipedia titles. We removed the
duplicated questions from the concatenated dataset. As a result, our final QA dataset contained
101,043 question–answer pairs.

We used Wikipedia and Freebase as the data sources of various models. We used a Wikipedia dump
generated in June 2016 and the latest Freebase data dump obtained from the website4.

2.2 Neural network models

We develop the following two neural network models to solve the QA task: Neural Quiz Bowl Solver
and Neural Entity Type Predictor.

2.2.1 Neural Quiz Bowl Solver

Neural Quiz Bowl Solver addresses the task as a text classification problem over possible answers.
We use Deep Averaging Network, which has been reported to perform well on the quiz bowl task [3].

1The dataset was obtained from the competition website: https://sites.google.com/view/hcqa/
data.

2http://protobowl.com/
3The dataset was obtained from the author’s website: https://cs.umd.edu/~miyyer/qblearn/
4https://developers.google.com/freebase/

2

https://sites.google.com/view/hcqa/data
https://sites.google.com/view/hcqa/data
http://protobowl.com/
https://cs.umd.edu/~miyyer/qblearn/
https://developers.google.com/freebase/


Given the words (w1, ..., wN ) and Wikipedia entities (e1, ..., eK ) that appear in question D, our model
first computes the word-based vector representation, vDw , and the entity-based vector representation,
vDe , of question D by averaging the vector representations of the words and entities, respectively.

vDw
=

1

N

N∑
n=1

Wwawn
, vDe

=
1

K

K∑
n=1

Weben , (1)

where aw ∈ Rd and be ∈ Rd are the vector representations of a word and an entity, respectively, and
Ww ∈ Rd×d and We ∈ Rd×d are projection matrices. Then, the vector representation of question
vD is computed as the element-wise sum of vDw

and vDe
.

vD = vDw + vDe . (2)

The probability that entity et is the answer of question D is defined using the following softmax
function:

P (et|D) =
exp(cet

>vD)∑
e′∈Γ exp(ce′>vD)

, (3)

where Γ is a set containing all answers, and ce ∈ Rd denotes the vector representation of answer e.
Further, we use categorical cross entropy as a loss function.

Because the model requires the list of entities in a question, we automatically annotate entity names
using a simple entity linking method. The method is based on keyphraseness [6], which is the
probability that an entity name is used as an anchor in Wikipedia. We detect an entity name if its
keyphraseness is larger than 2%. Furthermore, as an entity name can be ambiguous (e.g., Washington
can refer to the city and state in the U.S., a person’s name, etc.), we use an entity name if it refers to a
single entity with a probability of 95% or more in Wikipedia. The entities referred by the detected
entity names are used as inputs to the model.

The model is trained by iterating over the QA dataset described in Section 2.1. We randomly select
10% questions from the dataset as a validation set and use the remaining questions to train the model.
Furthermore, because a question is given one word at a time, the model must perform accurately for
incomplete questions. To address this, we truncate a question at a random position before inputting it
to the model during training.

We use Entity-Vector [7], which is a method for learning the vector representations of words and
entities from Wikipedia, to initialize the vector representations of words (aw), entities (be), and
answers (ce). We train the representations using the Wikipedia dump described in Section 2.1. Note
that we use the same pretrained entity representations to initialize the representations of entities and
answers.

The proposed model is implemented using PyTorch5 and trained using minibatch stochastic gradient
descent (SGD) on a GPU. The minibatch size is fixed as 32, the learning rate is automatically
controlled by Adam [8], and the number of representation dimensions is set as d = 300. In addition,
we use early stopping based on the accuracy on the validation set to locate the best epoch. To prevent
overfitting, we randomly exclude the words and entities in the question with a probability of 0.5 [3].

We compute two scores for each answer using this model, i.e., (1) the predicted probability (P (et|D))
and (2) the unnormalized value inputted to the softmax function (cet

>vD).

2.2.2 Neural Entity Type Predictor

Neural Entity Type Predictor aims to predict the entity types for a question. For example, when the
target question is the one shown in Table 1, the target entity types are person and author. We address
this task as a multiclass text classification task over entity types using the CNN proposed by Kim [5].
We use rectified linear units as the activation function and the average binary cross entropy as the loss
function.

We use the FIGER entity type set [9], which consists of 112 fine-grained entity types, as the target
entity types. We automatically assign entity types to each answer by resolving the answer’s Wikipedia

5http://pytorch.org

3

http://pytorch.org


entity to its corresponding entity in Freebase and computing FIGER entity types based on the
mapping6 and Freebase data.

We train two separate models with the following different target entity types: all fine-grained entity
types and only eight coarse-grained entity types (i.e., person, organization, location, product, art,
event, building, and other). In the former setting, we address the task as a multilabel text classification
problem because most answers have multiple entity types. Because the CNN model proposed by
Kim does not address multilabel classification, we slightly modify the model by replacing its output
softmax layer with a layer consisting of multiple binary sigmoid units, each of which corresponds to
each entity type. Furthermore, we use the unmodified version of Kim’s CNN model for the latter
setting.7

These two models are trained using the same settings. The models are trained using SGD on a
GPU, the minibatch size is fixed as 32, and the learning rate is controlled by Adamax [8]. We use
filter window sizes of 2, 3, 4, and 5 and 1,000 feature maps for each filter. Moreover, we use the
GloVe word embeddings [10] trained on the 840 billion Common Crawl corpus to initialize the word
representations. We randomly select 10% questions from the dataset as a validation set and use the
remaining questions to train the model. We use early stopping based on the validation set to locate
the best epoch. Furthermore, similar to the neural network model explained previously, a question is
truncated at a random position before it is input to the models. The models are implemented using
PyTorch8

Given a question and an answer, each model outputs two scores, i.e., the sum and maximum
probability, based on the predicted probabilities of the entity types assigned to the answer.

2.3 Information retrieval models

Similar to previous studies [11, 12, 2], we use conventional IR models to enhance the performance of
our QA system. In particular, we compute multiple relevance scores against the documents associated
to the answer using the words in a question as a query.

Specifically, for each answer contained in the dataset, we create the target documents using the
following two types of data sources: (1) Wikipedia text, which is the page text in the answer’s
Wikpedia entry, and (2) dataset questions, which are the questions contained in our QA dataset
(see Section 2.1) and associated to the answer. Regarding Wikipedia text, we use two methods to
create documents for each answer, i.e., treating page text as a single document and treating each
paragraph as a separate document. We adopt two similar methods for dataset questions, i.e., creating
a single document by concatenating all questions associated to the answer and treating each question
as a separate document. Further, because the latter methods of both data sources create multiple
documents for each answer, we first compute the relevance scores for all documents and reduce them
by selecting their maximum score.

We preprocess the questions and documents by turning all words to lowercase, removing stop words9,
and performing snowball stemming. We use two scoring methods, i.e., Okapi BM25 [12] and the
number of common words between the question and document. Further, we generate four types of
queries for a question using (1) all of its words, (2) all of its words and bigrams, (3) its noun words,
and (4) its proper noun words.10 There are four target document sets, two scoring methods, and four
query types; thus, given a question and an answer, we compute 32 relevance scores.

2.4 Learning to rank

Given a question as an input, the learning to rank model assigns a relevance score to each answer
based on the outputs of the neural network models and IR models described above. We use gradient
boosted regression trees (GBRT) [13], which is a point-wise learning to rank algorithm that provides
state-of-the-art performance [14, 15]. GBRT consists of an ensemble of regression trees, and given

6The mapping was obtained from FIGER’s GitHub repository: https://github.com/xiaoling/figer/
7We neglect the answers with multiple coarse-grained entity types during training.
8http://pytorch.org/
9We use the list of stop words contained in the scikit-learn library.

10We use Apache OpenNLP to detect noun and proper noun words.

4

https://github.com/xiaoling/figer/
http://pytorch.org/


a question, it predicts a relevance score for each answer. We use the GBRT implementation in
LightGBM11, and logistic loss is used as the loss function.

Furthermore, to reduce computational cost, we assign relevance scores only for a small number of
top answer candidates. We generate answer candidates using the union of the top five answers with
the highest scores among the scores generated by Neural Quiz Bowl Solver and the IR models.

The features used in this model are primarily based on the scores assigned by the neural network
models and IR models described above. For each score, we generate three features using (1) the score,
(2) its ranking position in the answer candidates, and (3) the margin between the score and the highest
score among the scores of the answer candidates. We use three additional features, i.e., the number of
words and sentences in the question and the number of FIGER entity types associated to the answer.

The model is trained using our QA dataset (see Section 2.1). To maintain accuracy for incomplete
questions, we generate five questions truncated at random positions per question. One problem is
that we use the same QA dataset for training the neural network models and the corpus of the IR
models; this likely causes severe overfitting. To address this, we use two methods during the training
of the learning to rank model. We adopt stacked generalization [16] based on 10-fold cross validation
to compute scores based on the neural network models. Regarding the IR models, we dynamically
exclude the question used to create the input query from the corpus.

Our system outputs an answer if the relevance score of the top answer exceeds a predefined threshold,
which is set as 0.6. Furthermore, as predictions frequently become unstable when the question is
short, we restrict the system not to output an answer if the number of words in the question is lower
than 15.

3 Competition results

Table 2 shows the accuracy scores of the top 3 systems submitted to the competition. Our system
achieves the best performance by a wide margin. Furthermore, to evaluate the actual performance of
the systems in the quiz bowl game, simulated pairwise matches were performed between the systems
following the official quiz bowl rules. Our system outperformed System 1 (our system: 1220 points;
System 1: 60 points) and System 2 (our system: 1145 points; System 2: 105 points) by considerably
wide margins.

Name Accuracy
Our system 0.85
System 1 0.675
System 2 0.6
Baseline 0.55

Table 2: Accuracy scores of the top 3 systems

4 Conclusions

In this paper, we describe the system that we submitted to the Human–Computer Question Answering
Competition held at NIPS 2017. We proposed two novel neural network models and combined these
two models with conventional IR models using a supervised point-wise learning to rank algorithm.
Our system achieved the best performance among the systems submitted to the competition.

References
[1] Jordan Boyd-Graber, Brianna Satinoff, He He, and Hal Daume III. Besting the Quiz Master:

Crowdsourcing Incremental Classification Games. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pages 1290–1301, 2012.

11https://github.com/Microsoft/LightGBM

5

https://github.com/Microsoft/LightGBM


[2] Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III. A
Neural Network for Factoid Question Answering over Paragraphs. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, pages 633–644, 2014.

[3] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep Unordered
Composition Rivals Syntactic Methods for Text Classification. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1681–1691,
2015.

[4] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Learning Dis-
tributed Representations of Texts and Entities from Knowledge Base. arXiv preprint
arXiv:1705.02494v2, 2017.

[5] Yoon Kim. Convolutional Neural Networks for Sentence Classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, pages 1746–1751,
Doha, Qatar, 2014.

[6] Rada Mihalcea and Andras Csomai. Wikify!: Linking Documents to Encyclopedic Knowledge.
In Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management,
pages 233–242, 2007.

[7] Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Joint Learning of
the Embedding of Words and Entities for Named Entity Disambiguation. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, pages 250–259, 2016.

[8] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980v9, 2014.

[9] Xiao Ling and Daniel S. Weld. Fine-Grained Entity Recognition. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 94–100, 2012.

[10] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global Vectors for
Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pages 1532–1543, 2014.

[11] Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Question Answering
Using Enhanced Lexical Semantic Models. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1744–1753, 2013.

[12] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep Learning for Answer
Sentence Selection. arXiv preprint arXiv:1412.1632v1, 2014.

[13] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The
Annals of Statistics, 29(5):1189–1232, 2001.

[14] O Chapelle and Y Chang. Yahoo! Learning to Rank Challenge Overview. In Proceedings of the
Learning to Rank Challenge, volume 14 of Proceedings of Machine Learning Research, pages
1–24, 2011.

[15] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen,
Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc Langlois, and Yi Chang. Ranking
Relevance in Yahoo Search. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 323–332, 2016.

[16] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

6


	Introduction
	Proposed system
	Data
	Neural network models
	Neural Quiz Bowl Solver
	Neural Entity Type Predictor

	Information retrieval models
	Learning to rank

	Competition results
	Conclusions

