
question answering
CS585, Fall 2019


Deep Learning for Natural Language Processing


Mohit Iyyer

College of Information and Computer Sciences


University of Massachusetts Amherst

some slides from Jordan Boyd-Graber & Kalpesh Krishna



questions from last time
• final projects? how much work do we have to put in? 

implement everything from scratch? 

• HW3 due Thursday 

• If you want CSCF to print your poster, submit it by 
this Friday at noon



Song Genre Classification 
Bryce Bodley-Gomes

bbodleygomes@umass.edu
Theodore Proulx

tproulx@umass.edu

COMPSCI 585 Natural Language Proccessing
Fall 2017

Introduction

Our project objective was to run various natural language 
processing classification algorithms on a dataset of 
songs to compare the effectiveness of these algorithms 
in identifying the genre of the songs. 
We used a bag of words representation of the song lyrics 
linked to ground truth genre tags to train the algorithms 
and then predict genres for new sets of lyrics.

Dataset information

Our dataset contains 13 genres with a distribution of:

Pop_Rock 75.15%
Reggae 0.70%
Country 4.00%
Jazz 0.50%
Vocal 1.06%
New Age 0.16%
Latin 4.30%
Rap 4.06%
RnB 3.93%
International 1.78%
Blues 0.57%
Electronic 2.78%
Folk 1.00%

● dataset is a BOW 
representation of the stemmed 
lyrics

● Derived from Million Songs 
Dataset

● Split 90-10 training vs test
● 114,643 songs in the dataset

Approach

We were unable to find a dataset that linked lyrics directly 
to genre, so we first had to compile information from 
multiple datasets into one that we could use. The 
musiXmatch dataset maps songs to lyrics while the MSD 
Allmusic Top Genre Dataset maps songs to genre, 
creating the perfect combination for what our project 
needed. Once we had our data, we began implementing 
different natural language processing algorithms using 
python’s scikit-learn library. After training these algorithms 
on a large percentage of our dataset and testing their 
ability to correctly classify the remaining portion, we were 
able to identify which type of algorithm generally 

Results

● Decision Tree Algorithm: 70.06% accuracy
● Multi-Layer Perception: 76.45% accuracy 
● Stochastic Gradient Descent (SGD): 76.16% accuracy
● Support Vector Machine Classifier (SVM): 75.22% 

accuracy 
● Voting Classifier: 78.51% accuracy 

The Voting Classifier used the other algorithms and 

implemented a voting system such that each classifier had a say 

in the genre assigned to a given example. This turned out to get a 

small boost in accuracy over the other classifiers as it could weed 

out any outliers when one of the algorithms predicted the wrong 

result. 

The Multi-Layer Perceptron and SGD classifiers performed a bit 

better than the others 

Conclusions

● We were unable to use many of the more “advanced” 

algorithms on our dataset due to its limitations as a 

pre-stemmed/lemmatized BOW representation of the lyrics. 

● Given more time/resources it probably be possible to compile 

a “better” dataset which we could run algorithms that would 

obtain higher accuracy.

References

https://labrosa.ee.columbia.edu/millionsong/

http://web.stanford.edu/class/cs224n/reports/2728368.pdf

https://nlp.stanford.edu/courses/cs224n/2006/fp/sadovsky-x1n9

-1-224n_final_report.pdf

too much text!



Twitter Sentiment Classification and Analysis
Amanda Pellerite
University of  Massachusetts Amherst

The purpose of this project is to predict the
sentiment of a tweet based on a 5-point scale
(from very negative to very positive) and
compare the sentiment of the topic of a tweet
among various demographics through graphs.

We have previously classified text sentiment
based on a two-point scale (negative versus
positive) in class, so this project is meant to
push the boundaries. Because the source of the
tweet data also provides user demographic
data, it seemed interesting to visually analyze
sentiment trends based on a user’s location.

The SemEval-2017 Task 4 Data and Tools page
provided all of the needed materials for
obtaining the data for this project. This data
included training, development, and testing
sets for tweets written in English, as well as
information about the users who wrote the
tweets. For reading and parsing reasons, the
data needed to be cleaned using a script.

Tools used:
• Python 2.7.13
• Natural Language Toolkit (NLTK)
• Matplotlib

Because the bag-of-words method was found
to be inefficient, I am currently working on
implementing a classification perceptron me-
thod to replace it, since it proved to have a
much higher accuracy when compared to the
Naïve Bayes method.

In addition, graphs displaying the sentiment
among users from different location have yet
to be created. There will be two types of
graphs: the first will show the sentiment
across a single group on a single topic, and the
second will compare the general sentiment (if
there is a clear one) of two different groups on
a single topic.

• Farra, N., Nakov, P., & Rosenthal, S.
(2016). SemEval-2017 Task 4: Sentiment
Analysis in Twitter, SIGLEX. Retrieved
from alt.qcri.org/semeval2017/task4/

• Taboada, M., Brooke, J., Voll, K., Anthony,
C., & Grieve, J. (2009). SO-CAL (Version
1.11). github.com/DrOttensooser/Biblical
NLPworks/tree/master/SkyDrive/NLP/Co
mmonWorks/Data/Opion-Lexicon-
English/SO-CAL

Of the many ways to classify sentiment, the first attempted for this
project was the Naïve Bayes, bag-of-words method, where the tweets are
tokenized and evaluated based on each individual token. The classifier is
trained on the tokens stored in each sentiment dictionary (one for each
rating on the scale) based on the provided sentiment of the tweets in the
training data.

I additionally attempted to include an external dictionary with generally
known words and their sentiment weights to add to the weights
calculated during the classifier training. When comparing the two
implementations, the external dictionary proved to hurt rather than help
the classification accuracy.

While the classification accuracy remained above 50% on all data sets,
this method proved inefficient compared to others learned in class.

Data and Tools

Purpose Future Work

References

Method & Results

Graphs

Fig 1: Multi-bar chart to compare accuracy
outputs across classifier implementations
on different datasets

Fig 2: Line chart taken from the solutions
of a previous homework displays the
anticipated accuracy of the perceptron
implementation

too much text!



Price Prediction of Alternative Cryptocurrencies using 
Telegram Group Chats

Misha Kanai

VADER Sentiment Analysis and 
Granger Causality
Granger causality was calculated based on VADER 
sentiment and price, using custom and stock lexicons. 
This established correlation between the price and 
sentiment time series expressed with both lexicons.

Trading Algorithm
Sentiment was calculated for each 60 minute group of messages, and a 
exponential weighted moving average (EWMA) of sentiment, and deviation is 
maintained. When sentiment rises or drops above the EWMA of sentiment 
past a deviation threshold, a percentage of the altcoin account proportional to 
the difference between sentiment and sentiment EWMA is transferred to the 
altcoin, or Bitcoin account, respectively.

Relevance Classifier (Neural Net)
A multi-level perceptron classifier with a single hidden 
layer of size 50 was trained on single word ngrams of 
the training set’s annotated data with 10,000 iterations. 
Train/Test split was done on 07/01/2017.

Overview
This project uses existing sentiment analysis and machine learning techniques to anticipate price movements of alternative cryptocurrencies using 
popular Telegram chat groups. Telegram is a popular chat application that has been adopted by cryptocurrency communities for price speculation, 
and as an interface between project teams and the community. Since Bitcoin is the de facto bridge between fiat and all other cryptocurrencies, 
backtesting against the market will be evaluated according to maximization of a simulated Bitcoin account.

Datasets

Coin Ticker Telegram Chat Members Msg / Hour

Litecoin LTC Litecoin LTC 8535 36.5

XEM XEM NEMberia 2.0 1768 17.7

Ethereum ETH EthTrader 5046 14.3

Sentiment Lexicon
A random subset of messages in Litecoin LTC was 
manually annotated as displaying strong positive or 
negative indications of sentiment or outlook regarding 
price. Using the results of annotations, a custom lexicon 
was developed by hand using the keywords found with 
sentiment weights. This lexicon used generic keywords 
allowing it to be reused for other cryptocurrencies. 
Cryptocurrency slang (e.g. ‘mooning’), trading 
terminology (‘long’, ‘short’), and common slang (‘rekt’) 
were incorporated into the lexicon, in addition to words 
in the existing VADER lexicon. Evaluation

The trading agent with relevance filtering outperformed buy and hold both  
with, and without a standard .25% transaction fee for each order made.Relevance Annotations

Messages were manually annotated according to 
perceived relevance to the coin or its market behavior.

Chat Annotations Relevant Irrelevant

Litecoin LTC 3207 1248 1959

NEMberia 2.0 3295 875 2422

EthTrader 2682 474 2208

Train Size Dev Size Precision Recall F1 

LTC 2511 694 .70 .69 .68

XEM 2425 721 .78 .80 .78

ETH 1860 816 .80 .81 .81

Without Relevance Filtering With Relevance Filtering

Max Time Lag w/ p value > .05
Stock Lexicon Custom Lexicon

LTC >15h >15h
XEM 8h 9.5h
ETH 8.5h 8h

could have 
less text,  

overall not 
bad!



Aspect Extraction using Dependency Parsing and 
Semantic Clustering

Nishit Parekh (CICS, UMass Amherst)

“ it gives great pictures,

the controls are easy to use,

the battery lasts forever on one single charge,

but the software is not user-friendly at all! “

Pictures great

Controls easy to use,

Battery lasts forever

Software not user-friendly

Pictures

Controls

Battery

Software

Dependency
Parse

Problem Description

Procedural Steps

Rule-Based Extraction

VB ← advmod ← RB
NN ← acomp ← JJ
NN ← amod ← JJ

...
NN ← nsubj ← VB → dobj → NN
RB ← advmod ← VB → nsubj → NN

Heuristics

● VB ← neg ← RB

● Delete Stop Words

● Ignore Low Frequency

Opinion 
Seed Lexicon

Aspect Filtering using Word 
Embeddings

Camera

Electronic
DisplayTec

h

Domain Seed

Photos
Crisp

Clear

Aspect Precision Aspect Recall Opinion Precision

DVD Player 0.316 0.201 0.492

Camera-1 0.347 0.487 0.596

Camera-2 0.516 0.534 0.341

MP3 Player 0.360 0.411 0.571

Cell Phone 0.545 0.525 0.478

OVERALL 0.385 0.384 0.504

Results Further Work

● More Heuristics

● Recursive Seed Expansion

● Better Semantic Clustering

- Hu and Liu. 2004. Mining and summarizing customer reviews, 10th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

- Qiu, Liu, Bu, and Chen. 2011. Opinion word expansion and target extraction through double propagation. Computational Linguistics

pretty good!



	 	 Wordify: A Reverse Dictionary for Everyone

Task
Ever had a word at the tip of your tongue 
and still be unable to speak or write it?

Using a Reverse Dictionary, you can turn 
your thoughts into words! 

Aim: Develop a reverse dictionary by 
learning to map the definitions in a 
dictionary to the word embeddings of the 
words that they define.

A native of a cold country - eskimo
A way of moving through the air - glide

Future Work

Approach

Jay Shah  
Twinkle Tanna

COMPSCI 585 
Introduction to Natural Language Processing

Preliminary Results

• Use pre-trained word embeddings from 
spaCy to improve the baseline performance.

• Implement a RNN model to learn the word 
embeddings and compare the performance 
with respect to the baseline methods.

TRAIN 80%

I. Felix Hill, Kyunghyun Cho, Anna Korhonen and Yoshua Bengio. Learning to understand phrases by embedding the dictionary. Association for Computational 
Linguistics, vol 4, 2016. 

II.  http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Baseline 
algorithm

Mean 
Rank

%acc@500/1k/
5k/10k %match

ADD 29912 1.7/5.1/8.5/16.2 48

MUL 62601 0.0/1.7/4.2/5.9 49

Progress so far….
Collected data from WordNet

Implemented two baseline 
algorithms

Processed and stored the data

Used gensim to create word 
embeddings

Step 1 Learn word embeddings using 
Word2Vec

Step 2 Train a RNN to map the 
sentence or phrase to the word 
embedding of the word that it 
defines

Step 3 Map the input phrase to a 
point in the embedding space 
and return the words closest 
to that point

ADD

good!



 8

Who wrote the song 
“Kiss from a Rose”?

Question Analysis: 
POS/Parsing/NER

Query Formulation/ 
Template Extraction

Knowledge Base Search/ 
Candidate Answer Generation

Answer Type 
Selection

Evidence Retrieval/ 
Candidate Scoring

Final Ranking

Seal



 9

Neural 
Network

External 
Knowledge

Classifier

Who wrote the song 
“Kiss from a Rose”?

Seal

Can we replace all of these modules with a single neural network?



• factoid QA: the answer is a single entity / numeric 
• “who wrote the book “Dracula”? 

• non-factoid QA: answer is free text 
• “why is Dracula so evil?” 

• QA subtypes (could be factoid or non-factoid): 
• semantic parsing: question is mapped to a logical form 

which is then executed over some database 
• “how many people did Dracula bite?” 

• reading comprehension: answer is a span of text within a 
document (could be factoid or non-factoid) 

• community-based QA: question is answered by multiple 
web users (e.g., Yahoo! Answers) 

• visual QA: questions about images



Machine reading 
(“reading comprehension”)



Narrative QA

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 9



SQuAD

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 7 / 9



SQuAD

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 7 / 9



How would you go about 
building a model for SQuAD?



Let’s look at the DRQA model 
(Chen et al., ACL 2017)



Overview of the Document Reader Question Answering

Good source code available!

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 2 / 8



Big idea

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 3 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Other ways of modeling 
possible answers?



Start and End Probabilities

P
start

(i)/exp{~piWs~q} (1)

P
end

(i)/exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

How does this work at test-time?



Question Encoding

~q =
X

j

bj~qj (3)

bj =
exp

�
~w ·qj

 
P

j 0 exp

�
w ·qj 0

 
(4)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8



Question Encoding

~q =
X

j

bj~qj (3)

bj =
exp

�
~w ·qj

 
P

j 0 exp

�
w ·qj 0

 
(4)

Question vector is a weighted sum

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8



Question Encoding

~q =
X

j

bj~qj (3)

bj =
exp

�
~w ·qj

 
P

j 0 exp

�
w ·qj 0

 
(4)

The weight is a scalar

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8



Question Encoding

~q =
X

j

bj~qj (3)

bj =
exp

�
~w ·qj

 
P

j 0 exp

�
w ·qj 0

 
(4)

A focus parameter learns how to focus on particular words in the question

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8



Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8



Paragraph Encoding

LSTM: encode

contextual effects

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8



Paragraph Encoding

Add a backwards

direction as well

(bi-directional LSTM)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8



Paragraph Encoding

Use the concatenation

of these two hidden

layers as the

representation of the

word

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8



Paragraph Encoding

P
start

(i)/exp{~piWs~q}
P

end

(i)/exp{~piWe~q}

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8



Implementation

Ñ
Trained on passages

Ñ
Backprop through all

layers

Ñ
Look at code

https://github.com/

facebookresearch/DrQA/

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 7 / 8



Thieves of Sesame Street:
Model Extraction on 

BERT-based APIs
@kalpeshk

with @gtomar, @aparikh



What is model extraction?

Photo credits - http://jalammar.github.io/illustrated-bert/

A company trains a BERT-based textual classifier



What is model extraction?

Releases it as a Cloud API, with black-box query access

“This is a great 
movie!”

99.94% Positive
00.06% Negative



What is model extraction?

Malicious user generates inputs and spams API

“seventeen III. 
miles Vegas”

“Circle Ford had 
support. wife 
rulers broken Jan 
Family”

98.89% Positive
01.11% Negative

29.58% Positive
70.42% Negative

Input Generator

xN 
queries



What is model extraction?

“seventeen III. 
miles Vegas”

98.89% Positive
01.11% Negative

“Circle Ford had 
support. wife 
rulers broken Jan 
Family”

29.58% Positive
70.42% Negative

Input Generator

xN 
queries

API outputs used as training data

Victim Model / Black-box API

Extracted Model













Economically practical?

● Google Cloud NL API, <= $1.00 for every 1000 API calls.
● Lots of free schemes, distributed collection possible

https://cloud.google.com/products/calculator/

Dataset Size Upperbound Price

SST2 (sentiment) 67349 sentences $62.35

Switchboard (speech) 300 hours $430.56

MNLI (pairwise inference) 392702 pairs $387.70

Translation 1 million sentences
(100 characters each)

$2000.00



Simple Attacks

1. RANDOM
a. Randomly sample word sequences
b. Apply task-specific heuristic

2. WIKI
a. Collect wikitext103 sentences
b. Apply task-specific heuristic

In most cases inputs are nonsensical to humans.

Input Generator

xN 
queries



Simple Attacks - Results

Task Queries Cost ORIGINAL RANDOM WIKI WIKI-ARGMAX

SST-2 67349 $62.35 93.12% 90.06% 91.40% 91.28%

MNLI 392702 $387.70 85.80% 76.26% 77.80% 77.12%

SQuAD 87599 $82.60 90.58 F1 79.61 F1 86.20 F1 -

BoolQ 9427 $4.43 76.13% X 66.78% 66.04%

BoolQ 
(50x)

471350 $466.35 76.13% - 72.71% -

Extraction is quite effective, even with 
out-of-distribution input points!

Setting Extracted Models Dev%API Dev%



Simple Attacks - Results

Task Queries Cost ORIGINAL RANDOM WIKI WIKI-ARGMAX

SST-2 67349 $62.35 93.12% 90.06% 91.40% 91.28%

MNLI 392702 $387.70 85.80% 76.26% 77.80% 77.12%

SQuAD 87599 $82.60 90.58 F1 79.61 F1 86.20 F1 -

BoolQ 9427 $4.43 76.13% X 66.78% 66.04%

BoolQ 
(50x)

471350 $466.35 76.13% - 72.71% -

Extraction is quite effective, even with 
out-of-distribution input points!

Setting Extracted Models Dev%API Dev%



Simple Attacks - Results

Task Queries Cost ORIGINAL RANDOM WIKI WIKI-ARGMAX

SST-2 67349 $62.35 93.12% 90.06% 91.40% 91.28%

MNLI 392702 $387.70 85.80% 76.26% 77.80% 77.12%

SQuAD 87599 $82.60 90.58 F1 79.61 F1 86.20 F1 -

BoolQ 9427 $4.43 76.13% X 66.78% 66.04%

BoolQ 
(50x)

471350 $466.35 76.13% - 72.71% -

Extraction is quite effective, even with 
out-of-distribution input points!

Setting Extracted Models Dev%API Dev%



Extraction improves with more queries

(89.4 F1 with $826 on SQuAD
vs 90.6 F1 with original API)



Quiz Bowl

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 8 / 9



what is quiz bowl?
• a trivia game that contains questions about famous 

entities (e.g., novels, battles, countries) 

• developed a deep learning system, QANTA, to play 
quiz bowl 

• one of the first applications of deep learning to 
question answering

Iyyer et al., EMNLP 2014 & ACL 2015



This author described a "plank in reason" breaking and 
hitting a "world at every plunge" in a poem which opens "I 
felt a funeral in my brain." 

She wrote that "the stillness round my form was like the 
stillness in the air" in "I heard a fly buzz when I died." 

She wrote about a scarcely visible roof and a cornice that 
was "but a mound" in a poem about a carriage ride with 
Immortality and Death.

For 10 points, name this reclusive "Belle of Amherst" who 
wrote "Because I could not stop for Death."

A: Emily Dickinson



… name this reclusive "Belle of Amherst”…

NN

Emily Dickinson



name this reclusive belle… …

softmax: predict Emily Dickinson out of a set of ~5000 answers

 Iyyer et al., EMNLP 2014

dependency-tree NNs



simple discourse-level 
representations by averaging

In one novel, one of these figures antagonizes an impoverished 
family before leaping into an active volcano.
Another of these figures titles a novella in which General 
Spielsdorf describes the circumstances of his niece Bertha 
Reinfeldt's death to the narrator, Laura.
In addition to Varney and Carmilla, another of these figures 
sails on the Russian ship Demeter in order to reach London. 

That figure bites Lucy Westenra before being killed by a 
coalition including Jonathan Harker and Van Helsing.
For 10 points, identify these bloodsucking beings most 
famously exemplified by Bram Stoker’s Dracula.

av =
nX

i=1

ci
n



Model Quizbowl 
Accuracy

Time / 
Epoch (s)

NBOW 66.3 11

DAN 70.8 18

Tree-NN 72.1 314

comparison of architectures

similar results have since been shown for other 
tasks such as entailment and sentence 

similarity (Wieting et al., ICLR 2016, Hill et al., NAACL 2016)



2015: defeated Ken Jennings 300-160



2016: lost to top quiz bowlers 345-145



2017: beat top quiz bowlers 260-215



late 2017: crushed top team 475-185



deep learning ~ memorization

during training, QANTA becomes very good at 
associating named entities in questions with answers…

That figure bites Lucy Westenra before being killed by a 
coalition including Jonathan Harker and Van Helsing.

Vampire



deep learning ~ memorization

during training, QANTA becomes very good at 
associating named entities in questions with answers…

In one novel, one of these figures antagonizes an 
impoverished family before leaping into an active volcano.

???


