CKY algorithm / PCFGs

CS 585, Fall 2019

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

some slides from Brendan O'Connor

questions from last time...

- milestone 2 due 11/21
- extra credit due 12/11
- HW3: we'll start it in class on 11/19. you'll have to answer a few short questions after that, will be due after Thanksgiving

today we'll be doing *parsing*: given a CFG, how do we use it to parse a sentence?

why parsing?

- historically: good way to obtain features for downstream tasks
- today: can sometimes (not always) use syntax to improve neural models
- always useful for chunking text into phrases
- parsing makes for good probe tasks on top of neural models (next class)

Formal Definition of Context-Free Grammar

- A context-free grammar G is defined by four parameters: *N*, *Σ*, *R*, *S*
 - N a set of **non-terminal symbols** (or **variables**)
 - Σ a set of **terminal symbols** (disjoint from *N*)
 - *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$, where *A* is a non-terminal,

 β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$

S a designated **start symbol** and a member of N

let's start with a simple CFG

- S > NP VP
- NN > "dog"
- NP > DT JJ NN

first, let's convert this to Chomsky Normal Form (CNF)

- *N* a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from *N*)
- *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$, where *A* is a non-terminal,

 β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$

S a designated **start symbol** and a member of N

 β is either a single terminal from Σ or a pair of non-terminals from N

converting the simple CFG

- S > NP VP
- NN > "dog"
- NP > DT JJ NN
 - NP > X NN
 - X > DT JJ

we can convert any CFG to a CNF. this is a necessary preprocessing step for the basic CKY alg., produces binary trees!

Parsing!

- Given a sentence and a CNF, we want to search through the space of all possible parses for that sentence to find:
 - any valid parse for that sentence
 - all valid parses
 - the most probable parse
- Two approaches

Pros and cons of each?

- bottom-up: start from the words and attempt to construct the tree
- **top-down**: start from START symbol and keep expanding until you can construct the sentence

Ambiguity in parsing

Syntactic ambiguity is endemic to natural language:¹

- Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- Modifier scope: southern food store
- Particle versus preposition: The puppy tore up the staircase.
- Complement structure: The tourists objected to the guide that they couldn't hear.
- Coordination scope: "I see," said the blind man, as he picked up the hammer and saw.
- Multiple gap constructions: The chicken is ready to eat

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□ ♪ ▲□

¹Examples borrowed from Dan Klein

today: CKY algorithm

- Cocke-Kasami-Younger (independently discovered, also known as CYK)
- a *bottom-up* parser for CFGs (and PCFGs)

"I shot an elephant in my pajamas. How he got into my pajamas, I'll never know." — Groucho Marx

today: CKY algorithm

- Cocke-Kasami-Younger (independently discovered, also known as CYK)
- a *bottom-up* parser for CFGs (and PCFGs)

"I shot an elephant in my pajamas. How he got into my pajamas, I'll never know." — Groucho Marx

CKY is a dynamic programming algorithm. Where else have we seen such an algorithm?

- NP ► PRP\$ NP
- VP ► VP PP
- VP ► VBD NP
- NP ► NP PP
- NP ► DET NP
- PP ► IN NP
- S ► NP VP

- PRP\$► "my"
- IN ► "in"
- PRP ► "I"
- NP ► "I"
- NP ► "elephant"
- NP ► "pajamas"
- VBD ► "shot"
- DET ► "an"

let's say I have this CNF

shot an elephant in my pajamas

shot an elephant in my pajamas

NP / PRP VBD DET S ► NP VP PP ► IN NP NP ► DET NP NP ► NP PP onto the second level! PRP\$ VP ► VBD NP do any rules produce VP ► VP PP NP NP VBD or PRP VBD? NP ► PRP\$ NP • 20

I

			-					
NF PR	Р / .Р	Ø						
		VBD	Q	5				
			DE	Т				
				•	S ► NF	P VP		
				•	PP ► IN NP ► D	N NP DET NP		
onto the second level!			•	• NP ► NP PP PRP\$				
do any rules produce DET NP?			•	VP ► V VP ► V	BD NP		NP	
				•	NP ► P	RP\$ NP		

	NP / PRP	Ø						
		VBD	Q	3				
			DE	Т	NP			
				•	S ► NF	P VP		
				•	PP ► II	N NP		
				•	NP ► D	DET NP		
ont	o the se	econd le	vel!	•	NP ► N	IP PP	PRP\$	
do	do any rules produce			•	VP ► V	BD NP		
DET NP? Yes!			•	VP ► V	'P PP		NP	
	NP ► D	ET NP		•	NP ► F	RP\$ NP		

	NP / PRP	Ø	Ø					
		VBD	Ø					
			DET	NP	• S	► NP VP		
				NIP	• PF	P ► IN NP		
					• NF	P►DET N	NP	
∩r	nto the t	hird leve			 NP ► NP PP 			
					· VP ► VBD NP -			
W	hat abo	ut this c	ell?	• VP ► VP PP P			Ρ	
					• NF	P►PRP\$	NP	P

NP PRF		Ø					
	VBD	Ø					
		DET	NP	• S	► NP VP		
			NP	 PP ► IN NP NP ► DFT NP 			
onto th	e third le	evel!		• NF	P►NP PI		
what al	oout this	cell?	• VF • VF	P ► VP PF	NP >	Ρ	
				• NF	P►PRP\$		Р

NP / PRP	Ø	Ø				
	VBD	Ø	VP			
		DET	NP	Ø		
			NP	Ø	Ø	
				IN	Ø	PP
					PRP\$	NP
						NP

	NP / PRP	Ø	Ø						
		VBD	Ø	VP					
			DET	NP		Ø			
NF • S►NP VP									
on	to the fo	ourth lev	el!		•	PP ► II NP ► C	N NP DET NP	PP	
wh	what are our options here?								
NF >R	P VP				•	VP ► V NP ► F	PPP PRP\$ NP	NP	
- •				32			ΪΊΨΙ		

	NP / PRP	Ø	Ø	S			
		VBD	Ø	VP	Ø		
			DET	NP	Ø	Ø	
				NP	Ø	Ø	NP
on	to the fo	ourth lev	el!		IN	Ø	PP
						PRP\$	NP
							NP

- NP ► PRP\$ NP ullet
- VP ► VP PP
- VP ► VBD NP
- NP ► NP PP
- NP P DEI NP

		DET	N
•	S ► NP VP		N

NP / PRP	Ø	Ø	S	Ø		
	VBD	Ø	VP	Ø	Ø	
		DET	NP	Ø	Ø	
S ► NP VP			NP	Ø	Ø	NP
PP ► IN			L	IN	Ø	PP

PRP\$

NP

•	NP ►	PRP\$ NP
---	------	----------

- VP ► VP PP
- VP ► VBD NP
- NP NP PP

	NP / PRP	Ø	Ø	S	Ø		
		VBD	Ø	VP	Ø	Ø	
			DET	NP	Ø	Ø	
•	S ► NP VP			NP	Ø	Ø	NP
•	PP ► IN	DET NP			IN	Ø	PP

PRP\$

NP

NP / PRP	Ø	Ø	S	Ø		
	VBD	Ø	VP	Ø	Ø	
		DET	NP	Ø	Ø	NP ₁ / NP ₂
			NP	Ø	Ø	NP
				IN	Ø	PP
					PRP\$	NP
						NP

- NP ► PRP\$ NP

	NP / PRP	Ø	Ø	S	Ø	Ø	
		VBD	Ø	VP	Ø	Ø	
			DET	NP	Ø	Ø	NP ₁ / NP ₂
•	S ► NP VP			NP	Ø	Ø	NP
•	PP ► IN	NP				~	
•	NP ► DET NP				IN	Ø	PP
•	NP ► NP PP						NID
•	VP ► VBD NP					ΓΓΡ	
• VP ► VP PP							NP

•	NP ► PRP\$ NP	

	NP / PRP	Ø	Ø	S	Ø	Ø	
		VBD	Ø	VP	Ø	Ø	
			DET	NP	Ø	Ø	NP ₁ / NP ₂
•	S►NP '	VP		NP	Ø	Ø	NP
•	PP ► IN	NP					
•	NP ► DET NP				IN	Ø	PP
•	NP ► NP PP						NID
•		BD NP				ΓΓΓΦ	
•		P PP					NP
•	NP ► PF	RP\$ NP					

•	NP	►	PRP\$ N	C
			•	

- VP VP PP
- VP VBD NP lacksquare
- NP ► NP PP

•	S►	

NP / PRP	Ø	Ø	S	Ø	Ø	
	VBD	Ø	VP	Ø	Ø	VP1 / VP2 / VP3
		DET	NP	Ø	Ø	NP ₁ / NP ₂
S ► NP VP			NP	Ø	Ø	NP
PP ► IN NP NP ► DET NP				IN	Ø	PP

PRP\$

NP

- NP ► PRP\$ NP •
- VP ► VP PP
- VP ► VBD NP
- NP ► NP PP lacksquare
- PP ► IN NP NP ► DET NP ullet
- S ► NP VP

NP /

PRP

- finally, the root!
- \oslash \oslash \emptyset **VBD** VP

DET

elephant in shot pajamas an my

S

NP

NP

 \emptyset

 \emptyset

 \emptyset

 \emptyset

IN

 \emptyset

 \emptyset

 \emptyset

 \emptyset

 \emptyset

PRP\$

 VP_{I} /

 VP_2/VP_3

 NP_{I} /

NP₂

NP

PP

NP

• NP • PRP\$ NP	•	NP ► PRP\$ NP	
-----------------	---	---------------	--

•	VP	VP	PP
	VI	VI	

•	VP	►	VBD	NP
---	----	---	-----	----

- NP ► NP PP \bullet
- NP ► DET NP ullet
- PP ► IN NP ullet
- S ► NP VP

finally, the root!

NP / \emptyset \emptyset \emptyset S PRP \emptyset \emptyset **VBD** VP

S > NP VP1

S > NP VP2

S > NP VP3

DET

shot elephant in pajamas an my

 \emptyset

 \emptyset

IN

 \emptyset

 \oslash

 \emptyset

 \emptyset

 \emptyset

PRP\$

VP1 / VP2

/ **VP**₃

 NP_{I} /

NP₂

NP

PP

NP

NP

NP

NP / PRP	Ø	Ø	S	Ø	Ø	S ₁ / S ₂ / S ₃
	VBD	Ø	VP	Ø	Ø	VP1 / VP2 / VP3
finally, the root!		DET	NP	Ø	Ø	NP ₁ / NP ₂
• S ► NP `	VP		NP	Ø	Ø	NP
 PP ► IN NP ► DE 	NP ET NP			IN	Ø	PP
 NP ► NF VP ► VE 	S > NP VP1 S > NP VP2			PRP\$	NP	
 VP ► VF ND ► DF 	VP ► VP PP S > NP VP3 three valid pa			ses!		NP

how do we recover the full derivation of the valid parses S₁ / S₂ / S₃?

CKY runtime?

```
function CKY-PARSE(words, grammar) returns table

for j \leftarrow from 1 to LENGTH(words) do

for all \{A \mid A \rightarrow words[j] \in grammar\}

table[j-1, j] \leftarrow table[j-1, j] \cup A

for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

for all \{A \mid A \rightarrow BC \in grammar and B \in table[i,k] and C \in table[k, j]\}

table[i,j] \leftarrow table[i,j] \cup A
```

Figure 12.5 The CKY algorithm.

three nested loops, each O(n) where n is # words O(n³)

how to find best parse?

- use PCFG (*probabilistic* CFG): same as CFG except each rule A > β in the grammar is associated with a probability p(β | A)
- can compute probability of a parse T by just multiplying rule probabilities of the rules r that make up T

$$p(T) = \prod_{r \in T} p(\beta_r | A_r)$$

- NP ► PRP\$ NP, 0.5
- VP ► VP PP, 0.3
- VP ► VBD NP, 0.2
- NP ► NP PP, 0.1
- NP ► DET NP, 0.3
- PP ► IN NP, 0.1
- S ► NP VP, 0.4

- PRP\$► "my", 0.8
- IN ► "in", 0.9
- PRP ► "I", 0.6
- NP ► "I", 0.2
- NP ► "elephant", 0.9
- NP ► "pajamas", 0.8
- VBD ► "shot", 0.3
- DET ► "an", 0.9

I

	NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø		
		VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø		
			DET (-0.11)	NP (-1.5)	Ø	Ø	NP1 / NP2	
NP (-0.22)					Ø	Ø	NP (-6.0)	
	IN (-0.11)							
let' fill	let's switch to log space andPRP\$fill out the table some more(-0.22)							
							NP (-0.22)	

NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø	
	VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø	
		DET (-0.11)	NP (-1.5)	Ø	Ø	NP1 / NP2
			NP (-0.22)	Ø	Ø	NP (-6.0)
	IN (-0.11)					
p p	$(NP_1) = (NP_2) =$? ?			PRP\$ (-0.22)	NP (-1.1)
						NP (-0.22)

NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø	
	VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø	
		DET (-0.11)	NP (-1.5)	Ø	Ø	NP ₁ (-7.31) / NP ₂ (-7.30)
			NP (-0.22)	Ø	Ø	NP (-6.0)
				IN (-0.11)	Ø	PP (-3.5)
do we have to store both NPs?					PRP\$ (-0.22)	NP (-1.1)
						NP (-0.22)

NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø	
	VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø	VP ₁ / VP ₂
		DET (-0.11)	NP (-1.5)	Ø	Ø	NP (-7.3)
			NP (-0.22)	Ø	Ø	NP (-6.0)
				IN (-0.11)	Ø	PP (-3.5)
p p	$p(VP_1) = ?$ $p(VP_2) = ?$				PRP\$ (-0.22)	NP (-1.1)
						NP (-0.22)

	NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø	
		VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø	VP ₁ (-10.1) /VP ₂ (-9.0)
			DET (-0.11)	NP (-1.5)	Ø	Ø	NP (-7.3)
				NP (-0.22)	Ø	Ø	NP (-6.0)
					IN (-0.11)	Ø	PP (-3.5)
lo we need to store both VPs? (-0.22)							NP (-1.1)
							NP (-0.22)

C

NP (-1.6) / PRP (-0.51)	Ø	Ø	S (-6.8)	Ø	Ø	S (-11.5)
	VBD (-1.2)	Ø	VP (-4.3)	Ø	Ø	VP (-9.0)
		DET (-0.11)	NP (-1.5)	Ø	Ø	NP (-7.3)
			NP (-0.22)	Ø	Ø	NP (-6.0)
				IN (-0.11)	Ø	PP (-3.5)
					PRP\$ (-0.22)	NP (-1.1)
						NP (-0.22)

issues w/ PCFGs

- independence assumption: each rule's probability is independent of the rest of the tree!!!
- doesn't take into account location in the tree or what words are involved (for A>BC)
 - John saw the man with the hat
 - John saw the moon with the telescope

add more info to PCFG!

- How to make good attachment decisions?
 - Enrich PCFG with
 - parent information: what's above me?
 - lexical information via head rules
 - VP[fight]: a VP headed by "fight"
 - (or better, word/phrase embedding-based generalizations: e.g. recurrent neural network grammars (RNNGs))

where do we get the PCFG probabilities?

• given a treebank, we can just compute the MLE estimate by counting and normalizing

$$P(\alpha \to \beta | \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)} = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

- without a treebank, we can use the *inside-outside* algorithm to estimate probabilities by
 - 1. randomly initializing probabilities
 - 2. computing parses
 - 3. computing expected counts for rules
 - 4. re-estimate probabilities
 - 5. repeat!