CKY algorithm / PCFGs

CS 585, Fall 2019

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

questions from last time...

- milestone 2 due 11/21
- extra credit due 12/11
- HW3: we'll start it in class on 11/19. you'll have to answer a few short questions after that, will be due after Thanksgiving
today we'll be doing parsing: given a CFG, how do we use it to parse a sentence?

why parsing?

- historically: good way to obtain features for downstream tasks
- today: can sometimes (not always) use syntax to improve neural models
- always useful for chunking text into phrases
- parsing makes for good probe tasks on top of neural models (next class)

Formal Definition of Context-Free Grammar

- A context-free grammar G is defined by four parameters: $\boldsymbol{N}, \boldsymbol{\Sigma}, \boldsymbol{R}, \boldsymbol{S}$
N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form $A \rightarrow \beta$,
where A is a non-terminal,
β is a string of symbols from the infinite set of strings $(\Sigma \cup N)$ *
S a designated start symbol and a member of N

let's start with a simple CFG

- $S>N P \vee P$
- NN > "dog"
- NP > DT JJ NN

first, let's convert this to Chomsky Normal Form (CNF)

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form $A \rightarrow \beta$, where A is a non-terminal,
β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$
S a designated start symbol and a member of N
β is either a single terminal from Σ or a pair of non-terminals from N

converting the simple CFG

- $\mathrm{S}>\mathrm{NP}$ VP
- NN > "dog"
- NP > DT JJ NN
- NP > X NN
- X > DT JJ
we can convert any CFG to a CNF. this is a necessary preprocessing step for the basic CKY alg., produces binary trees!

Parsing!

- Given a sentence and a CNF, we want to search through the space of all possible parses for that sentence to find:
- any valid parse for that sentence
- all valid parses
- the most probable parse
- Two approaches

Pros and cons of each?

- bottom-up: start from the words and attempt to construct the tree
- top-down: start from START symbol and keep expanding until you can construct the sentence

Ambiguity in parsing

Syntactic ambiguity is endemic to natural language: ${ }^{1}$

- Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- Modifier scope: southern food store
- Particle versus preposition: The puppy tore up the staircase.
- Complement structure: The tourists objected to the guide that they couldn't hear.
- Coordination scope: "I see," said the blind man, as he picked up the hammer and saw.
- Multiple gap constructions: The chicken is ready to eat

[^0]
today: CKY algorithm

- Cocke-Kasami-Younger (independently discovered, also known as CYK)
- a bottom-up parser for CFGs (and PCFGs)
"I shot an elephant in my pajamas. How he got into my pajamas, l'll never know."
- Groucho Marx

today: CKY algorithm

- Cocke-Kasami-Younger (independently discovered, also known as CYK)
- a bottom-up parser for CFGs (and PCFGs)
"I shot an elephant in my pajamas. How he got into my pajamas, l'll never know."
- Groucho Marx

CKY is a dynamic programming algorithm. Where else have we seen such an algorithm?

let's say I have this CNF

- $S \rightarrow$ NP VP
- PP•INNP
- NP•DET NP
- NP•NPPP
- VP • VBD NP
- VP•VPPP
- NP • PRP\$ NP
- DET •"an"
- VBD - "shot"
- NP • "pajamas"
- NP "elephant"
- NP•" "
- PRP - "l"
- IN - "in"
- PRP\$ "my"

NP / PRP					
	VBD				
	DET				
		NP			
			IN		
in first level (words) possible derivations				PRP\$	
					NP

$\begin{array}{\|l\|} \hline \text { NP / } \\ \text { PRP } \\ \hline \end{array}$						
	VBD					
		DET				
			NP			
				IN		
to the second level!					PRP\$	
this cell spans the phrase "I shot"						NP

NP / PRP						
	VBD					
		DET				
			NP			
				IN		
to the sec	cond le				PRP\$	
at does	is cell	span?				NP

I shot an elephant in my pajamas

I shot an elephant in my pajamas

I + shot an

I shot an elephant in my pajamas

I shot an elephant in my pajamas

NP / PRP	\varnothing	\varnothing				
	VBD	\varnothing	VP			
		DET	NP	\varnothing		
			NP	\varnothing	\varnothing	
to the fourth level!				IN	\varnothing	PP
hat are our options here?					PRP\$	NP
						NP

I shot an elephant in my pajamas

I shot an elephant in my pajamas

I shot an elephant in my pajamas

$\begin{aligned} & \hline \text { NP / } \\ & \text { PRP } \end{aligned}$	\varnothing	\varnothing	S	\varnothing		
	VBD	\varnothing	VP	\varnothing	\varnothing	
		DET	NP	\varnothing	\varnothing	
$S \sim N P$ VP			NP	\varnothing	\varnothing	NP
PP •IN NP				IN	\varnothing	PP
NP • NP PP					PRP\$	NP
VP - VP PP						NP

I shot an elephant in my pajamas

I shot an elephant in my pajamas

I shot an elephant in my pajamas

- $S \cdot N P$ VP
- PP • IN NP
- NP • DET NP
- NP • NP PP
- VP • VBD NP
- VP•VPPP
- NP • PRP\$ NP

I shot an elephant in my pajamas

- S•NP VP
- PP•INNP
- NP • DET NP
- NP • NP PP
- VP VBDNP
- VP VPPP
- NP • PRP\$ NP

\varnothing	S	\varnothing	\varnothing	
\varnothing	VP	\varnothing	\varnothing	
DET	NP	\varnothing	\varnothing	$\begin{aligned} & \mathrm{NP}_{1} / \\ & \mathrm{NP}_{2} \\ & \hline \end{aligned}$
	NP	\varnothing	\varnothing	NP
		IN	\varnothing	PP
			PRP\$	NP
				NP

I shot an elephant in my pajamas

- S•NP VP
- PP•INNP
- NP • DET NP
- NP • NP PP
- VP VBDNP
- VP VPPP
- NP • PRP\$ NP

\varnothing	S	\varnothing	\varnothing	
\varnothing	VP	\varnothing	\varnothing	$\begin{gathered} V P_{1} /{ }^{2} / \\ V P_{2} / V P_{3} \end{gathered}$
DET	NP	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP}_{1} / \\ \mathrm{NP}_{2} \\ \hline \end{gathered}$
	NP	\varnothing	\varnothing	NP
		IN	\varnothing	PP
			PRP\$	NP
				NP

I shot an elephant in my pajamas

I shot an elephant in my pajamas

NP /	\varnothing	\varnothing	S	\varnothing	\varnothing	
	VBD	\varnothing	VP	\varnothing	\varnothing	$\mathbf{V P}_{1} / \mathbf{V P}_{\mathbf{P}}$
finally, the root!		DET	NP	\varnothing	\varnothing	$\begin{aligned} & \mathrm{N} P_{1} / \\ & N P_{2} \\ & \hline \end{aligned}$
- S - NP VP			NP	\varnothing	\varnothing	NP
- $P P \cdot \operatorname{IN} N P$				IN	\varnothing	PP
- NP•DET NP		$S>$ NP VP2			PRP\$	NP
- VP • VP PP		$S>$ NP VP3				NP

I shot an elephant in my pajamas

how do we recover the full derivation of the valid parses $S_{1} / S_{2} / S_{3}$?

CKY runtime?

```
function CKY-PARSE(words, grammar) returns table
    for \(j \leftarrow\) from 1 to Length(words) do
        for all \(\{A \mid A \rightarrow\) words \([j] \in\) grammar \(\}\)
            table \([j-1, j] \leftarrow\) table \([j-1, j] \cup A\)
    for \(i \leftarrow\) from \(j-2\) downto 0 do
        for \(k \leftarrow i+1\) to \(j-1\) do
            for all \(\{A \mid A \rightarrow B C \in\) grammar and \(B \in\) table \([i, k]\) and \(C \in\) table \([k, j]\}\)
            table \([i, j] \leftarrow\) table \([i, j] \cup A\)
```

Figure 12.5 The CKY algorithm.
three nested loops, each $O(n)$ where n is \# words $O\left(n^{3}\right)$

how to find best parse?

- use PCFG (probabilistic CFG): same as CFG except each rule $A>\beta$ in the grammar is associated with a probability $p(\beta \mid A)$
- can compute probability of a parse T by just multiplying rule probabilities of the rules r that make up T

$$
p(T)=\prod_{r \in T} p\left(\beta_{r} \mid A_{r}\right)
$$

- $\quad S$ - NP VP, 0.4
- PP • IN NP, 0.1
- NP • DET NP, 0.3
- NP • NP PP, 0.1
- VP • VBD NP, 0.2
- VP • VP PP, 0.3
- NP • PRP\$ NP, 0.5
- DET • "an", 0.9
- VBD - "shot", 0.3
- NP •"pajamas", 0.8
- NP • "elephant", 0.9
- NP - "I", 0.2
- PRP - "I", 0.6
- IN - "in", 0.9
- PRP\$ "my", 0.8

I shot an elephant in my pajamas

$\begin{aligned} & \mathrm{NP}(0.2) / \\ & \operatorname{PRP}(0.6) \end{aligned}$						
	VBD (0.3)					
		DET (0.9)				
			NP (0.8)			
in first le	el (words)			$\mathrm{IN}(0.9)$		
possible and prob	e deriva babilities	tions			$\begin{aligned} & \text { PRP\$ } \\ & (0.8) \end{aligned}$	
						NP (0.8)

I shot an elephant in my pajamas

$\begin{array}{\|c\|c\|} \hline \operatorname{NP}(0.2) \prime \\ \operatorname{PRP}(0.6) \end{array}$	\varnothing					
	VBD (0.3)	\varnothing				
		DET (0.9)	NP			
			NP (0.8)	\varnothing		
ow do we compute this cell's probability?				IN (0.9)	\varnothing	
					$\begin{aligned} & \text { PRP\$ } \\ & (0.8) \end{aligned}$	NP
						NP (0.8)

I shot an elephant in my pajamas

I shot an elephant in my pajamas

$\left\|\begin{array}{l} \operatorname{NP}(-1.6) / \\ \operatorname{PRP}(-0.51) \end{array}\right\|$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	
	$\begin{aligned} & \text { VBD } \\ & (-1.2) \end{aligned}$	\varnothing	VP (-4.3)	\varnothing	\varnothing	
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	$N P_{1} / N P_{2}$
			$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				$\mathbb{N}(-0.11)$	\varnothing	PP (-3.5)
's switch to log space and out the table some more					$\begin{gathered} \text { PRP\$ } \\ (-0.22) \end{gathered}$	NP (-I.1)
						$\begin{gathered} \hline N P \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

$\begin{aligned} & \operatorname{NP}(-1.6) / \\ & \operatorname{PRP}(-0.51) \end{aligned}$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	
VBD(-1.2)		\varnothing	VP (-4.3)	\varnothing	\varnothing	
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	$N P_{1} / N P_{2}$
			$\begin{gathered} \text { NP } \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				$1 \mathrm{~N}(-0.11)$	\varnothing	PP (-3.5)
$\begin{aligned} & p\left(N P_{1}\right)=? \\ & p\left(N P_{2}\right)=? \end{aligned}$					$\begin{aligned} & \text { PRP\$ } \\ & (-0.22) \end{aligned}$	NP (-I.1)
						$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

$\begin{aligned} & \mathrm{NP}(-1.6) \mid \\ & \operatorname{PRP}(-0.51) \end{aligned}$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	
VBD (-1.2)		\varnothing	VP (-4.3)	\varnothing	\varnothing	
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	$\begin{gathered} N P_{1} \\ (-7.31) / 1 \\ N P_{2}(-7.30) \end{gathered}$
			$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				$\mathbb{N}(-0.11)$	\varnothing	PP (-3.5)
do we have to store both NPs?					$\begin{aligned} & \text { PRP\$ } \\ & (-0.22) \end{aligned}$	NP (-I.1)
						$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

$\begin{aligned} & \operatorname{NP}(-1.61 \\ & \operatorname{PRP}(-0.51) \end{aligned}$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	
	$\begin{aligned} & \text { VBD } \\ & (-1.2) \end{aligned}$	\varnothing	VP (-4.3)	\varnothing	\varnothing	VP ${ }_{1} / V P_{2}$
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	NP (-7.3)
			$\begin{gathered} \hline \mathrm{NP} \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				$\mathbb{N}(-0.11)$	\varnothing	PP (-3.5)
$\begin{aligned} & \mathrm{p}\left(\mathrm{VP}_{1}\right)=? \\ & \mathrm{p}\left(\mathrm{VP}_{2}\right)=? \end{aligned}$					$\begin{aligned} & \text { PRP\$ } \\ & (-0.22) \end{aligned}$	NP (-I.1)
						$\begin{gathered} \hline \mathrm{NP} \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

$\left\|\begin{array}{l} \operatorname{NP}(-1.6)! \\ \operatorname{PRP}(-0.51) \end{array}\right\|$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	
	$\begin{gathered} \text { VBD } \\ (-1.2) \end{gathered}$	\varnothing	VP (-4.3)	\varnothing	\varnothing	$\begin{aligned} & \operatorname{VP}_{1}(-10.1) \\ & / V P P_{2}(-9.0) \end{aligned}$
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	NP (-7.3)
			$\begin{gathered} N P \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				IN (-0.11)	\varnothing	PP (-3.5)
we need to store both VPs?					$\begin{aligned} & \text { PRP\$ } \\ & (-0.22) \end{aligned}$	NP (-I.1)
						$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

$\begin{array}{\|l\|l\|} \\ \operatorname{PRP}(-1.6) \\ \operatorname{PRP}(-0.51) \end{array}$	\varnothing	\varnothing	S (-6.8)	\varnothing	\varnothing	S (-11.5)
	$\begin{gathered} \text { VBD } \\ (-1.2) \end{gathered}$	\varnothing	VP (-4.3)	\varnothing	\varnothing	VP (-9.0)
		$\begin{gathered} \text { DET } \\ (-0.11) \end{gathered}$	NP (-1.5)	\varnothing	\varnothing	NP (-7.3)
			$\begin{gathered} \text { NP } \\ (-0.22) \end{gathered}$	\varnothing	\varnothing	NP (-6.0)
				$1 \mathrm{~N}(-0.11)$	\varnothing	PP (-3.5)
					$\begin{aligned} & \hline \text { PRP\$ } \\ & (-0.22) \\ & \hline \end{aligned}$	NP (-I.I)
						$\begin{gathered} \mathrm{NP} \\ (-0.22) \end{gathered}$

I shot an elephant in my pajamas

issues w/ PCFGs

- independence assumption: each rule's probability is independent of the rest of the tree!!!
- doesn't take into account location in the tree or what words are involved (for $A>B C$)
- John saw the man with the hat
- John saw the moon with the telescope

add more info to PCFG!

- How to make good attachment decisions?
- Enrich PCFG with
- parent information: what's above me?
- lexical information via head rules
- VP[fight]: a VP headed by "fight"
- (or better, word/phrase embedding-based generalizations: e.g. recurrent neural network grammars (RNNGs))

Lexicalization

\Downarrow

where do we get the PCFG probabilities?

- given a treebank, we can just compute the MLE estimate by counting and normalizing

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

- without a treebank, we can use the inside-outside algorithm to estimate probabilities by

1. randomly initializing probabilities
2. computing parses
3. computing expected counts for rules
4. re-estimate probabilities
5. repeat!

[^0]: ${ }^{1}$ Examples borrowed from Dan Klein

