sequence modeling: Viterbi algorithm

CS 585, Fall 2019

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

questions from last time...

- access to Gypsum? no, sorry
- oct 10 lecture video? idk
- milestone 1 due Thursday
- next week: midterm review / exam
- homework 3: will be easy
- extra credit? ok
- using BERT? https://github.com/ huggingface/transformers

POS Tagging

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Penn Treebank POS tags

- Output: Plays/VBZ well/RB with/IN others/NNS

Hidden Markov Models

- We have an input sentence $x=x_{1}, x_{2}, \ldots, x_{n}$ (x_{i} is the i 'th word in the sentence)
- We have a tag sequence $y=y_{1}, y_{2}, \ldots, y_{n}$
(y_{i} is the i 'th tag in the sentence)
- We'll use an HMM to define

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for any sentence $x_{1} \ldots x_{n}$ and tag sequence $y_{1} \ldots y_{n}$ of the same length.

- Then the most likely tag sequence for x is

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

HMM Definition

Assume K parts of speech, a lexicon size of V, a series of observations $\left\{x_{1}, \ldots, x_{N}\right\}$, and a series of unobserved states $\left\{z_{1}, \ldots, z_{N}\right\}$.
π A distribution over start states (vector of length K):

$$
\pi_{i}=p\left(z_{1}=i\right)
$$

θ Transition matrix (matrix of size K by K):

$$
\theta_{i, j}=p\left(z_{n}=j \mid z_{n-1}=i\right)
$$

β An emission matrix (matrix of size K by V):

$$
\beta_{j, w}=p\left(x_{n}=w \mid z_{n}=j\right)
$$

Two problems: How do we move from data to a model? (Estimation) How do we move from a model and unlabled data to labeled data? (Inference)
today: inference!

probability of a tag sequence

let’s quickly review estimation before continuing....

Reminder: How do we estimate a probability?

- For a multinomial distribution (i.e. a discrete distribution, like over words):

$$
\begin{equation*}
\theta_{i}=\frac{n_{i}+\alpha_{i}}{\sum_{k} n_{k}+\alpha_{k}} \tag{1}
\end{equation*}
$$

- α_{i} is called a smoothing factor, a pseudocount, etc.
just like in naive Bayes, we'll be counting to estimate these probabilities!

Training Sentences

$\begin{array}{lllccc}\mathrm{X}=\text { tokens } & x & \text { here } & \text { come } & \text { old } & \text { flattop } \\ \mathrm{z}=\mathrm{POS} \text { tags } & z & \text { MOD } & \mathrm{V} & \text { MOD } & \mathrm{N}\end{array}$

a	crowd	of	people	stopped	and	stared	
DET	N	PREP	N	V	CONJ	V	
	gotta	get	you	into	my	life	
	V	V	PRO	PREP	PRO	V	
		and	I	love	her		
		CONJ	PRO	V	PRO		

Initial Probability π

POS	Frequency	Probability
MOD	1.1	0.234
DET	1.1	0.234
CONJ	1.1	0.234
N	0.1	0.021
PREP	0.1	0.021
PRO	0.1	0.021
V	1.1	0.234

let's use add-alpha smoothing with alpha $=0.1$

$$
\begin{array}{cccc}
\text { here } & \text { come } & \text { old } & \text { flattop } \\
\text { MOD } & \mathrm{V} & \text { MOD } & \mathrm{N}
\end{array}
$$

a	crowd	of	people	stopped	and	stared
DET	N	PREP	N	V	CONJ	V

$$
\begin{array}{cccccc}
\text { gotta } & \text { get } & \text { you } & \text { into } & \text { my } & \text { life } \\
V & \mathrm{~V} & \text { PRO } & \text { PREP } & \text { PRO } & \mathrm{N} \\
& & & & & \\
& \text { and } & \mathrm{I} & \text { love } & \text { her } & \\
& \text { CONJ } & \text { PRO } & \mathrm{V} & \text { PRO } &
\end{array}
$$

Training Sentences

$$
\begin{array}{cccc}
\text { here } & \text { come } & \text { old } & \text { flattop } \\
\text { MOD } & \mathrm{V} & \text { MOD } & \mathrm{N}
\end{array}
$$

$\begin{array}{ccccccc}\text { a } & \text { crowd } & \text { of } & \text { people } & \text { stopped } & \text { and } & \text { stared } \\ \text { DET } & \mathrm{N} & \text { PREP } & \mathrm{N} & \mathrm{V} & \text { CONJ } & \mathrm{V}\end{array}$
gotta get you into my life
V P PRO PREP PRO N

$$
\begin{array}{cccc}
\text { and } & \text { I } & \text { love } & \text { her } \\
\text { CONJ } & \mathrm{PRO} & \mathrm{~V} & \mathrm{PRO}
\end{array}
$$

Training Sentences

$$
\begin{array}{cccc}
\text { here } & \text { come } & \text { old } & \text { flattop } \\
\text { MOD } & \mathrm{V} & \text { MOD } & \mathrm{N}
\end{array}
$$

a	crowd	of	people	stopped	and	stared
DET	N	PREP	N	V	CONJ	V

gotta get you into my life
$V \quad V \quad$ PRO PREP PRO N

$$
\begin{array}{cccc}
\text { and } & \text { I } & \text { love } & \text { her } \\
\text { CONJ } & \text { PRO } & \mathrm{V} & \mathrm{PRO}
\end{array}
$$

Transition Probability θ

- We can ignore the words; just look at the parts of speech. Let's compute one row, the row for verbs.
- We see the following transitions: $\mathrm{V} \rightarrow \mathrm{MOD}, \mathrm{V} \rightarrow \mathrm{CONJ}, \mathrm{V} \rightarrow \mathrm{V}$, $\mathrm{V} \rightarrow \mathrm{PRO}$, and $\mathrm{V} \rightarrow \mathrm{PRO}$

POS	Frequency	Probability
MOD	1.1	0.193
DET	0.1	0.018
CONJ	1.1	0.193
N	0.1	0.018
PREP	0.1	0.018
PRO	2.1	0.368
V	1.1	0.193

Training Sentences

$$
\begin{array}{cccc}
\text { here } & \text { come } & \text { old } & \text { flattop } \\
\text { MOD } & \mathrm{V} & \mathrm{MOD} & \mathrm{~N}
\end{array}
$$

a	crowd	of	people	stopped	and	stared
DET	N	PREP	N	V	CONJ	V

gotta get you into my life
V V PRO PREP PRO N

$$
\begin{array}{cccc}
\text { and } & \text { I } & \text { love } & \text { her } \\
\text { CONJ } & \text { PRO } & \mathrm{V} & \mathrm{PRO}
\end{array}
$$

Training Sentences

\[

\]

Emission Probability β
Let's look at verbs

Word	a	and	come	crowd	flattop
Frequency	0.1	0.1	1.1	0.1	0.1
Probability	0.0125	0.0125	0.1375	0.0125	0.0125
Word	get	gotta	her	here	i
Frequency	1.1	1.1	0.1	0.1	0.1
Probability	0.1375	0.1375	0.0125	0.0125	0.0125
Word	into	it	life	love	my
Frequency	0.1	0.1	0.1	1.1	0.1
Probability	0.0125	0.0125	0.0125	0.1375	0.0125
Word	of	old	people	stared	stopped
Frequency	0.1	0.1	0.1	1.1	1.1
Probability	0.0125	0.0125	0.0125	0.1375	0.1375

now... given that we've estimated an HMM, how do we use it to get POS tags for unlabeled data?

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
how many different possible tag sequences exist?

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

what is the complexity of this algorithm?

$$
K^{2} L
$$

Figure 8.6 A sketch of the lattice for Janet will back the bill, showing the possible tags $\left(q_{i}\right)$ for each word and highlighting the path corresponding to the correct tag sequence through the hidden states. States (parts of speech) which have a zero probability of generating a particular word according to the B matrix (such as the probability that a determiner DT will be realized as Janet) are greyed out.

need to keep backpointers!

- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$
\begin{equation*}
\Psi_{n}=\operatorname{argmax}_{j} \delta_{n-1}(j) \theta_{j, k} \tag{3}
\end{equation*}
$$

let's do an example for the sentence come and get it

POS	π_{k}	$\beta_{k, x_{1}}$	$\log \delta_{1}(k)=\log \left(\pi_{k} \beta_{k, x_{1}}\right)$	
MOD	0.234	0.024	-5.18	
DET	0.234	0.032	-4.89	
CONJ	0.234	0.024	-5.18	
N	0.021	0.016	-7.99	
PREP	0.021	0.024	-7.59	
PRO	0.021	0.016	-7.99	
V	0.234	0.121	-3.56	
come and get it				

Why logarithms?

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue
3. Addition is cheaper than multiplication

$$
\begin{equation*}
\log (a b)=\log (a)+\log (b) \tag{4}
\end{equation*}
$$

POS	$\log \delta_{1}(j)$		$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$\log \delta_{1}(j)$		$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

$$
\log \left(\delta_{0}(\mathrm{~V}) \theta_{\mathrm{V}, \mathrm{CONJ}}\right)=\log \delta_{0}(k)+\log \theta \mathrm{V}, \mathrm{CONJ}=-3.56+-1.65
$$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$		
MOD	-5.18				
DET	-4.89		$? ? ?$		
CONJ	-5.18				
N	-7.99				
PREP	-7.59				
PRO	-7.99	-5.21			
V	-3.56	come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$\log \delta_{1}(k)=-5.21-\log \beta$ CONJ, and $=$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$$
\log \delta_{1}(k)=-5.21-\log \beta \mathrm{CONJ}, \text { and }=-5.21-0.64
$$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \text { CONJ }}$	$\log \delta_{2}($ CONJ $)$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

backpointer!

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		get		it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X				
DET	-4.89	-0.00	\times				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	\times				
PREP	-7.59	-0.00	\times				
PRO	-7.99	-0.00	\times				
V	-3.56	-0.00	\times				
WORD	come	and		get		it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	\times	-0.00	X		
DET	-4.89	-0.00	\times	-0.00	\times		
CONJ	-5.18	-6.02	V	-0.00	\times		
N	-7.99	-0.00	\times	-0.00	\times		
PREP	-7.59	-0.00	\times	-0.00	\times		
PRO	-7.99	-0.00	\times	-0.00	\times		
V	-3.56	-0.00	\times	-9.03	CONJ		
WORD	come	and		get		it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	\times	-0.00	\times	-0.00	\times
DET	-4.89	-0.00	\times	-0.00	\times	-0.00	\times
CONJ	-5.18	-6.02	\vee	-0.00	\times	-0.00	\times
N	-7.99	-0.00	\times	-0.00	\times	-0.00	\times
PREP	-7.59	-0.00	\times	-0.00	\times	-0.00	\times
PRO	-7.99	-0.00	\times	-0.00	\times	-14.6	V
V	-3.56	-0.00	\times	-9.03	CONJ	-0.00	\times
WORD	come	and			get		
it							

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}	
MOD	-5.18	-0.00	\times	-0.00	\times	-0.00	\times	
DET	-4.89	-0.00	\times	-0.00	\times	-0.00	\times	
CONJ	-5.18	-6.02	\vee	-0.00	\times	-0.00	\times	
N	-7.99	-0.00	\times	-0.00	\times	-0.00	\times	
PREP	-7.59	-0.00	\times	-0.00	\times	-0.00	\times	
PRO	-7.99	-0.00	\times	-0.00	\times	-14.6	V	
V	-3.56	-0.00	\times	-9.03	CONJ	-0.00	\times	
WORD	come	and		get			it	

most probable POS seq: V CONJ V PRO

