Attention mechanisms

CS 585, Fall 2019

Introduction to Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

stuff from last time

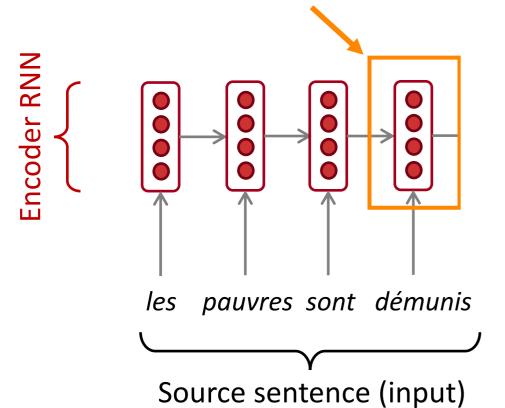
- Colab issues :(
- HW1 time mixup, won't count anyone who submitted before 11:59pm as late
- Important dates:
 - Proposal due: Oct 4 (this Friday!!!)
 - Milestone 1 due: Oct 24
 - Midterm date: Oct 31
 - Milestone 2 due: Nov 21
 - HW 3 due: ???
 - Poster presentations: Dec 10/12
 - Final report due: Dec 19
- Can we spend a lot of time on attention? maybe
- Final exam instead of final project? NO!

Neural Machine Translation (NMT)

The sequence-to-sequence model

Encoding of the source sentence.

Provides initial hidden state
for Decoder RNN.



Encoder RNN produces an encoding of the source sentence.

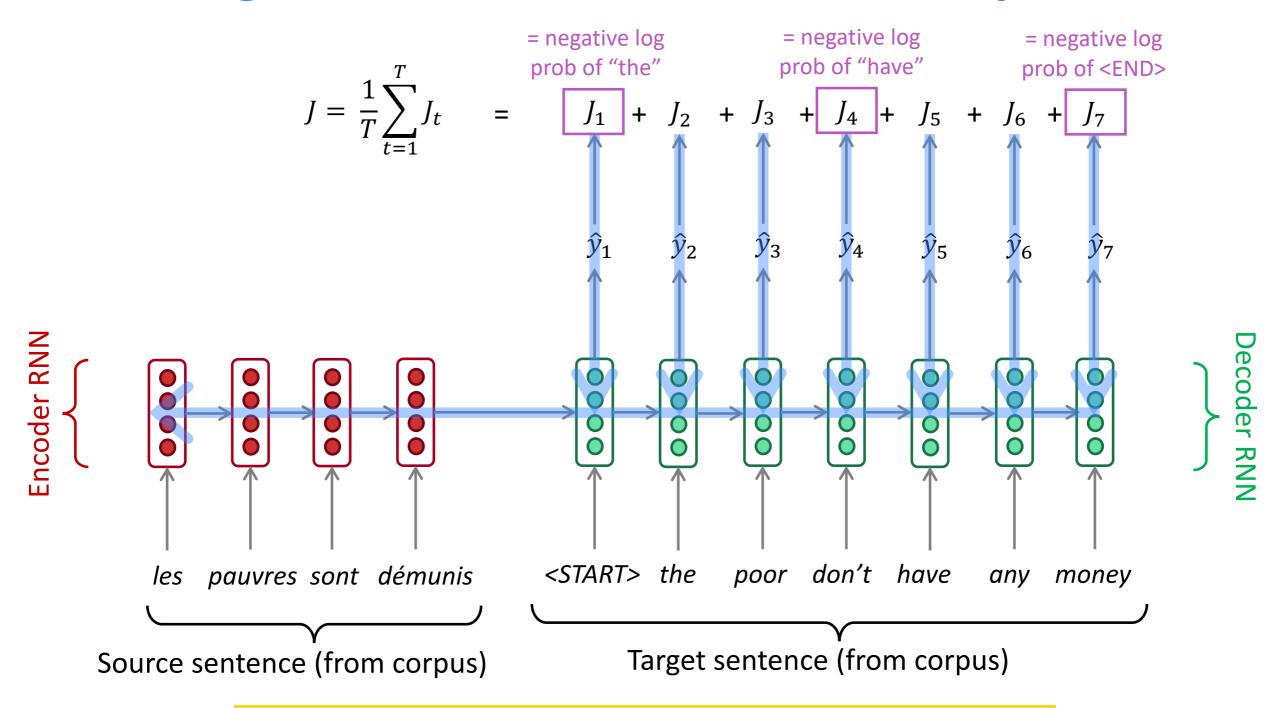
Neural Machine Translation (NMT)



Encoder RNN produces an encoding of the source sentence.

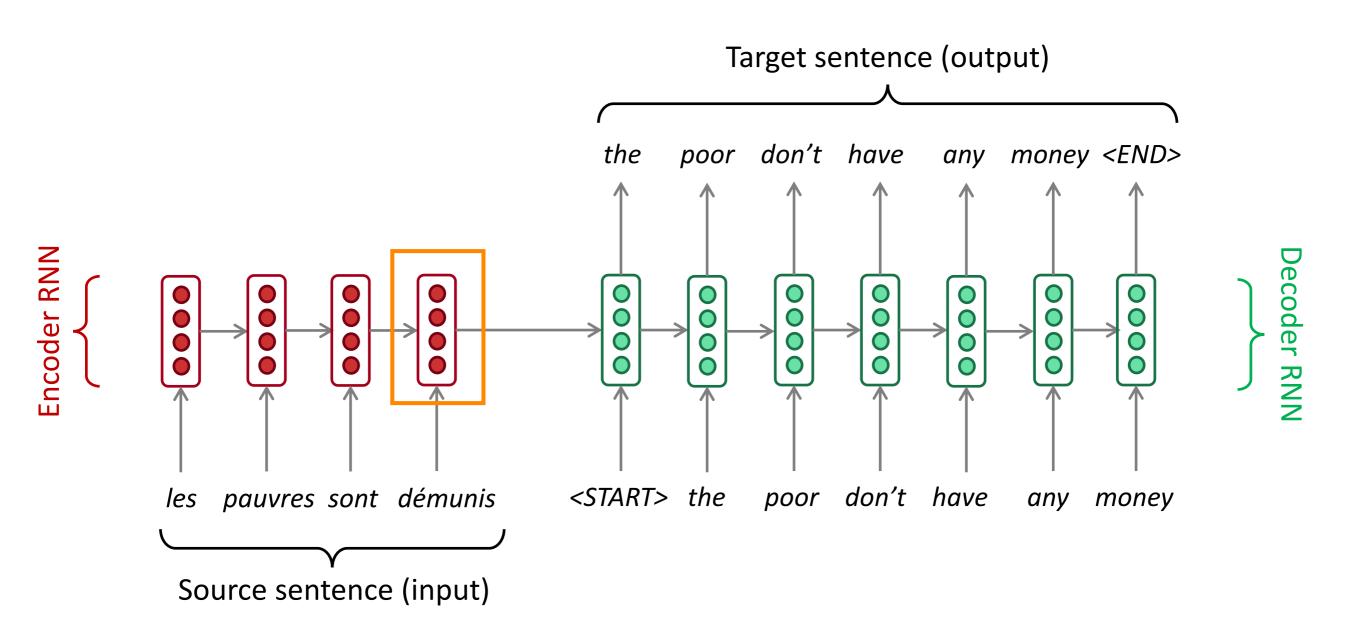
Decoder RNN is a Language Model that generates target sentence conditioned on encoding.

Training a Neural Machine Translation system

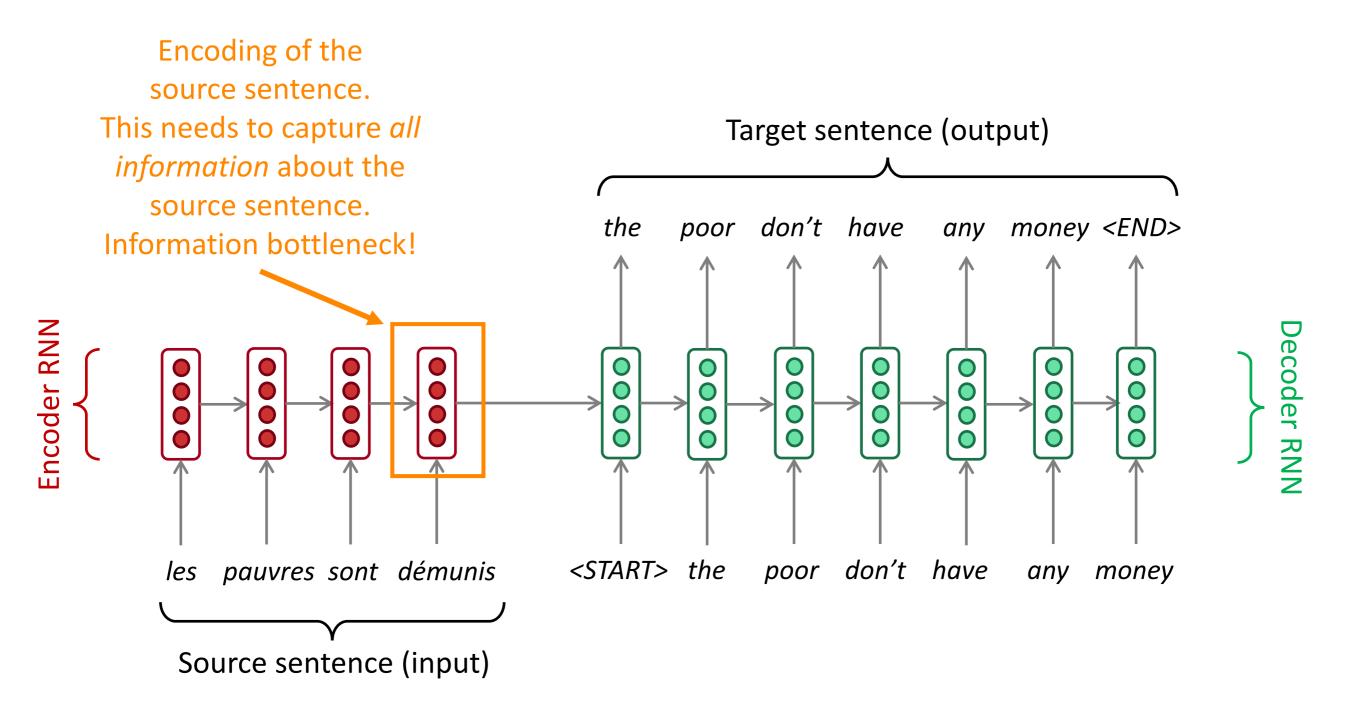


what are the parameters of this model?

Sequence-to-sequence: the bottleneck problem



Sequence-to-sequence: the bottleneck problem



"you can't cram the meaning of a whole %&@#&ing sentence into a single \$*(&@ing vector!"

Ray Mooney (NLP prof at UT Austin)

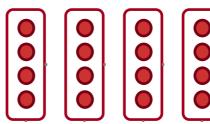
idea: what if we use multiple vectors?

Encoding of the source sentence. This needs to capture all information about the source sentence. Information bottleneck! **Encoder RNN** pauvres sont démunis Source sentence (input)

Instead of:

les pauvres sont démunis =

les pauvres sont démunis =



(all 4 hidden states!)

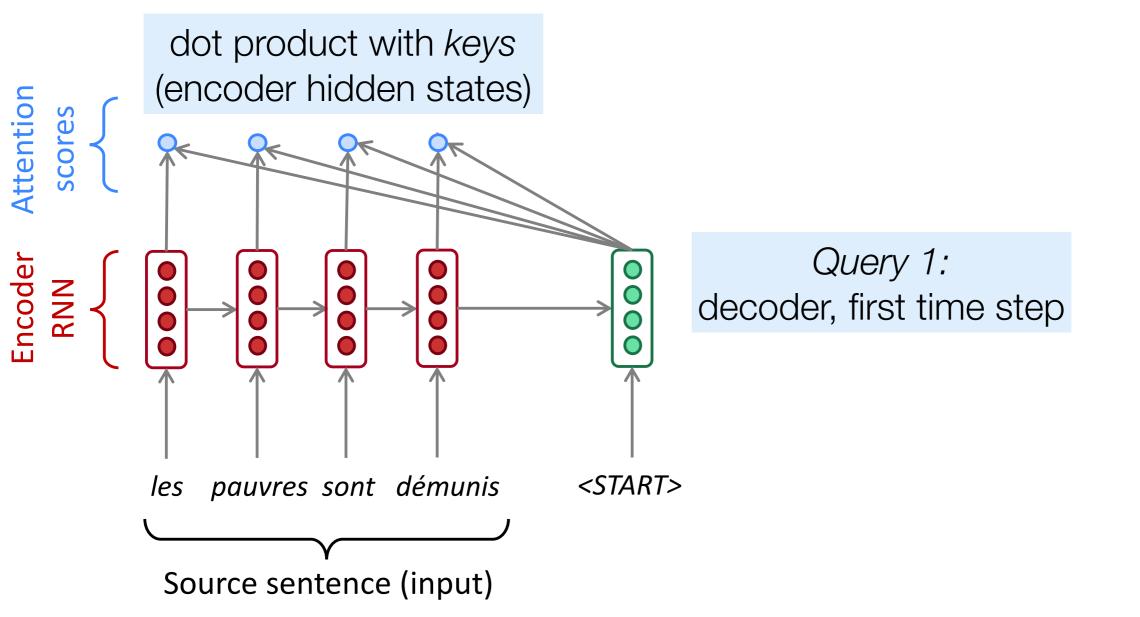
The solution: attention

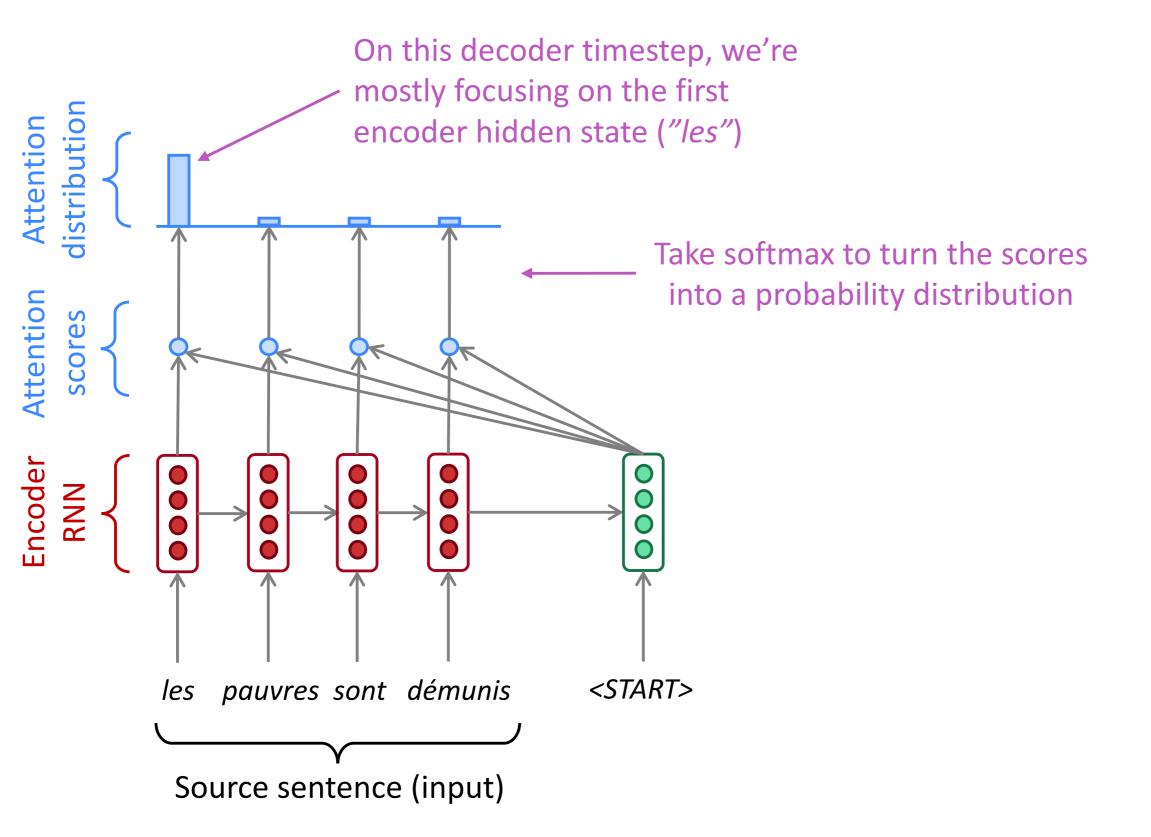
- Attention mechanisms (Bahdanau et al., 2015) allow the decoder to focus on a particular part of the source sequence at each time step
 - Conceptually similar to word alignments

How does it work?

 in general, we have a single query vector and multiple key vectors. We want to score each query-key pair

in machine translation, what are the queries and keys?

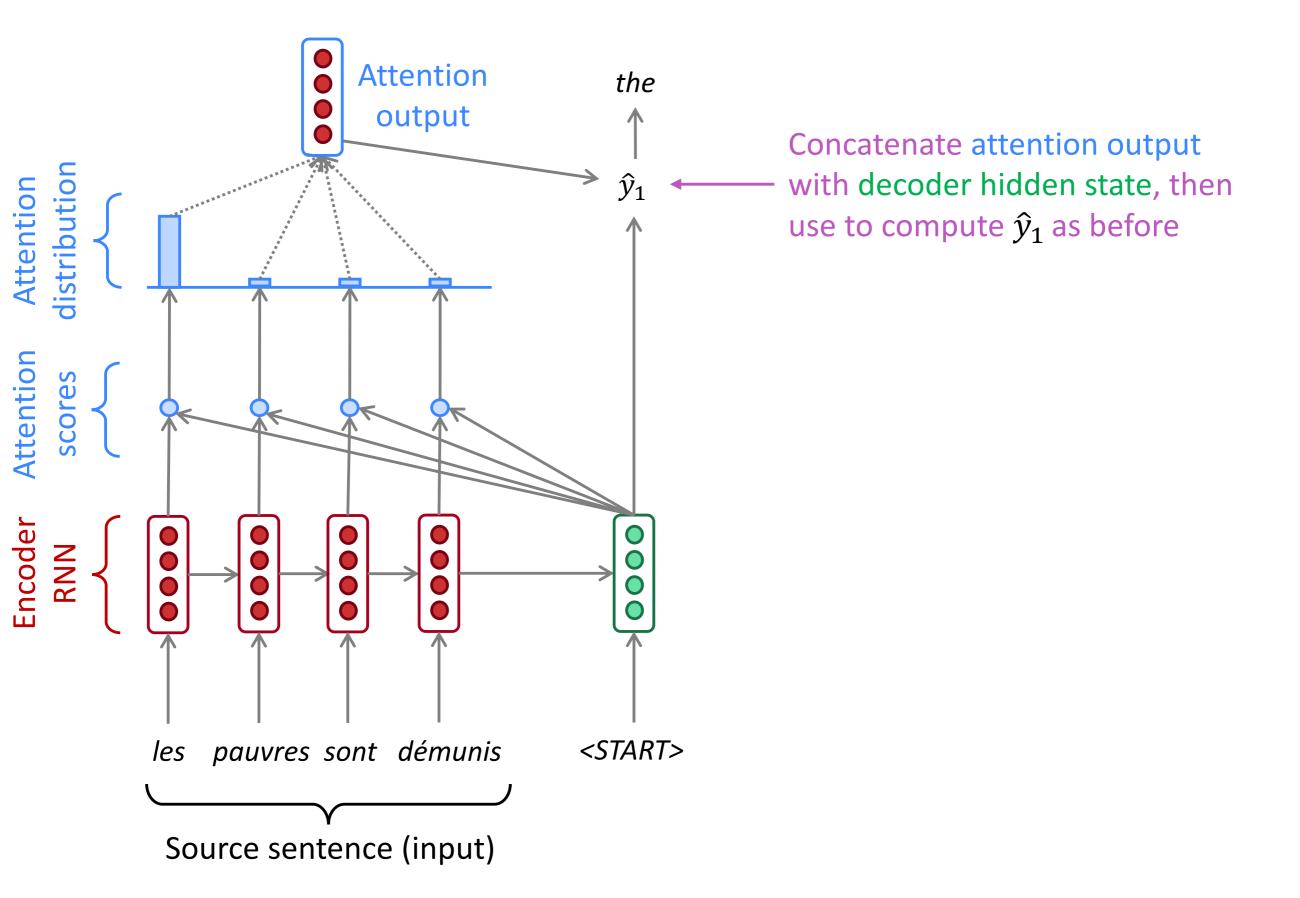


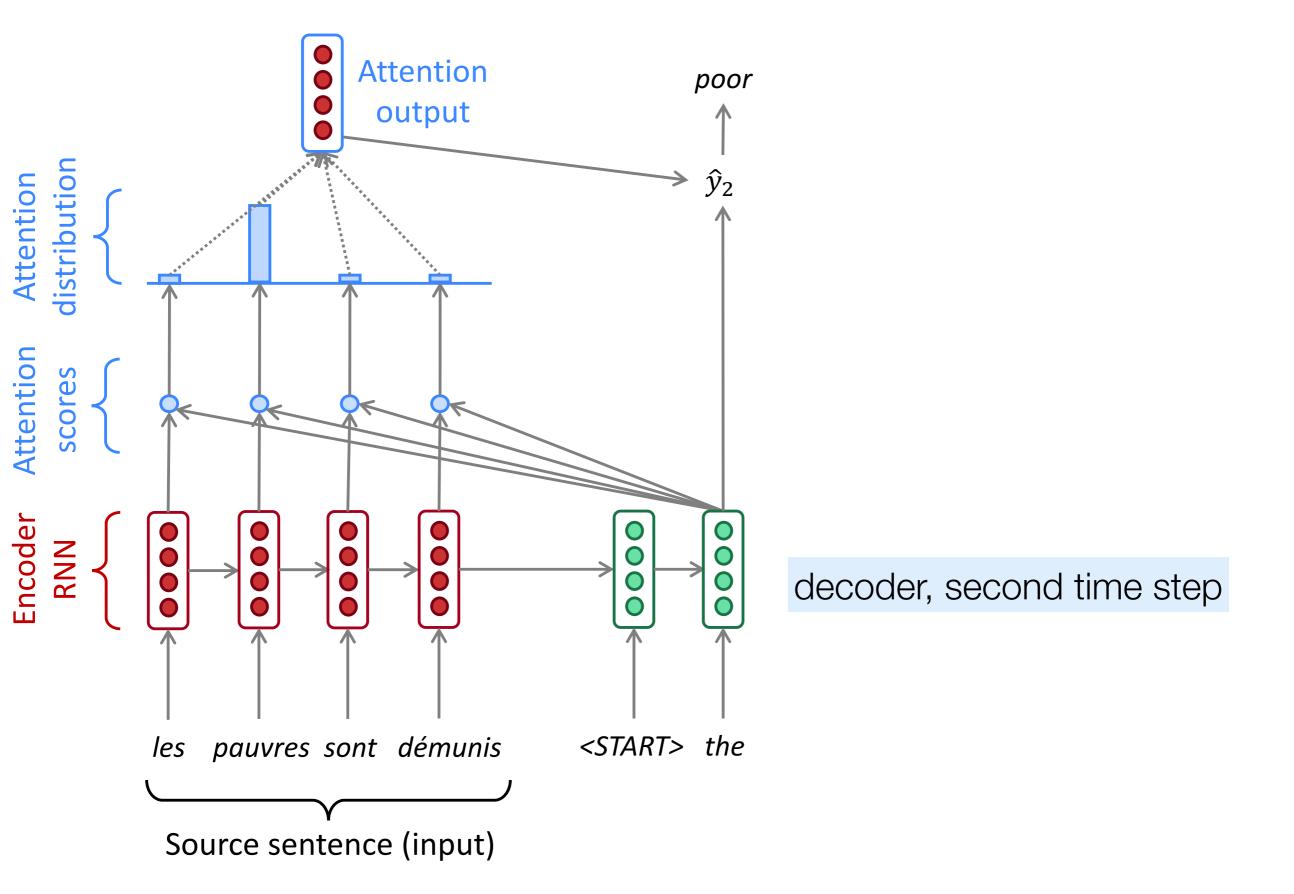




Use the attention distribution to take a weighted sum of the encoder hidden states.

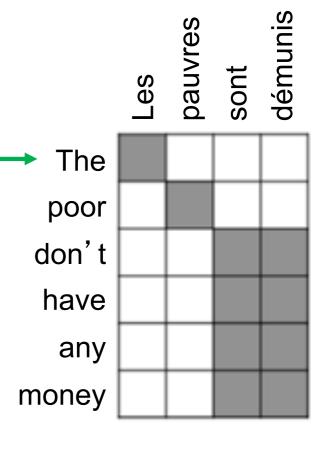
The attention output mostly contains information the hidden states that received high attention.

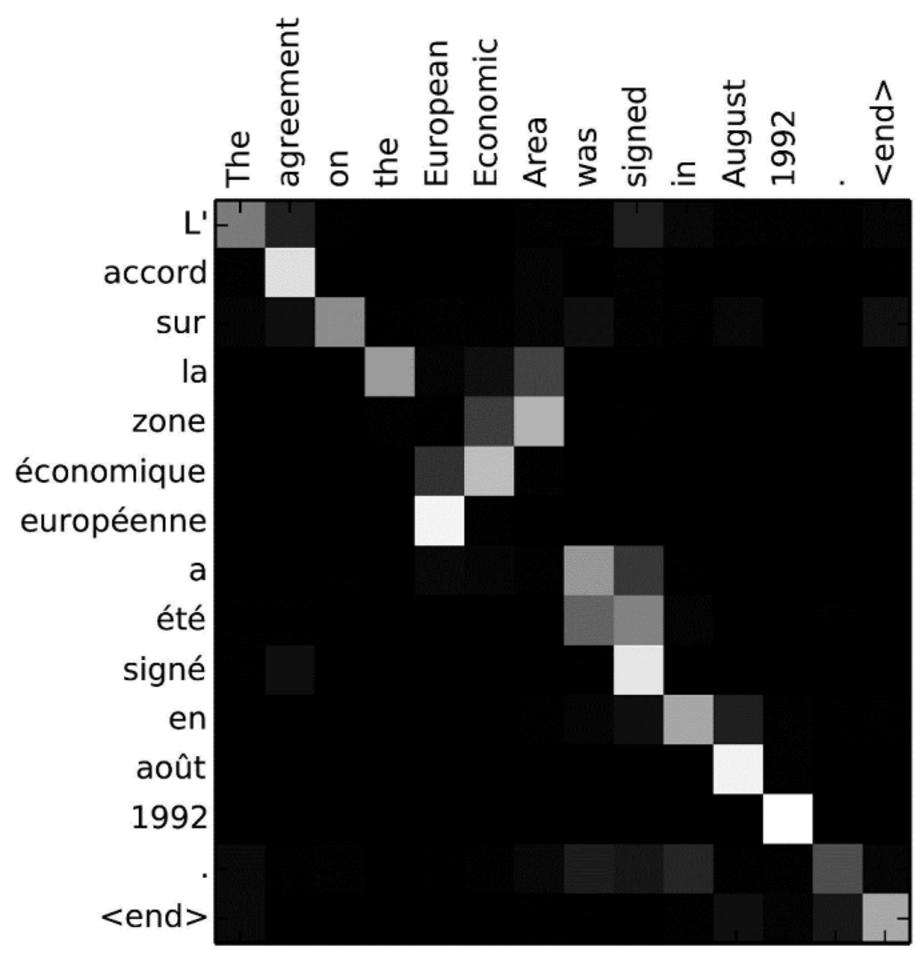




Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself





Many variants of attention

- Original formulation: $a(\mathbf{q}, \mathbf{k}) = w_2^T \tanh(W_1[\mathbf{q}; \mathbf{k}])$
- Bilinear product: $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T W \mathbf{k}$

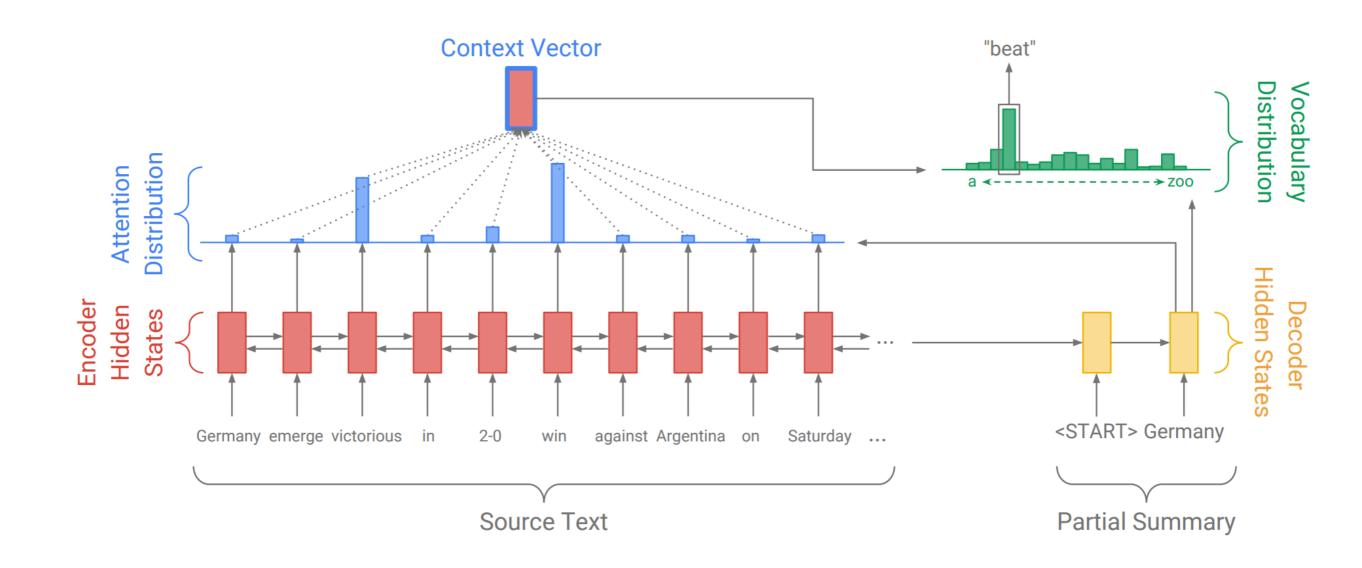
Luong et al., 2015

• Dot product: $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T \mathbf{k}$

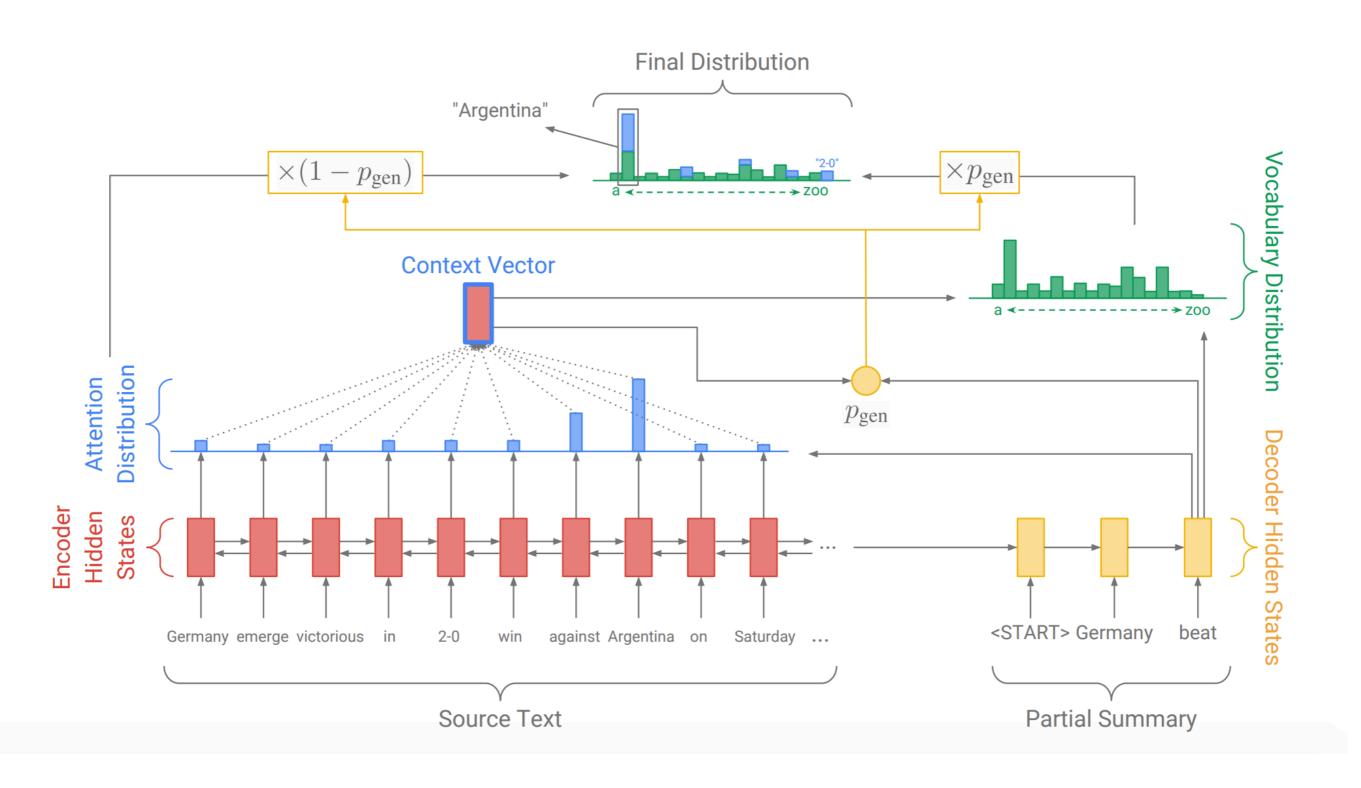
Luong et al., 2015

• Scaled dot product: $a(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q}^T \mathbf{k}}{\sqrt{|\mathbf{k}|}}$ Vaswani et al., 2017

Attention is not just for MT!

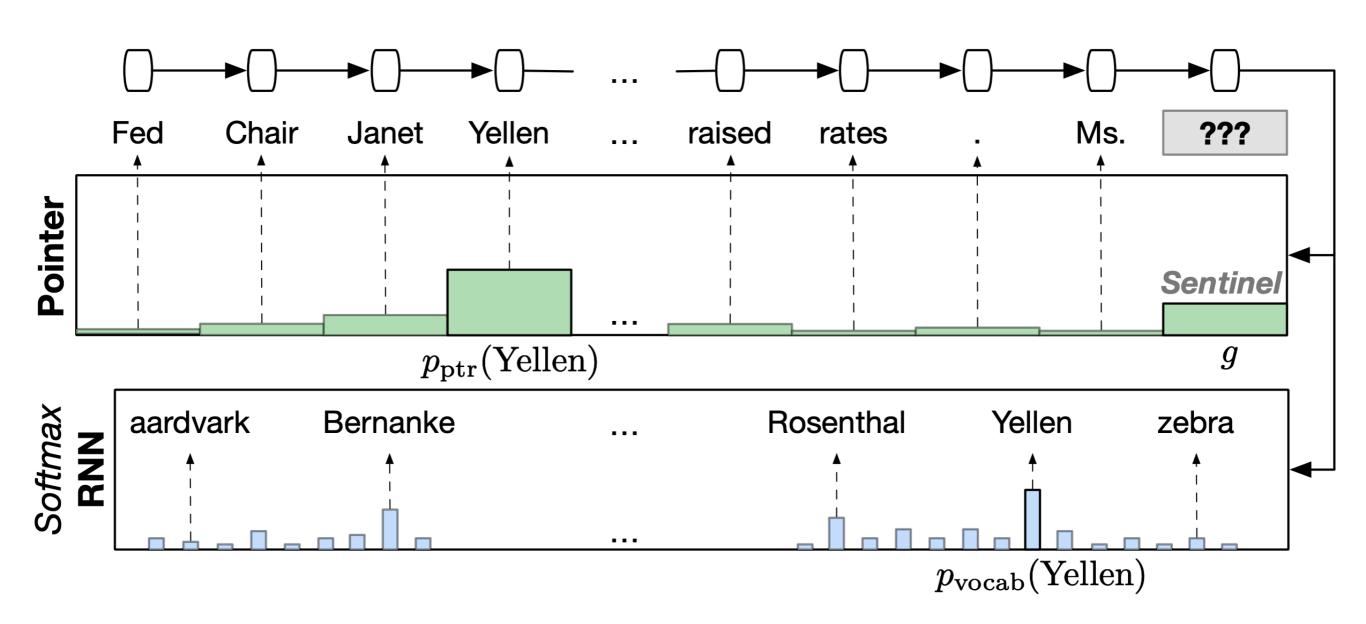


Here we have a standard seq2seq model for summarization



Here we have a seq2seq model with a **copy mechanism** for summarization

Target-side attention (in LMs or more complex MT models)



$$p(\text{Yellen}) = g \ p_{\text{vocab}}(\text{Yellen}) + (1 - g) \ p_{\text{ptr}}(\text{Yellen})$$

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

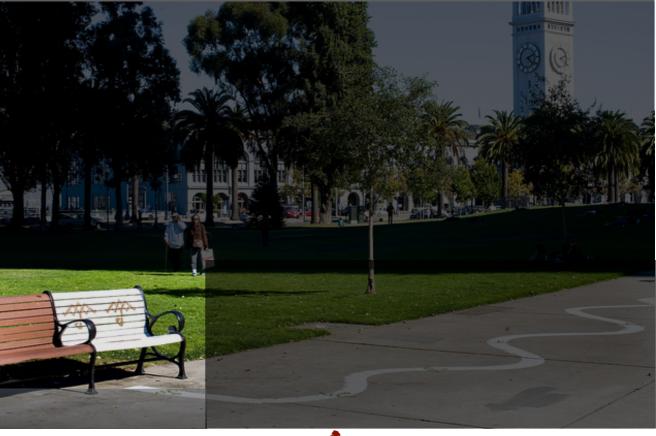
A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

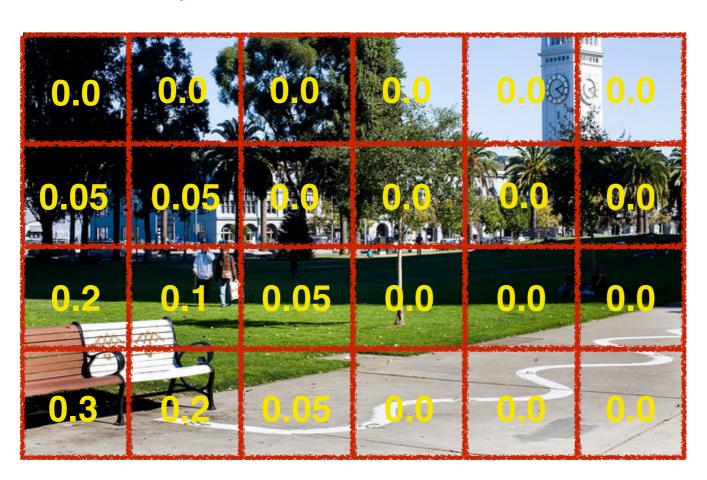
visual attention

 Use the question representation q to determine where in the image to look



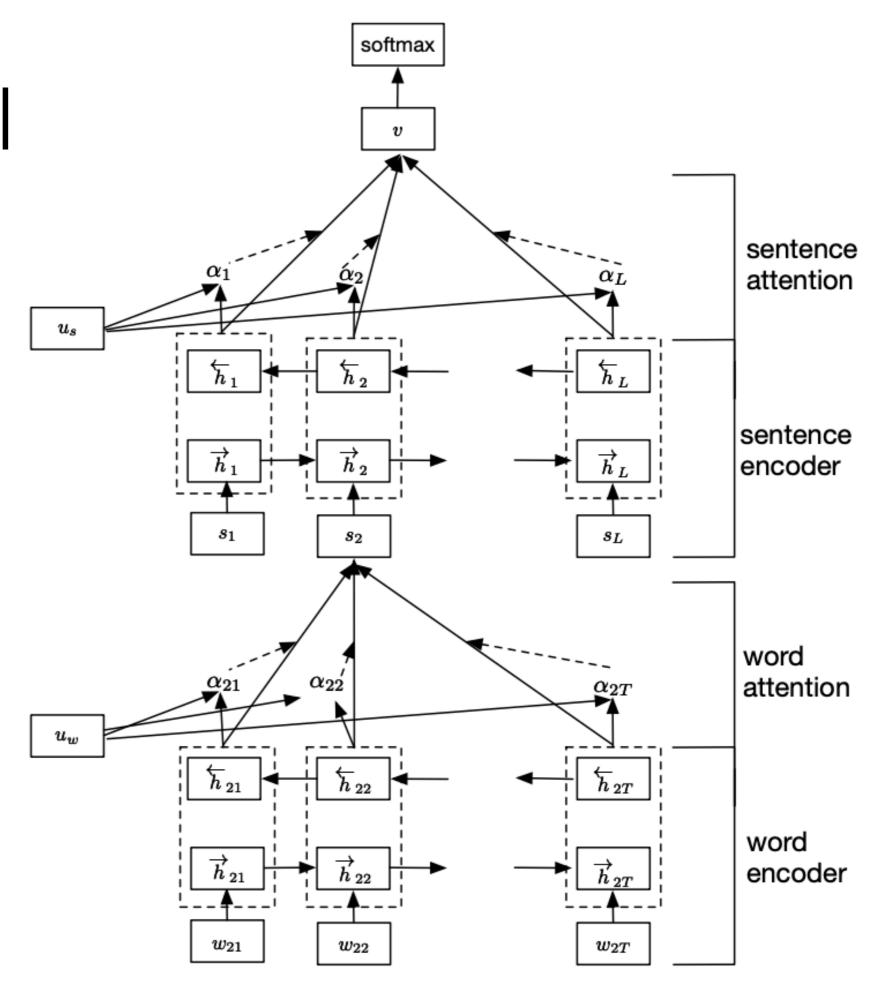
How many benches are shown?

attention over final convolutional layer in network: 196 boxes, captures color and positional information

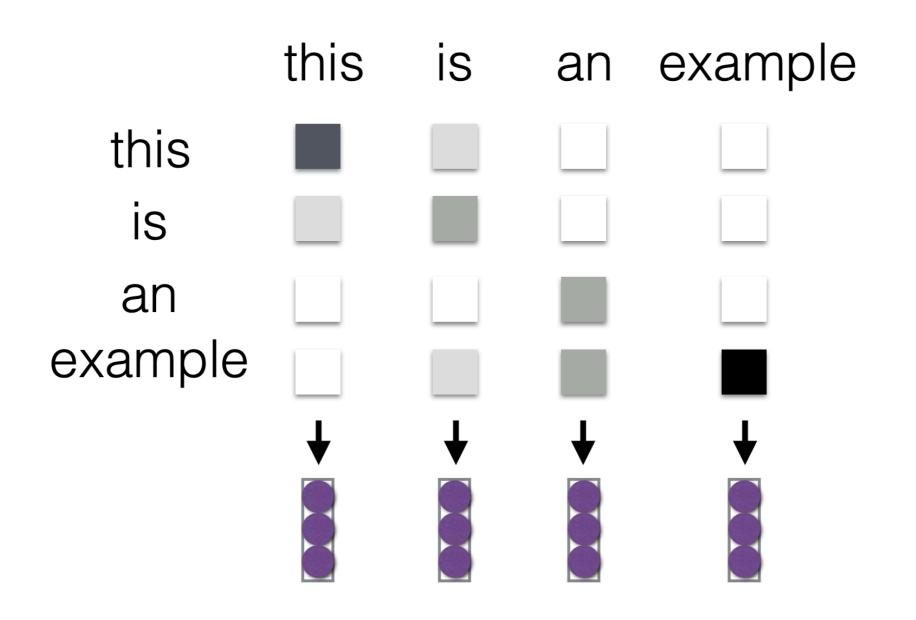


How many benches are shown?

Hierarchical attention



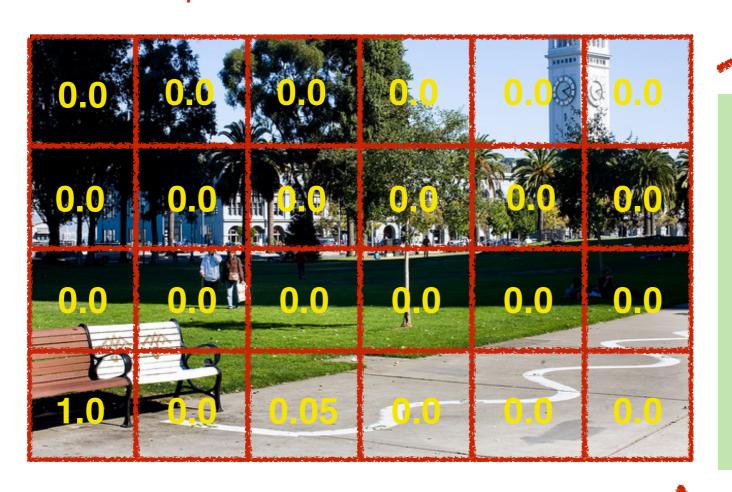
Self-attention as an encoder! (core component of Transformer)

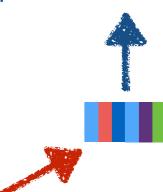


Attention variants

hard attention

attention over final convolutional layer in network: 196 boxes, captures color and positional information





we can use reinforcement learning to focus on just one box

How many benches are shown?

Multi-headed attention

- Intuition: k different attentions, each of which is computed independently and focuses on different parts of the sentence
- Transformers = stacked layers of multi-headed selfattention

