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ABSTRACTThe hromati number of the plane is the smallest number of olors needed in order topaint eah point of the plane so that no two points (exatly) unit distane apart are the sameolor. It is known that seven olors suÆe and (at least) four olors are neessary. In orderto understand two and three olorings better, it is interesting to see how large a region anbe and still be two or three olorable, and how ompliated the olorings need to be. Thispaper gives tight bounds for two and three oloring regions bounded by irles, retangles,and regular polygons. In partiular, a square is 2-olorable if and only the length of a side is� 2=p5, and is 3-olorable if and only the length of a side is � 8=p65.



1 INTRODUCTIONThe hromati number of the plane is the smallest number of olors needed in order to painteah point of the plane so that no two points (exatly) unit distane apart are the same olor.Ed Nelson invented the problem in 1950 ([Soif1℄). It is known that seven olors suÆe and (atleast) four olors are neessary. More about this problem an be found in Alexander Soifer'supoming book ([Soif2℄).Simple proofs show that the hromati number of the plane is not two or three. In orderto understand two and three olorings better, it is interesting to see how large an a region be(here meaning a simple losed urve and its interior) and still be two or three olorable, andhow ompliated the olorings need to be.This paper onsiders the oloring of regions bounded by irles, regular polygons, andretangles. For omparison with later results, the following are obvious tight bounds for 1-oloring of regions (whih are obtained by looking at the two furthest apart points in theregion): Boundary of region 1-olorable if and only ifirle radius < 12equilateral triangle side < 1a� b retangle b < p1� a2square side < 1p2regular n-gonn is even irumradius < 12n is odd irumradius < 1p2(1+os(�=n))We obtain the following tight bounds for 2-oloring of regions:Boundary of region 2-olorable if and only ifirle radius � 12equilateral triangle side < 1a� b retangle, a < b b < 2p1� a2square side � 2p5regular n-gonn is even irumradius � 1psin2(�=n)+4 os2(�=n)n is odd irumradius < 1p2(1+os(�=n))We obtain the following tight bounds for 3-oloring of regions:Boundary of region 3-olorable if and only ifirle radius � 1p3equilateral triangle side � p3a� b retangle, a � ba � p32 alwaysp32 < a � 2p5 b � 3p1� a22p5 � a � 8p65 b � p1� a2 +p1� a2=4square side � 8p65regular n-gon, n � 5 inradius sin ��p3 os �2(1�os �)where � = bn+13 2�nsimpli�es to inradius � 1p3 , for 3jn1
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Figure 1: L-segment (p; q; r)For omparison, here are (not neessarily tight) bounds for 4-oloring of regions.Boundary of region 4-olorable ifirle radius � 1p2equilateral triangle side � 2a� b retangle, a � ba � 2p23 always2p23 < a � p2 b � p4� a2square side � p2regular n-gon, 4jn inradius � 1p2The equivalent problem was independently studied by Bohannon, et al. ([Boha℄). For agiven shape, they �x the size, let the forbidden distane vary, and see how the number ofneessary olors hanges. They only onsider olorings of irle-regions and retangle-regions.Their non-olorability arguments are di�erent than the ones used in this paper. The appendixsummarizes their results. Bauslaugh ([Baus℄) studied 3-olorings of an in�nite strip, andobtained tight bounds. The results are rederived here in the setion on 3-olorings using ourmethods.Setion 2 gives the basi de�nitions. Setions 3, 4, and 5 present the oloring results fortwo, three, and four olors, respetively. Setion 6 lists some open problems.2 DEFINITIONSDe�nition 2.1 A irle-region is the irle with its interior, and similarly with other geometri�gures.De�nition 2.2 A region is k-olored if it is painted with k olors suh that no two points(exatly) unit distane apart are the same olor.De�nition 2.3 A region is k-olorable if it an be k-olored.De�nition 2.4 An L-segment (p; q; r) is a line segment (p; q) joined at a right angle with aline segment (q; r) at (their ommon endpoint) q. (Figure 1.)NOTE ON FIGURES: The 2-olorable regions are olored using red and blue, the 3-olorable regions are olored using red, blue, and green. and the 4-olorable regions are olored2
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Figure 2:using red, green, blue, and yellow. In the blak and white version of this paper1, red isrepresented by dark gray, green by medium gray, blue by light gray, and yellow by very lightgray. When a losed subregion is monohromati, the boundary is indiated by a blak line,but the points on the boundary are olored the same as the interior. When two subregionsshare a boundary and/or a orner, the shared points an be either olor, unless otherwisestated. Within eah �gure, all pitures are drawn to the same sale, but two di�erent �guresmay have di�erent sales.3 2-COLORINGSDe�nition 3.1 A disk is the interior of a irle (i.e., a irle-region without its boundary).De�nition 3.2 A rod (p; q) is a line segment of unit length with endpoints p; q.The following lemma provides the workhorse for most of non-olorability arguments.Lemma 3.3 Let (p; q) be a rod, with the open disks of radius �, 0 < � � 1=2, entered at p andq (alled the p-disk and q-disk) ontained in a 2-olored region. Then the open disks of radius�2=8 entered at p and q are monohromati (with di�erent olors).1A olor verion of the paper will be available on my website at the University of Maryland.3
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Figure 3: 2-oloring of irle-region for r = 12 .Proof: Assume that the disk of radius �2=8 entered at p is not monohromati. (Figure 2.)Say p is red (so q is blue). Choose artesian oordinates suh that p is (0; 0) and q is (0; 1).Let p0 be a blue point within �2=8 of p (so p0 is very lose to p). The points unit distane fromq lying in the p-disk form a red ar aq, and the points unit distane from p0 lying in the q-diskform a red ar ap0 . The point s = (�=2; 1 � p1� �2=4) is on aq so it must be red. So theunit-radius ar as of points entered at s in the q-disk must be blue.The two ars ap0 and as interset in the q-disk, sine the point s+ (0; 1) is above ap0 andthe point s+(��;p1� �2) is below ap0 . To see this, note that at x = �=2, the ar from s has y-oordinate (1�p1� �2=4)+1 = 2�p1� �2=4, and the ar from p0 has y-oordinate less thanp1� �2=4 + �2=8. So, we need, 2�p1� �2=4 > p1� �2=4 + �2=8 or 1� �2=16 > p1� �2=4.At x = ��=2, the ar from s has y-oordinate (1 �p1� �2=4) + p1� �2 and the ar fromp0 has y-oordinate greater than p1� �2=4 � �2=8. So, we need, 1 �p1� �2=4 +p1� �2 <p1� �2=4� �2=8 or 1+p1� �2 + �2=8 < 2p1� �2=4. So the ars interset and have di�erentolors, whih is a ontradition.Lemma 3.4 Assume a region is 2-olored. If we slide a rod ontinuously so that the end-points stay stritly inside the region, the set of points passed over by a given endpoint aremonohromati.Proof: Follows from the previous lemma.Theorem 3.5 A irle-region is 2-olorable if and only if its radius r � 12 .Proof: COLORABILITY: Let r � 12 . If r < 12 then the irle-region is olorable withonly one olor (and a fortiori with two olors). Otherwise (r = 12), biset the irle-regionalong a diameter, and olor one semiirle-region red and the other blue. The points on thediameter an be either olor, exept that the two end points of the diameter (whih are on theirle) must be di�erent olors. (Figure 3.)NON-COLORABILITY: Let r > 12 . Suppose the region is 2-olored. Put a rod insidethe irle-region so that the enter of the rod is at the enter of the irle, and rotate the rod180 degrees around its enter (halfway around). By Lemma 3.4 the points rossed by an end4



(a) (b)Figure 4: Non-2-olorability of irle-region for r > 12
BR

Figure 5: 2-oloring of a� b retangle-region, where a � b and a2 + b2=4 < 1of the rod must all have same olor (Figure 4a), but the start and �nish points of an end areone unit apart (Figure 4b). Contradition.Theorem 3.6 A retangle-region of dimensions a� b, with a � b, is 2-olorable if and only ifeither it is not a square (a < b) and a2 + b2=4 < 1, or it is a square (a = b) and a � 2p5 .Proof: COLORABILITY: If (a � b and) a2+b2=4 < 1 (the retangle ase and the squarenot of maximum allowed size), biset the retangle-region into two a� b2 sub-retangle-regions,and olor the one half red and the other half blue. The points on the boundary between thetwo subretangles an be either olor. (Figure 5.)If a = b and a2+b2=4 = 1 (whih implies a = 2=p5 the maximum allowed size square), thenolor the left half red and the right half blue, as before with the following modi�ations. Color
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Figure 6: 2-oloring of square-region with side length s = 2=p55
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Figure 7: Non-2-olorability of a� b retangle-region, where a < b and a2 + b2=4 > 1blue all four orners of the square-region, and olor red the two end points of the boundarybetween the two halves. The two blue orners on the red side fore two unit-radius ars insidethe blue sub-retangle-region to be red, but none of the points on those ars is one unit awayfrom any point on the red side (exept the blue orners). (Figure 6a.) This oloring is not asnie as the previous ones, beause of the isolated blue points at the two left orners of the redregion and the isolated red lines inside the blue region. The isolation of the red lines an beeliminated simply by making the entire region to their left red. (Figure 6b.) It does not seempossible to eliminate the blue orners.NON-COLORABILITY: There are two ases: (1) (a � b and) a2 + b2=4 > 1 and (2)a < b and a2 + b2=4 = 1.CASE (1): (a � b and) a2 + b2=4 > 1. Suppose the retangle-region is 2-olored. Createa new retangle R of dimensions �� � where � � �, � < a, � < b, and �2 + �2=4 = 1.Let  be the top left orner point of R, d be the bottom left orner point, m be the middlepoint of the left side, and t be the middle point on the top side. Put one end of a rod on  andthe other end on the bottom side of R, where it will lie at the enter beause �2 + �2=4 = 1.Slide the rod downward on the left side and rightward on the bottom side until the left endreahes m (Figure 7a). This is possible beause the distane between m and the bottom rightorner is p�2=4 + �2 � p�2 + �2=4 = 1 (whih follows beause � � �). The line segment(;m) must be monohromati (by Lemma 3.4). By symmetry, the line segment (d;m) mustalso be monohromati.Starting with the rod in its initial position, slide it rightward until the top end touhes t(and the bottom end touhes the bottom right orner of R). The line segment (; t) must bemonohromati (Figure 7b). So the entire L-segment (d; ; t) must be monohromati. But,the points d and t are exatly one unit apart (Figure 7). Contradition.CASE (2): a < b and a2 + b2=4 = 1. Suppose the retangle-region is 2-olored. Let � > 0be a small value that depends on a and b (to be spei�ed later). Create a retangle R ofdimensions �� � where � = a� �, � = b� �, and �2=4 + �2 � 1. (Notie the position of thedenominator 4!) This latter ondition is possible sine a < b. Put R inside the retangle-regionwith the same enter and orientation.Let  be the top left orner point of R, m be the middle point of the left side, and t bethe point on the top exatly one unit away from the bottom right orner. Put one end ofa rod on  and the other end on the bottom side of R (just right of the middle). Slide therod downward on the leftward side and right on the bottom side until the left end reahes m6
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Figure 8: Non-2-olorability of a� b retangle-region, where a < b and a2 + b2=4 = 1
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(Figure 8a). This is possible beause the distane between m and the bottom right orner isp�2=4 + �2 � 1. The line segment (;m) must be monohromati.As before, put one end of a rod on  and the other end on the bottom side of R (just rightof the middle). Now, slide the rod rightward until the top end touhes t (and the bottomend touhes the bottom right orner of R). The line segment (; t) must be monohromati(Figure 8b).So, the L-segment (m; ; t) must be monohromati (Figure 8). Let 0 be the top rightorner point of R, m0 be the middle point of the right side, and t0 be the point on the topexatly one unit away from the bottom left orner. Symmetrially, the L-segment (m0; 0; t0)must be monohromati (Figure 8d). By ontinuity,  is exatly one unit away from somepoint on (t0; 0;m0), sine j(; t0)j = p1� �2 < 1 and j(;m0)j = p�2=4 + �2 � 1 (Figure 8e).So the two L-segments must be di�erent olors.Let C be the top left orner point of the original retangle-region, and let C 0 be the topright orner point. Now, onsider the point exatly in the middle of the bottom half of theoriginal retangle-region. It is exatly one unit away from both C and C 0, so the latter twopoints must be the same olor (as eah other). By ontinuity, eah orner, C and C 0, is exatlyone unit away from some point on the opposite L-segment on R, sinej(C; t0)j = j(C 0; t)j = q(p1� �2 + �)2 + �2 < 1;if � is small enough, and obviously j(C;m0)j = j(C 0;m)j > 1 sine j(;m0)j � 1 (Figure 8f). Sothe two L-segments must be the same olor (as eah other). Contradition.For regions where the onditions of olorability involves < rather than �, one might wonderhow muh of the boundary an be inluded and still be 2-olorable. While a retangle-regionof dimensions a� b, where a < b, is not 2-olorable for a2 + b2=4 = 1, it is almost 2-olorable:Theorem 3.7 A retangle-region of dimensions a�b, where a < b and a2+b2=4 = 1, beomes2-olorable if of the set of three points ftop left orner, middle bottom side, top right ornergone of them is removed, and of the set of three points fbottom left orner, middle top side, andbottom right ornerg one of them is removed.Proof: Biset the retangle-region into two a � b2 subretangle-regions, and olor the leftside red and the right side blue. The points on the boundary between the two subretanglesan be either olor, exept if a middle point on the top or bottom side exists, it must be adi�erent olor than the remaining orner point in its set.Note 3.8 The non-olorability argument in Theorem 3.6 (for the ase a < b and a2+b2=4 = 1)shows that the region is not 2-olorable if only one point is removed, or even if any other pairof points is removed.The following are well known, but useful, fats about regular polygons.Lemma 3.9 Consider a regular n-gon. Let s be the length of a side; r be the distane fromthe enter to a orner (its radius); and q be the distane from the enter to the middle of aside.Then r = qos(�=n) = s2 sin(�=n)q = r os(�=n) = s2 tan(�=n)s = 2r sin(�=n) = 2q tan(�=n)8
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Figure 9: Non-2-olorability of regular n-gon-region with n odd.Theorem 3.10 A regular n-gon-region is 2-olorable if and only if the irumradius r satis�esr � 1psin(�=n)2+4 os(�=n)2 if n is evenr < 1p2(1+os(�=n)) if n is oddProof: CASE (1): n is odd.COLORABILITY: If r < 1p2(1+os(�=n)) , just use one olor. Two farthest apart pointsof the same olor are from a orner to an endpoint of its opposite side. It is suÆient that thisdistane be less than 1. So we need:q(s=2)2 + (r + q)2 < 1=) q(r sin(�=n))2 + (r + r os(�=n))2 < 1=) rqsin2(�=n) + (1 + os(�=n))2 < 1=) rqsin2(�=n) + 1 + 2 os(�=n) + os2(�=n) < 1=) rq2 + 2 os(�=n) < 1=) r < 1p2(1 + os(�=n))NON-COLORABILITY: Assume that r � 1p2(1+os(�=n)) and suppose that the n-gon-region is 2-olored. Imbed a regular n-gon inside the original n-gon-region, but not neessarilystritly, with irumradius r = 1p2(1+os(�=n)) . Let 0; 1; � � � ; n�1 be the orners in order. Thedistane from any orner to a orner on its opposite side is exatly 1, so those two points musthave di�erent olors. Take the sequene of opposite orners0; (n�1)=2+1; 1; (n�1)=2+2; 2; (n�1)=2+3; : : : ; n�2; (n�1)=2�1; n�1; (n�1)=2; 0Sine n is odd, 0 must have a di�erent olor than itself, whih is a ontradition. Figure 9shows an example for n = 5, the pentagon.CASE (2): n is even.COLORABILITY: If r < 1psin2(�=n)+4 os2(�=n) then biset the n-gon-region from themiddle of one side to the middle of its opposite side, and olor the two sides with di�erentolors. The biseting line an be either olor. Figure 10a shows an example for n = 6, thehexagon. 9
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Figure 10: 2-oloring of regular n-gon-region with even number of sides.(a) Cirumradius r < 1psin2(�=n)+4 os2(�=n) . (b) Cirumradius r = 1psin2(�=n)+4 os2(�=n) .The farthest pairs of points of the same olor are from the middle of one of the bisetedsides to a orner on its opposite side. It is suÆient that this distane be less than 1. So weneed: q(s=2)2 + (2q)2 < 1=) q(r sin(�=n))2 + (2r os(�=n))2 < 1=) rqsin2(�=n) + 4 os2(�=n) < 1=) r < 1qsin2(�=n) + 4 os2(�=n)If r = 1psin2(�=n)+4 os2(�=n) then one again olor it by biseting the n-gon-region from themiddle of one side to the middle of its opposite side, and oloring the two sides with di�erentolors. Again, the biseting line an be either olor. However, the midpoints of all of thesides must be one olor, say red, and all of the orners must be the other olor, say blue.Furthermore, the points that are unit distane away from any orner (whih are ars of aunit-radius irle) must be red. As in the oloring of the square (Figure 6b), the isolation ofthe red lines is eliminated by oloring the entire region to their left red, exept for the blueorners. This ompletes the oloring. Figure 10b shows an example for n = 6, the hexagon.NON-COLORABILITY: Assume r > 1psin2(�=n)+4 os2(�=n) and suppose the n-gon-region is 2-olored. Imbed a regular n-gon inside the original n-gon-region with irumradiusr = 1psin2(�=n)+4 os2(�=n) . Let S be a side, say the top. Plae a rod with one end at the leftorner of S and the other end in the middle of the bottom (opposite) side. Slide the rodrightward until the top end touhes the middle of S (and the bottom end touhes the rightorner of the bottom side). Thus the left half of S inluding the endpoints must have the sameolor (Figure 11a). Symmetrially, the right half of S inluding the endpoints must have thesame olor. Thus the entire side S inluding its endpoints must have the same olor (Figure11b). Any two adjaent sides must have the same olor (sine they share an endpoint), so allof the sides must have the same olor. But the middle of a side and the orner of the oppositeside are exatly one unit apart (Figure 11). Contradition.10



(a) (c)(b)Figure 11: Non-2-olorability of regular n-gon-region with even number of sides.
(x,y)

(u,v)Figure 12:Corollary 3.11 An equilateral-triangle-region is 2-olorable if and only its side length s < 1.For regular n-gon-regions, where n is odd, the onditions of olorability involve a < ratherthan a �. It turns out that almost the the entire boundary an be inluded:Theorem 3.12 A regular n-gon-region with n is odd and irumradius r = 1p2(1+os(�=n)) , is2-olorable if one orner point is removed.Proof: Biset the n-gon-region from the orner with the missing point to the middle of itsopposite side. Color the two halves with di�erent olors. The biseting line an be either olor.Note 3.13 The non-olorability argument in Theorem 3.10 for n odd shows that the regionis not 2-olorable if any other point is removed, or even if any set of points not inluding aorner point is removed.4 3-COLORINGSDe�nition 4.1 A tri-rod (p; q; r) is a unit-side equilateral triangle with orners p; q; r.Lemma 4.2 Consider a tri-rod in the upper right quadrant of a artesian oordinant system,with a orner at the origin (0; 0), the top orner is at (x; y), and right orner is at (u; v).11



(Figure 12.) Then x = 12u� p32 p1� u2 = 12p1� v2 � p32 vand y = p32 u+ 12p1� u2 = p32 p1� v2 + 12vProof: x = os(�3 + aros(u))= os(�3 ) os(aros(u))� sin(�3 ) sin(aros(u))= 12u� p32 p1� u2y = sin(�3 + aros(u))= sin(�3 ) os(aros(u)) + os(�3 ) sin(aros(u))= p32 u+ 12p1� u2The following lemma, whih is analogous to Lemma 3.3, is the bakbone for all of thenon-olorability arguments.Lemma 4.3 Let (p; q; r) be a tri-rod, where the disks of radius �, 0 < � < 1=2, entered at p,q, and r (alled the p-disk, q-disk, and r-disk) are ontained in a 3-olored region. Then thereare inner open disks of radius O(�2) entered at p, q, and r that are eah monohromati (withdi�erent olors).Proof: Construt inner diss of radius K�2 about p; q; r, where K is a positive onstanthosen small enough to aomodate Case(2) of the following argument. There are two ases:CASE (1): No olor ours in all three inner disks. There are two subases:CASE (1a): One inner disk is monohromati. We an assume it is entered at p and is red.Obviously no point in either other inner disk an be red, so the other two inner disks, enteredat q and r, are bihromati blue/green. By Lemma 3.3, there are radius O(�4) disks withinthe inner disks entered at q and r that are monohromati. By Lemma 3.4, moving rod (q; r)inside the radius O(�2) inner disks fores them to be monohromati (with di�erent olors).CASE (1b): No inner disk is monohromati. Sine no olor ours in all three inner disks,eah olor ours in at most two inner disks, whih implies that the sum of number olors usedover all three inner disks at most six. Sine no inner disk is monohromati, eah inner diskontains at least two olors, so eah inner disk must ontain exatly two olors. (Otherwisethe sum of number olors used over the three disks would be more than six.) Thus, eah innerdisk must be bihromati, and eah of the three possibilities (red/blue, red/green, blue/green)ours exatly one. (If some pair of olors ourred twie then those two olors would eahalready our in two inner disks, so the third inner disk would have to be monohromati.)Consider the red/blue disk. (Figure 13.) There exist two points, one red and one blue,muh loser to eah other than either is to the boundary.2 The points unit distane from the2Take any two points of di�erent olors (red and blue). Consider the point halfway between them. It musthave a di�erent olor from one of the original points. Keeping the middle point and the opposite olored pointprodues two new points half as far apart. Iterate until the separation is small enough.12
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Figure 14:red point lying in the inner red/green disk form a green ar; the points unit distane from theblue point lying in the inner blue/green disk also form a green ar. Sine the red and bluepoints are arbitrarily lose to eah other, the two losest points on these two ars are less thanone unit apart and the two furthest points are more than one unit apart. By ontinuity, twopoints, one on eah ar, must be exatly one unit apart. Contradition.CASE (2): Some olor, say red, does our in all three inner disks. (Figure 14.) Sine p,q, and r must have di�erent olors, one of them, say r, must be red. Let p0 be a red point insidethe inner disk entered at p, and q0 be a red point inside the inner disk entered at q. (We donot need r0 sine r is already red.) Let ap0 be the intersetion of the ar of the unit-radius irlearound p0 with the q-disk, aq0 be the intersetion of the ar of the unit-radius irle around q0with the r-disk, and ar be the intersetion of the ar of the unit-radius irle around r with thep-disk. Note that the ars must be olored only blue and green. We prove below that there isa tri-rod whose three orners lie on these ars. Figure 14 gives the intuition for this as you ansee the two tri-rods, and that one is obtained by sliding the other one. Sine there are onlytwo olors available for the three orners this will be a ontradition.To prove the laim, hoose artesian oordinates (x; y), suh that p is (0; 0), q is (1; 0), andr is (1=2;p3=2). We approximate eah of the ars by a straight line; within eah �-radius diskthe error is only O(�2). Ar ap0 is approximated by x = 1 +O(�2), ar aq0 is approximated byy = xp3 + 1p3 +O(�2), and ar ar is approximated by y = � xp3 +O(�2).Any given point � = (1 + O(�2); d) on ap0 is unit distane away from some point � =(O(�2); O(�2)) on ar. By a trivial extension of Lemma 4.2, if (�; �; ) is the tri-rod with  near14
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Figure 15: 3-oloring of irle-region for diameter (a) r < 1p3 and (b) r = 1p3r, then  =  12 � p32 d+O(�2); p32 + d2 +O(�2) !In partiular, by setting d = �=2, there is a tri-rod with two orners on ar and ap0 and toporner at  12 � p3�4 +O(�2); p32 + �4 +O(�2) ! ;whih is above the ar aq0 , and, by setting d = ��=2, there is a tri-rod with two orners on arand ap0 and top orner at 12 + p3�4 +O(�2); p32 � �4 +O(�2) ! ;whih is below the ar aq0 . So, by ontinuity, there exists a tri-rod with its orners on all threears. This establishes the ontradition.Lemma 4.4 Assume a region is 3-olored. If we slide a tri-rod ontinuously around the insideof the region, the points passed over by a given orner must all be the same olor, and thepoints passed over by di�erent orners must have di�erent olors.Proof: Follows from the previous lemma.Theorem 4.5 A irle-region is 3-olorable if and only if its radius r � 1p3 � :57735.Proof: COLORABILITY: Assume r � 1=p3. Triset the irle-region and olor thethree setions di�erent olors. The points on the boundary between two setions an be eitherolor (Figure 15a), exept if the radius is exatly equal to 1=p3 then olor the three end-points,whih are on the irle, di�erent olors (Figure 15b).NON-COLORABILITY: Assume r > 1=p3. Suppose the region is 3-olored. Put atri-rod inside of the region so that their enters orrespond, and rotate the tri-rod 120 degreesaround its enter (one third of the way around). (Figure 16a.) Eah orner of the tri-rod15



(b)(a)Figure 16: Non-3-olorability of irle-region for r > 1p3
Figure 17: Tri-rod in a regular n-gon-region, for n = 5; 6; 7; 8.traverses an ar of a irle with radius 1=p3. By Lemma 4.4 eah ar must be monohromatiand have a di�erent olor, but the ars interset at their endpoints (Figure 16b). Contradition.Theorem 4.6 A regular n-gon-region with n � 5 is 3-olorable if and only if the inradiusq � sin � �p3 os �2(1 � os �)where � = bn+13 2�n .Proof: Plae the n-gon onto the artesian oordinates with enter at the origin, and oneside parallel to the x-axis in the lower half of the plane. Make the polygon just large enoughso that the tri-rod �ts exatly inside it with one orner in the middle of the bottom side andthe other two orners eah touhing a side (above the x-axis). Figure 17 shows this for apentagon, hexagon, septagon, and otogon (with the artesian oordinates not shown). Wewill determine the size of suh a regular polygon, whih will help with both the olorabilityand non-olorability arguments.Number the sides of the polygon ounting ounter-lokwise, starting with the bottom side,whih is numbered 0. The top right orner of the tri-rod is about one third the way around thepolygon. More preisely, it touhes side number bn+13 . So the irular angle from the middleof the bottom side to the middle of this side is � = bn+13 2�n . The angle from the x-axis is16
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Figure 18: 3-oloring of regular n-gon-region, for n = 5; 6; 7; 8 and q = sin ��p3 os �2(1�os �) .� � �2 , whih implies the slope of this side is� ot(� � �2 ) = tan � :There are two partiular points that we know are on that side: The midpoint of the side,whih is (q os(� � �2 ); q sin(� � �2 )) = (q sin �;�q os �), and the orner point of the tri-rod,whih is (1=2;p3=2� q). If these two points are distint, they de�ne a line whose slope is�q os � � (p3=2 � q)q sin � � 1=2So, tan � = �q os � � (p3=2� q)q sin � � 1=2=) q sin � tan � � 12 tan � = � q os � � p32 + q=) q(sin � tan � + os � + 1) = 12 tan � � p32=) q(sin2 � + os2 � + os �) = 12 sin � � p32 os �=) q(1 + os �) = sin � �p3 os �2=) q = sin � �p3 os �2(1 + os �)If the two points oinide (whih happens when 3jn) thenq sin � = 1=2 and � q os � = p3=2� qThis simpli�es to q = 1p3 and � = 2�3whih is a solution to the above equation.COLORABILITY: Assume q = sin ��p3 os �2(1�os �) . Consider the three points where the threeorners of a tri-rod interset three sides of the polygon as above. Draw the three line seg-ments from the enter of the polygon to these three points, partitioning the polygon into three17



subregions, olor eah subregion a di�erent olor. The points on the boundary between twosubregions an be any olor, exept the three intersetion points must be di�erent olors. Fig-ure 18 shows the oloring for a pentagon, hexagon, septagon, and otogon. If q < sin ��p3 os �2(1�os �) ,shrink the above oloring to the desired size (and there is no extra ondition on the threeintersetion points).NON-COLORABILITY: Assume q > sin ��p3 os �2(1�os �) and the n-gon-region is 3-olored.Put an n-gon with inradius exatly sin ��p3 os �2(1�os �) stritly inside the original polygon (so that itsenter at the origin, and one side parallel to the x-axis in the lower half of the plane). Weshow that a tri-rod an be maneuvered around inside the inner polygon.Consider the top edge of the tri-rod. On the left side it touhes an edge of the inner polygonwhose slope is, say m, where m > 0, and on the right side it touhes a edge whose slope is�m. We laim that the as long as those two orners of the tri-rod touh those two edges,respetively, the third orner of the tri-rod will be inside the inner polygon. Let p and q bethe original upper left and right orners of the tri-rod, respetively. For any loations the twopoints will be p = (�1=2 + �;p3=2 +m�) for some � and q = (1=2 + Æ;p3=2�mÆ) for some Æ.So the y-oordinate of midpoint of the upper edge of the tri-rod will bep32 + m(�� Æ)2 :If � � Æ > 0 then the midpoint has moved up, whih implies that the bottom orner of thetri-rod will have moved up also. We an alulate the relation between � and Æ beause theedge of the tri-rod has length one:((12 + Æ) � (�12 + �))2 + ((p32 �mÆ)� (p32 +m�))2 = 1=) (1� (�� Æ))2 + (�m(�+ Æ))2 = 1=) 1 + 2(�� Æ) + (�� Æ)2 +m2(�+ Æ)2 = 1=) �� Æ = (�� Æ)2 +m2(�+ Æ)22The right hand side is learly positive.Plae the tri-rod inside the inner polygon so that its three orner points interset threesides of the inner polygon as above (Figure 19a). Rotate the tri-rod lokwise so that the twoupper points stay on the boundary, until one of them reahes a orner of the inner polygon(Figure 19b). Fix this latter point of the tri-rod, and slide the tri-rod so that the bottompoint touhes the bottom edge of the inner polygon (Figure 19). Rotate the tri-rod lokwiseso that the previously �xed point and the bottom point stay on the boundary of the innerpolygon, until the third point intersets the middle a side, whih by symmetry will happen(Figure 19d). By ontinuing in this fashion, eah orner of the tri-rod will interset the middleof eah side of the inner polygon. By Lemma 4.4 eah orner must be monohromati andhave a di�erent olor, but the orners interset at their endpoints (one third of the way aroundthe inner polygon). This establishes the ontradition.Corollary 4.7 A regular n-gon-region with n � 6 and 3jn is 3-olorable if and only if theinradius q � 1p318



(b)(a)

(c) (d)Figure 19: Non-3-olorability of regular polygon region for q > sin ��p3 os �2(1�os �) .
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Figure 20: 3-oloring of equilateral-triangle-region for side length (a) s < p3 and (b) s = p3.The equilateral triangle and square an be olored in very muh the same way: Plae a\tri-rod" inside the region as above, and use the three intersetion points with the enter ofthe region to separate into three subregions for oloring. The di�ene is that the two fartherestapart points in a subregion are no longer the two intersetion points inside that subregion: Forthe triangle it is a orner and the enter of the triangle, and for the square it is a orner andone of the intersetion points. So the \tri-rod" will have sides smaller than one unit. Thisneessitates di�erent olorability and non-olorability arguments.Theorem 4.8 An equilateral-triangle-region is 3-olorable if and only if its side length s � p3(or equivalently its irumradius r � 1).Proof: COLORABILITY: Assume s < p3 (Figure 20a). Triset the triangle-region withthe line segments from the middle of eah side to the enter. Color eah setion a di�erentolor. Color the points on the boundary between two setions either olor, and olor the middlepoint any olor, say green. The farthest two points of the same olor are the middle point andthe orner point in the green setion. This is the irumradius and it must be less than 1. So,by Lemma 3.9, s = 2r sin(�=n) = 2r sin(�=3) = 2rp32 = rp3 < p3(by 3.9).Assume s = p3 (Figure 20b). Again triset the triangle-region with the line segments fromthe middle of eah side to the enter, olor eah setion a di�erent olor, and olor the pointson the boundary between two setions either olor. Color the orner point of the green setionred, and olor green the points on the unit-radius ar entered at that point.3 The isolationof the green ar is eliminated by oloring the sub-region above the ar all green.NON-COLORABILITY: Assume s > p3, and suppose the region is 3-olored. Imbedan equilateral triangle T with side length exatly p3 inside of the triangle-region. Plae atri-rod inside of T , and slide the tri-rod so that eah orner touhes a di�erent orner of T .Thus, the three orners of T must have di�erent olors. But the enter of T is exatly distane1 away from eah orner.3Atually, only the points in the red setion need to be olored green, but this makes the oloring moresymmetrial. 20



The following result was proved by Bauslaugh using very di�erent tehniques.Theorem 4.9 ([Baus℄) An in�nite strip is 3-olorable if and only if it has width a � p3=2.Proof: COLORABILITY: Assume the width a � p3=2. Color with bloks of width1=2, rotating olors red, green, blue, red, green, blue, et. Color the boundary between twobloks the olor of the points to its right.NON-COLORABILITY: Assume the width a > p3=2, and suppose the region is 3-olored. Put a strip of width p3=2 inside the original strip. Put a tri-rod inside the new stripwith two orners on one side of the strip and the third orner on the other side of the strip.Slide the tri-rod rightward one unit. The left orner �nishes where the right orner starts, butby Lemma 4.4 the points rossed by these orners must have di�erent olors. Contradition.Theorem 4.10 A retangle-region of dimensions a� b, with a � b, is 3-olorable if and onlyif (1) a � p32or (2) p32 < a � 2p5 and b � 3p1� a2or (3) 2p5 < a � 8p65 and b � p1� a2 +p1� a2=4Proof: Note thatmax� 3p1� a2; p1� a2 +q1� a2=4 � = ( 3p1� a2 if a � 2p5p1� a2 +p1� a2=4 if a � 2p5COLORABILITY:CASE (1): a � p3=2. Color it like an in�nite strip, but hop it to length b.CASE (2): p3=2 < a � 2=p5 and b � 3p1� a2. We onsider two methods of oloring:vertial stripes, whih are are simpler for b < 3p1� a2, and non-stripes, whih are simplerfor b = 3p1� a2. We present both methods, partly beause they provide insight for thenon-olorability argument.Vertial stripes (Figure 21). Assume b < 3p1� a2. Triset the retangle with vertiallines and olor the three small retangles red, blue, and green. Within eah small retangle,two points farthest apart are diagonally opposite orners. So to have a legitimate 3-oloring,we need pa2 + (b=3)2 < 1, whih is equivalent tob < 3p1� a2 :Assume b = 3p1� a2. From the lower left orner draw a red unit-radius irular ar fromthe top to the horizontal middle, and from the lower right orner draw a green unit-radiusirular ar from the top to the horizontal middle. Color their intersetion point green. Fromthe upper left orner draw a red unit-radius irular ar from the bottom to the horizontalmiddle, and from the upper right orner draw a green unit-radius irular ar from the bottomto the horizontal middle. Color their intersetion point green. Draw a vertial line in thehorizontal middle onneting the two greeen intersetion points. This reates a large region tothe left, one to the right, and two small regions in the middle (one at the top and one at thebottom). Color the left region red, the right region green, and the two middle regions blue.Color the two points at the top and bottom, one third the way aross blue, the two pointsat the top and bottom, two thirds the way aross green, and the two points at the top andbottom right orners blue. This ompletes the oloring.21
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Figure 21: Vertial stripes 3-oloring of a� b retangle-region, where a � b, p32 < a � 2p5 .(a) b < 3p1� a2. (b) b = 3p1� a2.
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Figure 22: Non-stripes 3-oloring of a � b retangle-region, where a � b, p32 < a � 2p5 , andb � 3p1� a2
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Figure 23: Mixed stripes 3-oloring of a� b retangle-region, where a � b, 2p5 � a � 8p65 .(a) b < p1� a2 +p1� a2=4. (b) b = p1� a2 +p1� a2=4.Non-stripes (Figure 22). The point p on the bottom side, distane (b�p1� a2)=2 fromthe bottom left orner, and the point q on the top side, distane (b�p1� a2)=2 from the topright orner, are exatly one unit apart. Color p green and q blue. Consider the unit-radius arentered at p, near the top right orner of the region. Color the ar and all points outside it(but inside the region) red, exept of ourse for point q. Consider the unit-radius ar enteredat q, near the bottom left orner of the region. Color the ar and all points outside it (butinside the region) red, exept of ourse for point p. Cut the remainder of the region in halfby the line segment from p to q and olor the left side blue and the right side green. Theboundary points an be either olor. As long as b � 3p1� a2, no two points of the sameolor will be exatly one unit apart.CASE (3): 2p5 < a � 8p65 and b � p1� a2 +p1� a2=4. We use Mixed stripes.4 Letx < b be a value to be determined later. Use green to olor the a� x vertial stripe at the leftof the region. Biset the remaining subretangle with a horizontal line and olor the top redand the bottom blue. (Figure 23a.) For the vertial stripe, we need pa2 + x2 < 1, whih isequivalent to x < p1� a2. For eah horizontal stripe, we need p(a=2)2 + (b� x)2 < 1, whihis equivalent to x > b �p1� a2=4. Thus, we need b �p1� a2=4 < x < p1� a2, whih issatis�ed for some x if b < p1� a2 +q1� a2=4 :If this last inequality is replaed by equality (Figure 23b), olor the same way exept thatin the red retangle olor the right two points red, in the blue retangle olor the bottom twopoints blue, in the green retangle olor the top two points green and the bottom left pointred. Create a green unit-radius ar from the bottom left point in the red sub-region, andto eliminate the isolation of the green ar olor everything to the left of the ar green. Forsymmetry reate a blue unit-radius ar from the top left point in the (already) blue sub-regionand olor everything to the left of the ar green. So we an 3-olor any retangle with (a � b4Cases (2) and (3) both give aeptable 3-olorings of the retangle for larger ranges of a than stated in theironditions, but, by the note at the beginning of the proof, for a � 2=p5 Case (2) is better and for a � 2=p5Case (3) is better. The two methods are the same for a = 2=p5.23



(b)(a)

(c) (d)Figure 24: Three segments that must be monohromati and have di�erent olors in 3-oloringof retangle for a > p3=2, b > max(3p1� a2;p1� a2 +p1� a2=4), and b > 1.and) b � p1� a2 +q1� a2=4 :Note that a = p1� a2 +p1� a2=4 implies a = 8p65 .NON-COLORABILITY: We may assume a < 1. Assume that a > p3=2. By the noteat the beginning of the proof, we need to onsider only b > max �3p1� a2;p1� a2 +p1� a2=4�.Suppose the retangle-region is 3-olored. There are two ases: (1) b > 1 and (2) b � 1.CASE (1): b > 1. Let R be an � � � retangle inside the region, with p3=2 < � < a,1 < � < b, and � = max(3p1� �2;p1� �2 + p1� �2=4). To see that this is possible,�rst assume that a � 2=p5. Then, as noted above, max(3p1� a2;p1� a2 +p1� a2=4) =3p1� a2. Let � = a� �, where � is small enough so that both � > p3=2 and 3p1� �2 < b.Now assume that a > 2=p5. Then, as noted above, max(3p1� a2;p1� a2 +p1� a2=4) =p1� a2 + p1� a2=4. Let � = a � �, where � is small enough so that both � > 2=p5 andp1� �2 +p1� �2=4 < b.We show what is immediately known about the olor of points on the top and bottomsides of R: Put a tri-rod inside R with one orner on the bottom-left orner of R and anotherorner on the top side. Slide the tri-rod rightward until it touhes the right side of R, keepingtrak of points rossed by the left and top orners of the tri-rod (Figure 24a). Now slide thetop orner right and the right orner downward until it reahes the bottom right orner ofR, keeping trak of points rossed by just the top orner of the tri-rod (Figure 24b). Finally,slide the tri-rod leftward until it reahes the left side of R, keeping trak of points rossed byjust the right orner of the tri-rod (Figure 24). Eah set of points rossed by a orner of the24
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Figure 25: Four non-isomorphi potential 3-olorings of a retangle for a > p3=2, b >max(3p1� a2;p1� a2 +p1� a2=4), and b > 1.tri-rod must be monohromati and have di�erent olors from eah other (Lemma 4.4); seeFigure 24d. Eah line segment on the bottom has length � � (p32 � + 12p1� �2). The linesegment on the top is p1� �2 distant from eah side, so it has length � � 2p1� �2.Similarly, by symmetry, there are three line segments, the left of the top side, the middleof the bottom side, and the right of the top side, that are monohromati and have di�erentolors from eah other. Sine p32 < � < 1, it may be veri�ed that none of the segments overlap.Putting everything together produes, up to isomorphism (with respet to renaming olorsand left-right reetions) only four types of oloring on the segments: Figure 25. Type (a)orresponds to the vertial stripes oloring, type (b) orresponds to the non-stripes oloring,and type () orresponds to the mixed stripes oloring. Type (d) does not orrespond to anyoloring method used, and does not seem to be a good approah. We will show that, underour assumptions, none of the four types produes a 3-oloring of the retangle.Start with type (a). The middle two segments have the same olor. The right endpointsof the two segments are exatly distane � (whih is < 1) apart. Eah segment has length� � 2p1� �2, and, sine � > 3p1� �2, eah segment has length at least p1� �2. So theright endpoint of one segment and the left endpoint of the other are at least one unit apart. Byontinuity, two points, one on eah segment, are exatly one unit apart. So type (a) does notprodue a 3-oloring. The same reasoning shows that type (d) does not produe a 3-oloring.To handle types (b) and (), we extend our knowledge of the oloring of R by piggybakingon the earlier 2-oloring results. Suppose that the middle and right segments on the bottomside have the same olor, say green (as shown in Figure 26). We will see that the middle andright segments on the top side must have the same olor (as eah other), as must all of the25
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GFigure 27:points in between the two segments. It will follow by symmetry that on the bottom side thepoints in between the two segments must be green.Consider the losed line segment S on the top side of R between the middle and rightsegments (Figure 26a). Eah point on S is one unit away from some point on the middlesegment of the bottom side, sine that segment starts distane p1� �2 from the right sideand, as we just showed, has length at least p1� �2. So points on S annot be green, and sineR is stritly inside the retangle-region neither an points near S. Consider the unit radius arof points in R entered at the bottom right orner point of R. These points and points nearbyannot be green (Figure 26b), sine the orner and points nearby must be green. (This latterfat holds beause a tri-rod an be plaed inside the retangle with one orner at the bottomright orner point of R, whih itself is inside the full retangle.) Together the points on andnear S and on and near the ar form a region that is 2-olorable (with red and blue). Put oneend of a rod on one endpoint of S and the other end on the ar. Slide the top end of the rodalong S until it reahes the other endpoint of S, keeping the bottom end of the rod on the ar(Figure 26). By Lemma 3.4, the points on S must be monohromati, and sine S intersetsthe middle and right segments on the top side (whih are monohromati), the entire segmentfrom the left endpoint of the middle segment to the right orner of R must be monohromati.Now onsider type (b) (in Figure 25). The bottom middle and the bottom right segmentsare both green, so by the above argument the top middle and top right segments must be thesame olor, but they are not. Thus, type (b) does not produe a 3-oloring.Finally onsider type () (Figure 27). By the above argument, all of the points on thetop side starting distane p1� �2 from the left and going right must be blue, and all of thepoints on the bottom side starting distane p1� �2 from the left and going right must begreen. Consider the point exatly in the middle of the right side of R. It is exatly one unitaway from a blue point on the top side of R, and exatly one unit away from a green point on26
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Figure 28:the bottom side, sine � � p1� �2 +p1� �2=4. So it must be red. Now onsider the pointexatly one unit to the left of this point. It is also exatly one unit away from a point on thetop blue segment, and exatly one unit away from a point on the bottom green segment, so ittoo must be red. Contradition. Thus, type () does not produe a 3-oloring.CASE (2): b � 1.Reall that we are assuming b > max(3p1� a2;p1� a2 + p1� a2=4). If a � 2=p5 �0:8944 then (as noted in the beginning of the proof) b > 3p1� a2, so 3p1� a2 < 1. Solvingfor a yields a > p8=9 � 0:9428, whih is a ontradition.Thus it must be the ase that a > 2=p5, whih (as noted in the beginning of the proof)implies b > p1� a2 +p1� a2=4. Let R be an �� � retangle inside the region with 2=p5 <� < a, � � � < b, and � = p1� �2 +p1� �2=4. To see that this is possible, let � = a� �,where � is small enough so that p1� �2 +p1� �2=4 < b.Sine � < b � 1, p1� �2 +p1� �2=4 < 1. Solving for � yields � > r89 �p13� 52� �:9913. Let � equal this lower bound for �. Furthermore, � is maximized and � is minimizedwhen � = �. Solving, � = p1� �2+p1� �2=4, yields � = � = 8p65 � 0:9923. Call this value� and �. Thus, there is a very narrow range of values for � and �::9913 � � < � � � = � � � < 1 :Beause of this, all of the �gures here will be drawn as squares (even though they may not bequite squares).We show what is immediately known about the olor of points on all four sides of R, along27
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Figure 29:with some nearby points in the interior. Put a tri-rod inside R with the left orner on thebottom left orner of R and the right orner on the right side of R. Slide the tri-rod upwarduntil the top orner touhes the top of R, only keeping trak of the points rossed by the toporner (Figure 28a). Now, slide the top orner leftward and the left orner downward until ittouhes the bottom left orner of R, keeping trak of the points rossed by the left and toporners of the tri-rod (Figure 28b). Now, slide the tri-rod rightward until the right ornertouhes the right side of R, keeping trak of the points rossed by the left and right ornersof the tri-rod (Figure 28). Finally, slide the the right orner downward and the left ornerleftward until it touhes the bottom left orner of R, only keeping trak of the points rossed bythe right orner of the tri-rod (Figure 28d). Eah L-segment rossed by a orner of the tri-rodmust be monohromati and have a di�erent olor by Lemma 4.4 (Figure 28e). Following asimilar proedure for eah orner produes twelve monohromati L-segments (Figure 28f).Not only does eah group of three assoiated L-segments have to be omposed of threedi�erent olors, but there are restritions between L-segments in di�erent groups. In partiular,as we will see, an interior (i.e. non-orner) L-segment must have a di�erent olor than eitherinterior L-segment on the opposite side. Furthermore, we will see that, if a orner L-segmentand the (interior) L-segment next to it on a side have the same olor, then the orner L-segmentand the L-segment next to it on the opposite side must have the same olor (as eah other).It is possible (depending on the values of � and �) for the orner L-segments to overlapthe neighboring interior L-segments on the short sides (i.e., the left and right sides), but noton the long sides (i.e., the top and bottom sides). We never use this information.We will need to know the exat positions and sizes of the L-segments. This is easy toderive using Lemma 4.2. An interior L-segment on a long side, say the left of the top side asin Figure 28e, starts p1� �2 from the top left orner, goes right until it is �2 � p32 p1� �2from the top left orner, and then goes down � � (p32 � + p1��22 ). An interior L-segment ona short side, say the lower right side as in Figure 28e, starts p1� �2 from the bottom rightorner, goes up until it is �2 � p32 p1� �2 from the bottom right orner, and then goes left� � (p32 �+ p1��22 ).Consider two \opposite" L-segments on the long sides, an interior L-segment on, say, theleft of the top side and one on the left of the bottom side as in Figure 29a. Let � be the lengthof the line segment on the boundary. Then� =  �2 � p32 q1� �2!�p1� �2 > �2 � p32 q1� �2 �q1� �2 :28
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Figure 30:Call the �nal value �. The distane between the left endpoint of the top segment and the rightendpoint of the bottom segment isp�2 + �2 > q�2 + �2 � 1:02414 > 1 :The two left endpoints are distane � < 1 apart. By ontinuity, there must be two points,one on eah segment, exatly one unit apart, so the two segments must have di�erent olors.Similary, onsider two opposite L-segments on the short sides, an interior L-segment on, say,the top of the left side one on the top of the right side as in Figure 29b. Let � be the lengthof the segment on the boundary. Then� =  �2 � p32 p1� �2!�q1� �2 > �2 � p32 q1� �2 �q1� �2 :Call the �nal value �. The distane between opposite endpoints of the two line segments isp�2 + �2 > q�2 + �2 � 1:02520 > 1 :The two top endpoints are distane � < 1 apart. Again, by ontinuity, there must be twopoints, one on eah segment, exatly one unit apart, so the two segments must have di�erentolors.Now onsider two \addy-orner" L-segments on the long sides, an interior L-segment on,say, the left of the bottom side and one on the right of the top side as in Figure 30a. Considerthe two losest points (whih are the interior endpoints of the vertial segments). We obtainupper bounds on the horizontal and vertial distanes, whih we all h and v, between the twopoints. The horizontal distane between them ish = p3q1� �2 � p3q1� �2 = h ;and the vertial distane isv = 2(p32 � + p1� �22 )� � = p3� +q1� �2 � � < p3 � 1 +q1� �2 � � = v :The distane between the two points isph2 + v2 < qh2 + v2 � :89107 < 1 :29



On the other hand, the left endpoint of the bottom segment and the right endpoint of the topsegment are obviously more than one unit apart. So, by ontinuity, there must be two points,one on eah L-segment, exatly one unit apart.Consider two addy-orner L-segments on the short sides, an interior L-segment on, say,the bottom of the left side and one on the top of right side as in Figure 30b. Consider the twolosest points (whih are the endpoints of the horizontal segments). We obtain upper boundson the vertial and horizontal distanes, whih we all V and H, between the two points. Thevertial distane between them isV = p3p1� �2 < p3q1� �2 = V ;and the horizontal distane isH = 2(p32 �+ p1� �22 )� � = p3�+p1� �2 � � < p3 ��+q1� �2 � � = H :The distane between the two points ispV 2 +H2 < qV 2 +H2 � :88761 < 1 :The points on opposite orners are obviously more than one unit apart. And, again, byontinuity, there must be two points, one on eah L-segment, exatly one unit apart.We now show that, if a orner L-segment and the interior L-segment next to it, all it T ,on a side have the same olor, then the orner L-segment and the L-segment next to it on theopposite side have the same olor (as eah other) as do all of the points in between the twoL-segments. The argument is the same as above with b > 1 (see Figure 26). We need to hekthat if the two segments are on a long side (length �) then T starts p1� �2 from its nearbyorner (whih is unit distane from the opposite orner) and has length at least p1� �2, andif the two segments are on a short side (length �) then T starts p1� �2 from its nearby orner(whih is unit distane from the opposite orner) and has length at least p1� �2. In bothases, T starts exatly the desired distane from its nearby orner. If the two segments are ona long side, T has length �2 � p32 p1� �2 �p1� �2. So we need,�2 � p32 q1� �2 �p1� �2 � p1� �2 :Substituting � for � and � for �, dereases the left side and inreases the right side. Ityields, :25722 � :13150, whih suÆes. If the two segments are on a short side, T has length�2 � p32 p1� �2 �p1� �2. So we need,�2 � p32 p1� �2 �q1� �2 � q1� �2 :Again, substituting � for � and � for �, dereases the left side and inreases the right side. Ityields, :25774 � :12404, whih suÆes.Putting everything together redues the possible olorings to a manageable number. Sinethere are four orners, two of them must be the same olor. Either they are (a) diagonallyopposite, or (b) on the a same side.CASE (2a): Two diagonally opposite orners are the same olor: say the the bottomleft and the top right are red. Then from the bottom left orner ounting lokwise, its twoassoiated L-segments are, say, blue and green (Figure 31a). Sine the top side has a blue L-segment, from the red L-segment on the top right orner ounting lokwise its two assoiated30
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R Figure 31:L-segments must be green and blue (Figure 31b). The top left orner must be blue, sineif it were red or green the right side or bottom side would have to have a blue L-segment(Figure 31). Sine the top left orner and the L-segment next to it on the top are bothblue, the bottom left orner and the L-segment next to it on the bottom must be the sameolor. Similarly, sine the top left orner and the L-segment next to it on the left side areboth blue, the top right orner and the L-segment next to it on the right side must be thesame olor. These two orners are both red, so the two nearby L-segments must also be red.(Figure 31d). But these two L-segments are in the same group, so they annot be the sameolor. Contradition.CASE (2b): Two orners on a same side are the same olor: say both orners on theleft side are red. Then from the bottom left red orner ounting lokwise, its two assoiatedL-segments are, say, blue and green (Figure 32a). Sine the top side has a blue L-segment, fromthe top left red orner ounting lokwise its two assoiated L-segments must be blue and green(Figure 32b). Sine the right side has both a blue and a green L-segment, the two L-segmentson the left side must be red (Figure 32). So the remaining L-segment on the top side must beblue and the bottom right orner must be green (Figure 32d), and the remaining L-segmenton the bottom side must be green and the top right orner must be blue (Figure 32e).Let m be the point in the middle of the side opposite the four red segments. We willshow that m is distane exatly 1 from a blue point, a green point, and a red point, whih isimpossible. There are atually two possible orientations, depending on whether the four redL-segments are on a short side (with length �) as shown in Figure 33a (and Figure 32e), or ona long side (with length �) as shown in Figure 33b.Assume the former (Figure 33a). Consider the losest point to m of the upper interiorL-segment on the left side (whih is the endpoint of the horizontal segment). The vertial31
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distane between the two points isv = �2 � (�2 � p32 p1� �2) = p32 p1� �2 ;and the horizontal distane is h = p32 � + p1� �22 :The square of the distane between the two points isv2 + h2 = (p32 p1� �2)2 + (p32 �+ p1� �22 )2 = 1 � �24 +p3�p1� �2� 1 � �24 +p3�q1� �2 � :9806 < 1 :So, the distane between the two points is less than 1. Clearly, the distane between thefarthest point of the upper interior L-segment on the left side to m is greater than 1. So,by ontinuity, there must be some point on the L-segment exatly distane 1 from m. So, mannot be red.Consider the left interior L-segment on the top side. Its leftmost point is the farthest pointfromm. Its (horizontal) distane to the top right orner is ��p1� �2. The (vertial) distaneof m to top right orner is �=2. So, in order for the distane from m to the left side of theL-segment to be at least 1, we need(� �p1� �2)2 + (�=2)2 � 1 ;whih is equivalent to � � p1� �2 + q1� �2=4 :This is satis�ed by the initial ondition on � (at the beginning of Case (2)). Clearly, thedistane between the losest point of the left interior L-segment on the top side to m is lessthan 1. So, by ontinuity, there must be some point on the L-segment exatly distane 1 fromm. Similarly, there must be some point on the left interior L-segment on the bottom sideexatly distane 1 from m. So, m annot be blue or green. Contradition.Now assume that the four red L-segments are on a long side, say the bottom side (Figure33b). Consider the losest point to m of the left interior L-segment on the bottom side (whihis the endpoint of the horizontal segment). The vertial distane between the two points isV = �2 � (�2 � p32 q1� �2) = p32 q1� �2 ;and the horizontal distane is H = p32 � + p1� �22 :The square of the distane between the two points isV 2 +H2 = (p32 q1� �2)2 + (p32 � + p1� �22 )2 = 1 � �24 +p3�q1� �2� 1 � �24 +p3�q1� �2 � :9684 < 1 :33
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Figure 34: 3-oloring of square-region for side length s = 8p65So, the distane between the two points is less than 1. Clearly, the distane between thefarthest point of the left interior L-segment on the bottom side to m is greater than 1. So,by ontinuity, there must be some point on the L-segment exatly distane 1 from m. So, mannot be red.Consider the lower interior L-segment on the left side. Its lowest point is the farthest pointfrom m. Its (vertial) distane to the top left orner is ��p1� �2. The (horizontal) distaneof m to top left orner is �=2. So, in order for the distane from m to the left side of theL-segment to be at least 1, we need(��q1� �2)2 + (�=2)2 � 1 ;whih is equivalent to � � q1� �2 + q1� �2=4 :We show that this ondition is satis�ed for � � 8p65 . Let f(x) = p1� x2=4 + p1� x2.Then � = f(�) by the de�nition of � at the beginning of Case(2), and we want to show that� � f(�) = f(f(�)). In the range [f�1(1); 1℄, f(x) is monotonially dereasing with derivativef 0(x) < �1, and has �xed point x0 = 8p65 . By the hain rule f Æ f(x) has derivative > 1.Sine � � x0, this suÆes. Clearly, the distane between the losest point of the lower interiorL-segment on the left side to m is less than 1. So, by ontinuity, there must be some point onthe L-segment exatly distane 1 from m. Similarly, there must be some point on the lowerinterior L-segment on the right side exatly distane 1 from m. So, m annot be blue or green.Contradition.This ompletes the proof.Corollary 4.11 A square-region is 3-olorable if and only if the length of a side s � 8p65 �0:9923.Figure 34 shows the oloring of a square with side length s = 8p65 .
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Figure 35: 4-oloring of irle-region for r = 1p2
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Figure 36: 4-oloring of retangle-region for a2 + b2 = 45 4-COLORINGSWe an not know the true bounds for 4-olorings without determining if the plane is 4-olorable.Here are some obvious 4-olorings; muh more lever 4-olorings are ertainly plausible.The irle-region of radius � 1 and a � b retangle-region for a2 + b2 � 4, an both be 4-olored by partitioning into four quadrants. The only diÆulty is when the radius of a irle isexatly 1, or when the retangle has a2+ b2 = 4, where one must be areful about the \orner"points (Figures 35, 36). A regular polygon-region where 4jn an be similarly 4-olored. Anequilateral triangle-region with side � 2 an be 4-olored by partitioning into four smallerequilateral triangles; when the side = 2, one must again be areful about the \orner" points(Figure 37). The in�nite strip of width � 2p2=3 an be 4-olored with bloks of width 1=3 byrotating olors red, blue, green, yellow, red, blue, green, yellow, et.
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Figure 37: 4-oloring of triangle-region for side = 26 OPEN PROBLEMS� Other than the few olorings with isolated points, all of the olorings are \nie": theyonsist of few monohromati regions that are easy to onstrut. What is a natural,formal de�nition of a \nie" oloring? Can you prove that some olorings require isolatedpoints (inluding the maximum sized squares for 2-olorings and 3-olorings); in otherwords prove that they do not have nie olorings.� How big a region an you 4-olor, 5-olor, or 6-olor? Obviously non-olorability resultswould imply (partial) solutions to the hromati number of the plane problem, so thiswould be unlikely. But, what if you restrit the type of oloring? Can you �nd a size sothat a region of that size is 4-olorable if and only if the plane is 4-olorable?� Can you generalize the results to Rn (n � 3)? In partiular, do the rod ertainly has thesame properties in 3-spae as it has in 2-spae. What about the tri-rod? What about atetrahedron?� Can you generalize the results to regions that are not simply onneted, for example theannulus? The basi non-olorability lemmas (Lemmas 3.3 and 4.4) used in this paperstill apply.� By a ompatness argument, if a region annot be k-olored there must be a �nitesubgraph of the region (an obstrutionist subgraph) that annot be k-olored. Can you�nd (nie) �nite, obstrutionist subgraphs for the regions disussed in this paper? For2-oloring regular n-gons for n odd, our non-olorability arguments did produe �nite,obstrutionist subgraphs, whih, in fat, had only n verties. For regions where the sizethat annot be k-olored has a strit inequality (for example, a irle-region annot be2-olored if it has radius stritly greater than 1=2), there will have to be a sequene ofsubgraphs, whih likely will beome more ompliated as the size of the region dereases.Most of our results for 2 and 3 olorings are like that (the only exeptions being 2-oloringa regular n-gon for n odd, as just disussed, and 2-oloring a nonsquare retangle).Bohannon, et al. ([Boha℄ do reate �nite obstrutionist subgraphs, and the bounds mathfor their 2-olorings. Can you produe �nite obstrutionist subgraphs with mathingbounds for our 3-olorings? It is not lear how to use our tehniques, beause the proofof the tri-rod lemma (Lemma 3.3) is nononstrutive.36



7 APPENDIXWe summarize the oloring results of Bohannon, et al. ([Boha℄). They only onsider irlesand retangles. For 2-olorings, they obtain tight bounds.Their 3-oloring of the irle-region is optimal. For retangles, they only use the vertialstripes method, so their 3-oloring is optimal only for a � 2p5 . Their non-olorability resultsfor �nite regions are never tight. Here are their 3-oloring results:Boundary of region 3-olorable if not 3-olorable ifirle radius � 1p3 radius > p32a� b retangle, a � ba � p32 alwaysa > p32 b � 3p1� a2 b � 52square side � 3p10 side � 52Their 4-oloring of the retangle-region use four vertial stripes for most of the range, anda di�erent method for the more squarish retangles. Neither method is as good as uttingregion into four quadrants. Here are their 4-oloring results:Boundary of region 4-olorable ifirle radius � 1p2a� b retangle, a � ba � 2p23 always2p23 < a � p154 b � 4p1� a2p154 � a � 1 b � 1square side � 18 ACKNOWLEDGEMENTSThe author thanks Rihard Beigel, William Gasarh, Martin Kruskal, David Mount, JimOwings, Donna Rogall, Alexander Soifer, and Dan Ullman for their help. Among other things,William Gasarh suggested the problem.Referenes[Baus℄ Brue Bauslaugh. Tearing a strip o� the plane. Journal of Graph Theory, Vol 29, Issue1 (1998), 17-33.[Boha℄ Aaron Bohannon, Peter Johnson, Jeremy Lanig, and Robert Rubaluba. The Chro-mati Numbers of Some Eulidean Distane Graphs, Geombinatoris, 10 (2001), 141-164.[Soif1℄ Alexander Soifer. Chromati Number of the Plane: Its Past and Future. CongressusNumerantium 160 (2003), 69-82.[Soif2℄ Alexander Soifer. Mathematial Coloring Book: Mathematis of Coloring and theColorful Life of its Creators. To appear.
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