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ABSTRACTThe 
hromati
 number of the plane is the smallest number of 
olors needed in order topaint ea
h point of the plane so that no two points (exa
tly) unit distan
e apart are the same
olor. It is known that seven 
olors suÆ
e and (at least) four 
olors are ne
essary. In orderto understand two and three 
olorings better, it is interesting to see how large a region 
anbe and still be two or three 
olorable, and how 
ompli
ated the 
olorings need to be. Thispaper gives tight bounds for two and three 
oloring regions bounded by 
ir
les, re
tangles,and regular polygons. In parti
ular, a square is 2-
olorable if and only the length of a side is� 2=p5, and is 3-
olorable if and only the length of a side is � 8=p65.



1 INTRODUCTIONThe 
hromati
 number of the plane is the smallest number of 
olors needed in order to paintea
h point of the plane so that no two points (exa
tly) unit distan
e apart are the same 
olor.Ed Nelson invented the problem in 1950 ([Soif1℄). It is known that seven 
olors suÆ
e and (atleast) four 
olors are ne
essary. More about this problem 
an be found in Alexander Soifer'sup
oming book ([Soif2℄).Simple proofs show that the 
hromati
 number of the plane is not two or three. In orderto understand two and three 
olorings better, it is interesting to see how large 
an a region be(here meaning a simple 
losed 
urve and its interior) and still be two or three 
olorable, andhow 
ompli
ated the 
olorings need to be.This paper 
onsiders the 
oloring of regions bounded by 
ir
les, regular polygons, andre
tangles. For 
omparison with later results, the following are obvious tight bounds for 1-
oloring of regions (whi
h are obtained by looking at the two furthest apart points in theregion): Boundary of region 1-
olorable if and only if
ir
le radius < 12equilateral triangle side < 1a� b re
tangle b < p1� a2square side < 1p2regular n-gonn is even 
ir
umradius < 12n is odd 
ir
umradius < 1p2(1+
os(�=n))We obtain the following tight bounds for 2-
oloring of regions:Boundary of region 2-
olorable if and only if
ir
le radius � 12equilateral triangle side < 1a� b re
tangle, a < b b < 2p1� a2square side � 2p5regular n-gonn is even 
ir
umradius � 1psin2(�=n)+4 
os2(�=n)n is odd 
ir
umradius < 1p2(1+
os(�=n))We obtain the following tight bounds for 3-
oloring of regions:Boundary of region 3-
olorable if and only if
ir
le radius � 1p3equilateral triangle side � p3a� b re
tangle, a � ba � p32 alwaysp32 < a � 2p5 b � 3p1� a22p5 � a � 8p65 b � p1� a2 +p1� a2=4square side � 8p65regular n-gon, n � 5 inradius sin ��p3 
os �2(1�
os �)where � = bn+13 
2�nsimpli�es to inradius � 1p3 , for 3jn1
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Figure 1: L-segment (p; q; r)For 
omparison, here are (not ne
essarily tight) bounds for 4-
oloring of regions.Boundary of region 4-
olorable if
ir
le radius � 1p2equilateral triangle side � 2a� b re
tangle, a � ba � 2p23 always2p23 < a � p2 b � p4� a2square side � p2regular n-gon, 4jn inradius � 1p2The equivalent problem was independently studied by Bohannon, et al. ([Boha℄). For agiven shape, they �x the size, let the forbidden distan
e vary, and see how the number ofne
essary 
olors 
hanges. They only 
onsider 
olorings of 
ir
le-regions and re
tangle-regions.Their non-
olorability arguments are di�erent than the ones used in this paper. The appendixsummarizes their results. Bauslaugh ([Baus℄) studied 3-
olorings of an in�nite strip, andobtained tight bounds. The results are rederived here in the se
tion on 3-
olorings using ourmethods.Se
tion 2 gives the basi
 de�nitions. Se
tions 3, 4, and 5 present the 
oloring results fortwo, three, and four 
olors, respe
tively. Se
tion 6 lists some open problems.2 DEFINITIONSDe�nition 2.1 A 
ir
le-region is the 
ir
le with its interior, and similarly with other geometri
�gures.De�nition 2.2 A region is k-
olored if it is painted with k 
olors su
h that no two points(exa
tly) unit distan
e apart are the same 
olor.De�nition 2.3 A region is k-
olorable if it 
an be k-
olored.De�nition 2.4 An L-segment (p; q; r) is a line segment (p; q) joined at a right angle with aline segment (q; r) at (their 
ommon endpoint) q. (Figure 1.)NOTE ON FIGURES: The 2-
olorable regions are 
olored using red and blue, the 3-
olorable regions are 
olored using red, blue, and green. and the 4-
olorable regions are 
olored2
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Figure 2:using red, green, blue, and yellow. In the bla
k and white version of this paper1, red isrepresented by dark gray, green by medium gray, blue by light gray, and yellow by very lightgray. When a 
losed subregion is mono
hromati
, the boundary is indi
ated by a bla
k line,but the points on the boundary are 
olored the same as the interior. When two subregionsshare a boundary and/or a 
orner, the shared points 
an be either 
olor, unless otherwisestated. Within ea
h �gure, all pi
tures are drawn to the same s
ale, but two di�erent �guresmay have di�erent s
ales.3 2-COLORINGSDe�nition 3.1 A disk is the interior of a 
ir
le (i.e., a 
ir
le-region without its boundary).De�nition 3.2 A rod (p; q) is a line segment of unit length with endpoints p; q.The following lemma provides the workhorse for most of non-
olorability arguments.Lemma 3.3 Let (p; q) be a rod, with the open disks of radius �, 0 < � � 1=2, 
entered at p andq (
alled the p-disk and q-disk) 
ontained in a 2-
olored region. Then the open disks of radius�2=8 
entered at p and q are mono
hromati
 (with di�erent 
olors).1A 
olor verion of the paper will be available on my website at the University of Maryland.3
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Figure 3: 2-
oloring of 
ir
le-region for r = 12 .Proof: Assume that the disk of radius �2=8 
entered at p is not mono
hromati
. (Figure 2.)Say p is red (so q is blue). Choose 
artesian 
oordinates su
h that p is (0; 0) and q is (0; 1).Let p0 be a blue point within �2=8 of p (so p0 is very 
lose to p). The points unit distan
e fromq lying in the p-disk form a red ar
 aq, and the points unit distan
e from p0 lying in the q-diskform a red ar
 ap0 . The point s = (�=2; 1 � p1� �2=4) is on aq so it must be red. So theunit-radius ar
 as of points 
entered at s in the q-disk must be blue.The two ar
s ap0 and as interse
t in the q-disk, sin
e the point s+ (0; 1) is above ap0 andthe point s+(��;p1� �2) is below ap0 . To see this, note that at x = �=2, the ar
 from s has y-
oordinate (1�p1� �2=4)+1 = 2�p1� �2=4, and the ar
 from p0 has y-
oordinate less thanp1� �2=4 + �2=8. So, we need, 2�p1� �2=4 > p1� �2=4 + �2=8 or 1� �2=16 > p1� �2=4.At x = ��=2, the ar
 from s has y-
oordinate (1 �p1� �2=4) + p1� �2 and the ar
 fromp0 has y-
oordinate greater than p1� �2=4 � �2=8. So, we need, 1 �p1� �2=4 +p1� �2 <p1� �2=4� �2=8 or 1+p1� �2 + �2=8 < 2p1� �2=4. So the ar
s interse
t and have di�erent
olors, whi
h is a 
ontradi
tion.Lemma 3.4 Assume a region is 2-
olored. If we slide a rod 
ontinuously so that the end-points stay stri
tly inside the region, the set of points passed over by a given endpoint aremono
hromati
.Proof: Follows from the previous lemma.Theorem 3.5 A 
ir
le-region is 2-
olorable if and only if its radius r � 12 .Proof: COLORABILITY: Let r � 12 . If r < 12 then the 
ir
le-region is 
olorable withonly one 
olor (and a fortiori with two 
olors). Otherwise (r = 12), bise
t the 
ir
le-regionalong a diameter, and 
olor one semi
ir
le-region red and the other blue. The points on thediameter 
an be either 
olor, ex
ept that the two end points of the diameter (whi
h are on the
ir
le) must be di�erent 
olors. (Figure 3.)NON-COLORABILITY: Let r > 12 . Suppose the region is 2-
olored. Put a rod insidethe 
ir
le-region so that the 
enter of the rod is at the 
enter of the 
ir
le, and rotate the rod180 degrees around its 
enter (halfway around). By Lemma 3.4 the points 
rossed by an end4



(a) (b)Figure 4: Non-2-
olorability of 
ir
le-region for r > 12
BR

Figure 5: 2-
oloring of a� b re
tangle-region, where a � b and a2 + b2=4 < 1of the rod must all have same 
olor (Figure 4a), but the start and �nish points of an end areone unit apart (Figure 4b). Contradi
tion.Theorem 3.6 A re
tangle-region of dimensions a� b, with a � b, is 2-
olorable if and only ifeither it is not a square (a < b) and a2 + b2=4 < 1, or it is a square (a = b) and a � 2p5 .Proof: COLORABILITY: If (a � b and) a2+b2=4 < 1 (the re
tangle 
ase and the squarenot of maximum allowed size), bise
t the re
tangle-region into two a� b2 sub-re
tangle-regions,and 
olor the one half red and the other half blue. The points on the boundary between thetwo subre
tangles 
an be either 
olor. (Figure 5.)If a = b and a2+b2=4 = 1 (whi
h implies a = 2=p5 the maximum allowed size square), then
olor the left half red and the right half blue, as before with the following modi�
ations. Color
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Figure 6: 2-
oloring of square-region with side length s = 2=p55
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Figure 7: Non-2-
olorability of a� b re
tangle-region, where a < b and a2 + b2=4 > 1blue all four 
orners of the square-region, and 
olor red the two end points of the boundarybetween the two halves. The two blue 
orners on the red side for
e two unit-radius ar
s insidethe blue sub-re
tangle-region to be red, but none of the points on those ar
s is one unit awayfrom any point on the red side (ex
ept the blue 
orners). (Figure 6a.) This 
oloring is not asni
e as the previous ones, be
ause of the isolated blue points at the two left 
orners of the redregion and the isolated red lines inside the blue region. The isolation of the red lines 
an beeliminated simply by making the entire region to their left red. (Figure 6b.) It does not seempossible to eliminate the blue 
orners.NON-COLORABILITY: There are two 
ases: (1) (a � b and) a2 + b2=4 > 1 and (2)a < b and a2 + b2=4 = 1.CASE (1): (a � b and) a2 + b2=4 > 1. Suppose the re
tangle-region is 2-
olored. Createa new re
tangle R of dimensions �� � where � � �, � < a, � < b, and �2 + �2=4 = 1.Let 
 be the top left 
orner point of R, d be the bottom left 
orner point, m be the middlepoint of the left side, and t be the middle point on the top side. Put one end of a rod on 
 andthe other end on the bottom side of R, where it will lie at the 
enter be
ause �2 + �2=4 = 1.Slide the rod downward on the left side and rightward on the bottom side until the left endrea
hes m (Figure 7a). This is possible be
ause the distan
e between m and the bottom right
orner is p�2=4 + �2 � p�2 + �2=4 = 1 (whi
h follows be
ause � � �). The line segment(
;m) must be mono
hromati
 (by Lemma 3.4). By symmetry, the line segment (d;m) mustalso be mono
hromati
.Starting with the rod in its initial position, slide it rightward until the top end tou
hes t(and the bottom end tou
hes the bottom right 
orner of R). The line segment (
; t) must bemono
hromati
 (Figure 7b). So the entire L-segment (d; 
; t) must be mono
hromati
. But,the points d and t are exa
tly one unit apart (Figure 7
). Contradi
tion.CASE (2): a < b and a2 + b2=4 = 1. Suppose the re
tangle-region is 2-
olored. Let � > 0be a small value that depends on a and b (to be spe
i�ed later). Create a re
tangle R ofdimensions �� � where � = a� �, � = b� �, and �2=4 + �2 � 1. (Noti
e the position of thedenominator 4!) This latter 
ondition is possible sin
e a < b. Put R inside the re
tangle-regionwith the same 
enter and orientation.Let 
 be the top left 
orner point of R, m be the middle point of the left side, and t bethe point on the top exa
tly one unit away from the bottom right 
orner. Put one end ofa rod on 
 and the other end on the bottom side of R (just right of the middle). Slide therod downward on the leftward side and right on the bottom side until the left end rea
hes m6
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Figure 8: Non-2-
olorability of a� b re
tangle-region, where a < b and a2 + b2=4 = 1
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(Figure 8a). This is possible be
ause the distan
e between m and the bottom right 
orner isp�2=4 + �2 � 1. The line segment (
;m) must be mono
hromati
.As before, put one end of a rod on 
 and the other end on the bottom side of R (just rightof the middle). Now, slide the rod rightward until the top end tou
hes t (and the bottomend tou
hes the bottom right 
orner of R). The line segment (
; t) must be mono
hromati
(Figure 8b).So, the L-segment (m; 
; t) must be mono
hromati
 (Figure 8
). Let 
0 be the top right
orner point of R, m0 be the middle point of the right side, and t0 be the point on the topexa
tly one unit away from the bottom left 
orner. Symmetri
ally, the L-segment (m0; 
0; t0)must be mono
hromati
 (Figure 8d). By 
ontinuity, 
 is exa
tly one unit away from somepoint on (t0; 
0;m0), sin
e j(
; t0)j = p1� �2 < 1 and j(
;m0)j = p�2=4 + �2 � 1 (Figure 8e).So the two L-segments must be di�erent 
olors.Let C be the top left 
orner point of the original re
tangle-region, and let C 0 be the topright 
orner point. Now, 
onsider the point exa
tly in the middle of the bottom half of theoriginal re
tangle-region. It is exa
tly one unit away from both C and C 0, so the latter twopoints must be the same 
olor (as ea
h other). By 
ontinuity, ea
h 
orner, C and C 0, is exa
tlyone unit away from some point on the opposite L-segment on R, sin
ej(C; t0)j = j(C 0; t)j = q(p1� �2 + �)2 + �2 < 1;if � is small enough, and obviously j(C;m0)j = j(C 0;m)j > 1 sin
e j(
;m0)j � 1 (Figure 8f). Sothe two L-segments must be the same 
olor (as ea
h other). Contradi
tion.For regions where the 
onditions of 
olorability involves < rather than �, one might wonderhow mu
h of the boundary 
an be in
luded and still be 2-
olorable. While a re
tangle-regionof dimensions a� b, where a < b, is not 2-
olorable for a2 + b2=4 = 1, it is almost 2-
olorable:Theorem 3.7 A re
tangle-region of dimensions a�b, where a < b and a2+b2=4 = 1, be
omes2-
olorable if of the set of three points ftop left 
orner, middle bottom side, top right 
ornergone of them is removed, and of the set of three points fbottom left 
orner, middle top side, andbottom right 
ornerg one of them is removed.Proof: Bise
t the re
tangle-region into two a � b2 subre
tangle-regions, and 
olor the leftside red and the right side blue. The points on the boundary between the two subre
tangles
an be either 
olor, ex
ept if a middle point on the top or bottom side exists, it must be adi�erent 
olor than the remaining 
orner point in its set.Note 3.8 The non-
olorability argument in Theorem 3.6 (for the 
ase a < b and a2+b2=4 = 1)shows that the region is not 2-
olorable if only one point is removed, or even if any other pairof points is removed.The following are well known, but useful, fa
ts about regular polygons.Lemma 3.9 Consider a regular n-gon. Let s be the length of a side; r be the distan
e fromthe 
enter to a 
orner (its radius); and q be the distan
e from the 
enter to the middle of aside.Then r = q
os(�=n) = s2 sin(�=n)q = r 
os(�=n) = s2 tan(�=n)s = 2r sin(�=n) = 2q tan(�=n)8
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Figure 9: Non-2-
olorability of regular n-gon-region with n odd.Theorem 3.10 A regular n-gon-region is 2-
olorable if and only if the 
ir
umradius r satis�esr � 1psin(�=n)2+4 
os(�=n)2 if n is evenr < 1p2(1+
os(�=n)) if n is oddProof: CASE (1): n is odd.COLORABILITY: If r < 1p2(1+
os(�=n)) , just use one 
olor. Two farthest apart pointsof the same 
olor are from a 
orner to an endpoint of its opposite side. It is suÆ
ient that thisdistan
e be less than 1. So we need:q(s=2)2 + (r + q)2 < 1=) q(r sin(�=n))2 + (r + r 
os(�=n))2 < 1=) rqsin2(�=n) + (1 + 
os(�=n))2 < 1=) rqsin2(�=n) + 1 + 2 
os(�=n) + 
os2(�=n) < 1=) rq2 + 2 
os(�=n) < 1=) r < 1p2(1 + 
os(�=n))NON-COLORABILITY: Assume that r � 1p2(1+
os(�=n)) and suppose that the n-gon-region is 2-
olored. Imbed a regular n-gon inside the original n-gon-region, but not ne
essarilystri
tly, with 
ir
umradius r = 1p2(1+
os(�=n)) . Let 
0; 
1; � � � ; 
n�1 be the 
orners in order. Thedistan
e from any 
orner to a 
orner on its opposite side is exa
tly 1, so those two points musthave di�erent 
olors. Take the sequen
e of opposite 
orners
0; 
(n�1)=2+1; 
1; 
(n�1)=2+2; 
2; 
(n�1)=2+3; : : : ; 
n�2; 
(n�1)=2�1; 
n�1; 
(n�1)=2; 
0Sin
e n is odd, 
0 must have a di�erent 
olor than itself, whi
h is a 
ontradi
tion. Figure 9shows an example for n = 5, the pentagon.CASE (2): n is even.COLORABILITY: If r < 1psin2(�=n)+4 
os2(�=n) then bise
t the n-gon-region from themiddle of one side to the middle of its opposite side, and 
olor the two sides with di�erent
olors. The bise
ting line 
an be either 
olor. Figure 10a shows an example for n = 6, thehexagon. 9



B B

R

B

R

R

B

R

B

B

B

R

(b)

B B

(a)

RR B

Figure 10: 2-
oloring of regular n-gon-region with even number of sides.(a) Cir
umradius r < 1psin2(�=n)+4 
os2(�=n) . (b) Cir
umradius r = 1psin2(�=n)+4 
os2(�=n) .The farthest pairs of points of the same 
olor are from the middle of one of the bise
tedsides to a 
orner on its opposite side. It is suÆ
ient that this distan
e be less than 1. So weneed: q(s=2)2 + (2q)2 < 1=) q(r sin(�=n))2 + (2r 
os(�=n))2 < 1=) rqsin2(�=n) + 4 
os2(�=n) < 1=) r < 1qsin2(�=n) + 4 
os2(�=n)If r = 1psin2(�=n)+4 
os2(�=n) then on
e again 
olor it by bise
ting the n-gon-region from themiddle of one side to the middle of its opposite side, and 
oloring the two sides with di�erent
olors. Again, the bise
ting line 
an be either 
olor. However, the midpoints of all of thesides must be one 
olor, say red, and all of the 
orners must be the other 
olor, say blue.Furthermore, the points that are unit distan
e away from any 
orner (whi
h are ar
s of aunit-radius 
ir
le) must be red. As in the 
oloring of the square (Figure 6b), the isolation ofthe red lines is eliminated by 
oloring the entire region to their left red, ex
ept for the blue
orners. This 
ompletes the 
oloring. Figure 10b shows an example for n = 6, the hexagon.NON-COLORABILITY: Assume r > 1psin2(�=n)+4 
os2(�=n) and suppose the n-gon-region is 2-
olored. Imbed a regular n-gon inside the original n-gon-region with 
ir
umradiusr = 1psin2(�=n)+4 
os2(�=n) . Let S be a side, say the top. Pla
e a rod with one end at the left
orner of S and the other end in the middle of the bottom (opposite) side. Slide the rodrightward until the top end tou
hes the middle of S (and the bottom end tou
hes the right
orner of the bottom side). Thus the left half of S in
luding the endpoints must have the same
olor (Figure 11a). Symmetri
ally, the right half of S in
luding the endpoints must have thesame 
olor. Thus the entire side S in
luding its endpoints must have the same 
olor (Figure11b). Any two adja
ent sides must have the same 
olor (sin
e they share an endpoint), so allof the sides must have the same 
olor. But the middle of a side and the 
orner of the oppositeside are exa
tly one unit apart (Figure 11
). Contradi
tion.10



(a) (c)(b)Figure 11: Non-2-
olorability of regular n-gon-region with even number of sides.
(x,y)

(u,v)Figure 12:Corollary 3.11 An equilateral-triangle-region is 2-
olorable if and only its side length s < 1.For regular n-gon-regions, where n is odd, the 
onditions of 
olorability involve a < ratherthan a �. It turns out that almost the the entire boundary 
an be in
luded:Theorem 3.12 A regular n-gon-region with n is odd and 
ir
umradius r = 1p2(1+
os(�=n)) , is2-
olorable if one 
orner point is removed.Proof: Bise
t the n-gon-region from the 
orner with the missing point to the middle of itsopposite side. Color the two halves with di�erent 
olors. The bise
ting line 
an be either 
olor.Note 3.13 The non-
olorability argument in Theorem 3.10 for n odd shows that the regionis not 2-
olorable if any other point is removed, or even if any set of points not in
luding a
orner point is removed.4 3-COLORINGSDe�nition 4.1 A tri-rod (p; q; r) is a unit-side equilateral triangle with 
orners p; q; r.Lemma 4.2 Consider a tri-rod in the upper right quadrant of a 
artesian 
oordinant system,with a 
orner at the origin (0; 0), the top 
orner is at (x; y), and right 
orner is at (u; v).11



(Figure 12.) Then x = 12u� p32 p1� u2 = 12p1� v2 � p32 vand y = p32 u+ 12p1� u2 = p32 p1� v2 + 12vProof: x = 
os(�3 + ar

os(u))= 
os(�3 ) 
os(ar

os(u))� sin(�3 ) sin(ar

os(u))= 12u� p32 p1� u2y = sin(�3 + ar

os(u))= sin(�3 ) 
os(ar

os(u)) + 
os(�3 ) sin(ar

os(u))= p32 u+ 12p1� u2The following lemma, whi
h is analogous to Lemma 3.3, is the ba
kbone for all of thenon-
olorability arguments.Lemma 4.3 Let (p; q; r) be a tri-rod, where the disks of radius �, 0 < � < 1=2, 
entered at p,q, and r (
alled the p-disk, q-disk, and r-disk) are 
ontained in a 3-
olored region. Then thereare inner open disks of radius O(�2) 
entered at p, q, and r that are ea
h mono
hromati
 (withdi�erent 
olors).Proof: Constru
t inner dis
s of radius K�2 about p; q; r, where K is a positive 
onstant
hosen small enough to a

omodate Case(2) of the following argument. There are two 
ases:CASE (1): No 
olor o

urs in all three inner disks. There are two sub
ases:CASE (1a): One inner disk is mono
hromati
. We 
an assume it is 
entered at p and is red.Obviously no point in either other inner disk 
an be red, so the other two inner disks, 
enteredat q and r, are bi
hromati
 blue/green. By Lemma 3.3, there are radius O(�4) disks withinthe inner disks 
entered at q and r that are mono
hromati
. By Lemma 3.4, moving rod (q; r)inside the radius O(�2) inner disks for
es them to be mono
hromati
 (with di�erent 
olors).CASE (1b): No inner disk is mono
hromati
. Sin
e no 
olor o

urs in all three inner disks,ea
h 
olor o

urs in at most two inner disks, whi
h implies that the sum of number 
olors usedover all three inner disks at most six. Sin
e no inner disk is mono
hromati
, ea
h inner disk
ontains at least two 
olors, so ea
h inner disk must 
ontain exa
tly two 
olors. (Otherwisethe sum of number 
olors used over the three disks would be more than six.) Thus, ea
h innerdisk must be bi
hromati
, and ea
h of the three possibilities (red/blue, red/green, blue/green)o

urs exa
tly on
e. (If some pair of 
olors o

urred twi
e then those two 
olors would ea
halready o

ur in two inner disks, so the third inner disk would have to be mono
hromati
.)Consider the red/blue disk. (Figure 13.) There exist two points, one red and one blue,mu
h 
loser to ea
h other than either is to the boundary.2 The points unit distan
e from the2Take any two points of di�erent 
olors (red and blue). Consider the point halfway between them. It musthave a di�erent 
olor from one of the original points. Keeping the middle point and the opposite 
olored pointprodu
es two new points half as far apart. Iterate until the separation is small enough.12
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Figure 14:red point lying in the inner red/green disk form a green ar
; the points unit distan
e from theblue point lying in the inner blue/green disk also form a green ar
. Sin
e the red and bluepoints are arbitrarily 
lose to ea
h other, the two 
losest points on these two ar
s are less thanone unit apart and the two furthest points are more than one unit apart. By 
ontinuity, twopoints, one on ea
h ar
, must be exa
tly one unit apart. Contradi
tion.CASE (2): Some 
olor, say red, does o

ur in all three inner disks. (Figure 14.) Sin
e p,q, and r must have di�erent 
olors, one of them, say r, must be red. Let p0 be a red point insidethe inner disk 
entered at p, and q0 be a red point inside the inner disk 
entered at q. (We donot need r0 sin
e r is already red.) Let ap0 be the interse
tion of the ar
 of the unit-radius 
ir
learound p0 with the q-disk, aq0 be the interse
tion of the ar
 of the unit-radius 
ir
le around q0with the r-disk, and ar be the interse
tion of the ar
 of the unit-radius 
ir
le around r with thep-disk. Note that the ar
s must be 
olored only blue and green. We prove below that there isa tri-rod whose three 
orners lie on these ar
s. Figure 14 gives the intuition for this as you 
ansee the two tri-rods, and that one is obtained by sliding the other one. Sin
e there are onlytwo 
olors available for the three 
orners this will be a 
ontradi
tion.To prove the 
laim, 
hoose 
artesian 
oordinates (x; y), su
h that p is (0; 0), q is (1; 0), andr is (1=2;p3=2). We approximate ea
h of the ar
s by a straight line; within ea
h �-radius diskthe error is only O(�2). Ar
 ap0 is approximated by x = 1 +O(�2), ar
 aq0 is approximated byy = xp3 + 1p3 +O(�2), and ar
 ar is approximated by y = � xp3 +O(�2).Any given point � = (1 + O(�2); d) on ap0 is unit distan
e away from some point � =(O(�2); O(�2)) on ar. By a trivial extension of Lemma 4.2, if (�; �; 
) is the tri-rod with 
 near14
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Figure 15: 3-
oloring of 
ir
le-region for diameter (a) r < 1p3 and (b) r = 1p3r, then 
 =  12 � p32 d+O(�2); p32 + d2 +O(�2) !In parti
ular, by setting d = �=2, there is a tri-rod with two 
orners on ar and ap0 and top
orner at  12 � p3�4 +O(�2); p32 + �4 +O(�2) ! ;whi
h is above the ar
 aq0 , and, by setting d = ��=2, there is a tri-rod with two 
orners on arand ap0 and top 
orner at 12 + p3�4 +O(�2); p32 � �4 +O(�2) ! ;whi
h is below the ar
 aq0 . So, by 
ontinuity, there exists a tri-rod with its 
orners on all threear
s. This establishes the 
ontradi
tion.Lemma 4.4 Assume a region is 3-
olored. If we slide a tri-rod 
ontinuously around the insideof the region, the points passed over by a given 
orner must all be the same 
olor, and thepoints passed over by di�erent 
orners must have di�erent 
olors.Proof: Follows from the previous lemma.Theorem 4.5 A 
ir
le-region is 3-
olorable if and only if its radius r � 1p3 � :57735.Proof: COLORABILITY: Assume r � 1=p3. Trise
t the 
ir
le-region and 
olor thethree se
tions di�erent 
olors. The points on the boundary between two se
tions 
an be either
olor (Figure 15a), ex
ept if the radius is exa
tly equal to 1=p3 then 
olor the three end-points,whi
h are on the 
ir
le, di�erent 
olors (Figure 15b).NON-COLORABILITY: Assume r > 1=p3. Suppose the region is 3-
olored. Put atri-rod inside of the region so that their 
enters 
orrespond, and rotate the tri-rod 120 degreesaround its 
enter (one third of the way around). (Figure 16a.) Ea
h 
orner of the tri-rod15



(b)(a)Figure 16: Non-3-
olorability of 
ir
le-region for r > 1p3
Figure 17: Tri-rod in a regular n-gon-region, for n = 5; 6; 7; 8.traverses an ar
 of a 
ir
le with radius 1=p3. By Lemma 4.4 ea
h ar
 must be mono
hromati
and have a di�erent 
olor, but the ar
s interse
t at their endpoints (Figure 16b). Contradi
tion.Theorem 4.6 A regular n-gon-region with n � 5 is 3-
olorable if and only if the inradiusq � sin � �p3 
os �2(1 � 
os �)where � = bn+13 
2�n .Proof: Pla
e the n-gon onto the 
artesian 
oordinates with 
enter at the origin, and oneside parallel to the x-axis in the lower half of the plane. Make the polygon just large enoughso that the tri-rod �ts exa
tly inside it with one 
orner in the middle of the bottom side andthe other two 
orners ea
h tou
hing a side (above the x-axis). Figure 17 shows this for apentagon, hexagon, septagon, and o
togon (with the 
artesian 
oordinates not shown). Wewill determine the size of su
h a regular polygon, whi
h will help with both the 
olorabilityand non-
olorability arguments.Number the sides of the polygon 
ounting 
ounter-
lo
kwise, starting with the bottom side,whi
h is numbered 0. The top right 
orner of the tri-rod is about one third the way around thepolygon. More pre
isely, it tou
hes side number bn+13 
. So the 
ir
ular angle from the middleof the bottom side to the middle of this side is � = bn+13 
2�n . The angle from the x-axis is16
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Figure 18: 3-
oloring of regular n-gon-region, for n = 5; 6; 7; 8 and q = sin ��p3 
os �2(1�
os �) .� � �2 , whi
h implies the slope of this side is� 
ot(� � �2 ) = tan � :There are two parti
ular points that we know are on that side: The midpoint of the side,whi
h is (q 
os(� � �2 ); q sin(� � �2 )) = (q sin �;�q 
os �), and the 
orner point of the tri-rod,whi
h is (1=2;p3=2� q). If these two points are distin
t, they de�ne a line whose slope is�q 
os � � (p3=2 � q)q sin � � 1=2So, tan � = �q 
os � � (p3=2� q)q sin � � 1=2=) q sin � tan � � 12 tan � = � q 
os � � p32 + q=) q(sin � tan � + 
os � + 1) = 12 tan � � p32=) q(sin2 � + 
os2 � + 
os �) = 12 sin � � p32 
os �=) q(1 + 
os �) = sin � �p3 
os �2=) q = sin � �p3 
os �2(1 + 
os �)If the two points 
oin
ide (whi
h happens when 3jn) thenq sin � = 1=2 and � q 
os � = p3=2� qThis simpli�es to q = 1p3 and � = 2�3whi
h is a solution to the above equation.COLORABILITY: Assume q = sin ��p3 
os �2(1�
os �) . Consider the three points where the three
orners of a tri-rod interse
t three sides of the polygon as above. Draw the three line seg-ments from the 
enter of the polygon to these three points, partitioning the polygon into three17



subregions, 
olor ea
h subregion a di�erent 
olor. The points on the boundary between twosubregions 
an be any 
olor, ex
ept the three interse
tion points must be di�erent 
olors. Fig-ure 18 shows the 
oloring for a pentagon, hexagon, septagon, and o
togon. If q < sin ��p3 
os �2(1�
os �) ,shrink the above 
oloring to the desired size (and there is no extra 
ondition on the threeinterse
tion points).NON-COLORABILITY: Assume q > sin ��p3 
os �2(1�
os �) and the n-gon-region is 3-
olored.Put an n-gon with inradius exa
tly sin ��p3 
os �2(1�
os �) stri
tly inside the original polygon (so that its
enter at the origin, and one side parallel to the x-axis in the lower half of the plane). Weshow that a tri-rod 
an be maneuvered around inside the inner polygon.Consider the top edge of the tri-rod. On the left side it tou
hes an edge of the inner polygonwhose slope is, say m, where m > 0, and on the right side it tou
hes a edge whose slope is�m. We 
laim that the as long as those two 
orners of the tri-rod tou
h those two edges,respe
tively, the third 
orner of the tri-rod will be inside the inner polygon. Let p and q bethe original upper left and right 
orners of the tri-rod, respe
tively. For any lo
ations the twopoints will be p = (�1=2 + �;p3=2 +m�) for some � and q = (1=2 + Æ;p3=2�mÆ) for some Æ.So the y-
oordinate of midpoint of the upper edge of the tri-rod will bep32 + m(�� Æ)2 :If � � Æ > 0 then the midpoint has moved up, whi
h implies that the bottom 
orner of thetri-rod will have moved up also. We 
an 
al
ulate the relation between � and Æ be
ause theedge of the tri-rod has length one:((12 + Æ) � (�12 + �))2 + ((p32 �mÆ)� (p32 +m�))2 = 1=) (1� (�� Æ))2 + (�m(�+ Æ))2 = 1=) 1 + 2(�� Æ) + (�� Æ)2 +m2(�+ Æ)2 = 1=) �� Æ = (�� Æ)2 +m2(�+ Æ)22The right hand side is 
learly positive.Pla
e the tri-rod inside the inner polygon so that its three 
orner points interse
t threesides of the inner polygon as above (Figure 19a). Rotate the tri-rod 
lo
kwise so that the twoupper points stay on the boundary, until one of them rea
hes a 
orner of the inner polygon(Figure 19b). Fix this latter point of the tri-rod, and slide the tri-rod so that the bottompoint tou
hes the bottom edge of the inner polygon (Figure 19
). Rotate the tri-rod 
lo
kwiseso that the previously �xed point and the bottom point stay on the boundary of the innerpolygon, until the third point interse
ts the middle a side, whi
h by symmetry will happen(Figure 19d). By 
ontinuing in this fashion, ea
h 
orner of the tri-rod will interse
t the middleof ea
h side of the inner polygon. By Lemma 4.4 ea
h 
orner must be mono
hromati
 andhave a di�erent 
olor, but the 
orners interse
t at their endpoints (one third of the way aroundthe inner polygon). This establishes the 
ontradi
tion.Corollary 4.7 A regular n-gon-region with n � 6 and 3jn is 3-
olorable if and only if theinradius q � 1p318



(b)(a)

(c) (d)Figure 19: Non-3-
olorability of regular polygon region for q > sin ��p3 
os �2(1�
os �) .
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Figure 20: 3-
oloring of equilateral-triangle-region for side length (a) s < p3 and (b) s = p3.The equilateral triangle and square 
an be 
olored in very mu
h the same way: Pla
e a\tri-rod" inside the region as above, and use the three interse
tion points with the 
enter ofthe region to separate into three subregions for 
oloring. The di�en
e is that the two fartherestapart points in a subregion are no longer the two interse
tion points inside that subregion: Forthe triangle it is a 
orner and the 
enter of the triangle, and for the square it is a 
orner andone of the interse
tion points. So the \tri-rod" will have sides smaller than one unit. Thisne
essitates di�erent 
olorability and non-
olorability arguments.Theorem 4.8 An equilateral-triangle-region is 3-
olorable if and only if its side length s � p3(or equivalently its 
ir
umradius r � 1).Proof: COLORABILITY: Assume s < p3 (Figure 20a). Trise
t the triangle-region withthe line segments from the middle of ea
h side to the 
enter. Color ea
h se
tion a di�erent
olor. Color the points on the boundary between two se
tions either 
olor, and 
olor the middlepoint any 
olor, say green. The farthest two points of the same 
olor are the middle point andthe 
orner point in the green se
tion. This is the 
ir
umradius and it must be less than 1. So,by Lemma 3.9, s = 2r sin(�=n) = 2r sin(�=3) = 2rp32 = rp3 < p3(by 3.9).Assume s = p3 (Figure 20b). Again trise
t the triangle-region with the line segments fromthe middle of ea
h side to the 
enter, 
olor ea
h se
tion a di�erent 
olor, and 
olor the pointson the boundary between two se
tions either 
olor. Color the 
orner point of the green se
tionred, and 
olor green the points on the unit-radius ar
 
entered at that point.3 The isolationof the green ar
 is eliminated by 
oloring the sub-region above the ar
 all green.NON-COLORABILITY: Assume s > p3, and suppose the region is 3-
olored. Imbedan equilateral triangle T with side length exa
tly p3 inside of the triangle-region. Pla
e atri-rod inside of T , and slide the tri-rod so that ea
h 
orner tou
hes a di�erent 
orner of T .Thus, the three 
orners of T must have di�erent 
olors. But the 
enter of T is exa
tly distan
e1 away from ea
h 
orner.3A
tually, only the points in the red se
tion need to be 
olored green, but this makes the 
oloring moresymmetri
al. 20



The following result was proved by Bauslaugh using very di�erent te
hniques.Theorem 4.9 ([Baus℄) An in�nite strip is 3-
olorable if and only if it has width a � p3=2.Proof: COLORABILITY: Assume the width a � p3=2. Color with blo
ks of width1=2, rotating 
olors red, green, blue, red, green, blue, et
. Color the boundary between twoblo
ks the 
olor of the points to its right.NON-COLORABILITY: Assume the width a > p3=2, and suppose the region is 3-
olored. Put a strip of width p3=2 inside the original strip. Put a tri-rod inside the new stripwith two 
orners on one side of the strip and the third 
orner on the other side of the strip.Slide the tri-rod rightward one unit. The left 
orner �nishes where the right 
orner starts, butby Lemma 4.4 the points 
rossed by these 
orners must have di�erent 
olors. Contradi
tion.Theorem 4.10 A re
tangle-region of dimensions a� b, with a � b, is 3-
olorable if and onlyif (1) a � p32or (2) p32 < a � 2p5 and b � 3p1� a2or (3) 2p5 < a � 8p65 and b � p1� a2 +p1� a2=4Proof: Note thatmax� 3p1� a2; p1� a2 +q1� a2=4 � = ( 3p1� a2 if a � 2p5p1� a2 +p1� a2=4 if a � 2p5COLORABILITY:CASE (1): a � p3=2. Color it like an in�nite strip, but 
hop it to length b.CASE (2): p3=2 < a � 2=p5 and b � 3p1� a2. We 
onsider two methods of 
oloring:verti
al stripes, whi
h are are simpler for b < 3p1� a2, and non-stripes, whi
h are simplerfor b = 3p1� a2. We present both methods, partly be
ause they provide insight for thenon-
olorability argument.Verti
al stripes (Figure 21). Assume b < 3p1� a2. Trise
t the re
tangle with verti
allines and 
olor the three small re
tangles red, blue, and green. Within ea
h small re
tangle,two points farthest apart are diagonally opposite 
orners. So to have a legitimate 3-
oloring,we need pa2 + (b=3)2 < 1, whi
h is equivalent tob < 3p1� a2 :Assume b = 3p1� a2. From the lower left 
orner draw a red unit-radius 
ir
ular ar
 fromthe top to the horizontal middle, and from the lower right 
orner draw a green unit-radius
ir
ular ar
 from the top to the horizontal middle. Color their interse
tion point green. Fromthe upper left 
orner draw a red unit-radius 
ir
ular ar
 from the bottom to the horizontalmiddle, and from the upper right 
orner draw a green unit-radius 
ir
ular ar
 from the bottomto the horizontal middle. Color their interse
tion point green. Draw a verti
al line in thehorizontal middle 
onne
ting the two greeen interse
tion points. This 
reates a large region tothe left, one to the right, and two small regions in the middle (one at the top and one at thebottom). Color the left region red, the right region green, and the two middle regions blue.Color the two points at the top and bottom, one third the way a
ross blue, the two pointsat the top and bottom, two thirds the way a
ross green, and the two points at the top andbottom right 
orners blue. This 
ompletes the 
oloring.21
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Figure 21: Verti
al stripes 3-
oloring of a� b re
tangle-region, where a � b, p32 < a � 2p5 .(a) b < 3p1� a2. (b) b = 3p1� a2.
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Figure 22: Non-stripes 3-
oloring of a � b re
tangle-region, where a � b, p32 < a � 2p5 , andb � 3p1� a2
22
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Figure 23: Mixed stripes 3-
oloring of a� b re
tangle-region, where a � b, 2p5 � a � 8p65 .(a) b < p1� a2 +p1� a2=4. (b) b = p1� a2 +p1� a2=4.Non-stripes (Figure 22). The point p on the bottom side, distan
e (b�p1� a2)=2 fromthe bottom left 
orner, and the point q on the top side, distan
e (b�p1� a2)=2 from the topright 
orner, are exa
tly one unit apart. Color p green and q blue. Consider the unit-radius ar

entered at p, near the top right 
orner of the region. Color the ar
 and all points outside it(but inside the region) red, ex
ept of 
ourse for point q. Consider the unit-radius ar
 
enteredat q, near the bottom left 
orner of the region. Color the ar
 and all points outside it (butinside the region) red, ex
ept of 
ourse for point p. Cut the remainder of the region in halfby the line segment from p to q and 
olor the left side blue and the right side green. Theboundary points 
an be either 
olor. As long as b � 3p1� a2, no two points of the same
olor will be exa
tly one unit apart.CASE (3): 2p5 < a � 8p65 and b � p1� a2 +p1� a2=4. We use Mixed stripes.4 Letx < b be a value to be determined later. Use green to 
olor the a� x verti
al stripe at the leftof the region. Bise
t the remaining subre
tangle with a horizontal line and 
olor the top redand the bottom blue. (Figure 23a.) For the verti
al stripe, we need pa2 + x2 < 1, whi
h isequivalent to x < p1� a2. For ea
h horizontal stripe, we need p(a=2)2 + (b� x)2 < 1, whi
his equivalent to x > b �p1� a2=4. Thus, we need b �p1� a2=4 < x < p1� a2, whi
h issatis�ed for some x if b < p1� a2 +q1� a2=4 :If this last inequality is repla
ed by equality (Figure 23b), 
olor the same way ex
ept thatin the red re
tangle 
olor the right two points red, in the blue re
tangle 
olor the bottom twopoints blue, in the green re
tangle 
olor the top two points green and the bottom left pointred. Create a green unit-radius ar
 from the bottom left point in the red sub-region, andto eliminate the isolation of the green ar
 
olor everything to the left of the ar
 green. Forsymmetry 
reate a blue unit-radius ar
 from the top left point in the (already) blue sub-regionand 
olor everything to the left of the ar
 green. So we 
an 3-
olor any re
tangle with (a � b4Cases (2) and (3) both give a

eptable 3-
olorings of the re
tangle for larger ranges of a than stated in their
onditions, but, by the note at the beginning of the proof, for a � 2=p5 Case (2) is better and for a � 2=p5Case (3) is better. The two methods are the same for a = 2=p5.23



(b)(a)

(c) (d)Figure 24: Three segments that must be mono
hromati
 and have di�erent 
olors in 3-
oloringof re
tangle for a > p3=2, b > max(3p1� a2;p1� a2 +p1� a2=4), and b > 1.and) b � p1� a2 +q1� a2=4 :Note that a = p1� a2 +p1� a2=4 implies a = 8p65 .NON-COLORABILITY: We may assume a < 1. Assume that a > p3=2. By the noteat the beginning of the proof, we need to 
onsider only b > max �3p1� a2;p1� a2 +p1� a2=4�.Suppose the re
tangle-region is 3-
olored. There are two 
ases: (1) b > 1 and (2) b � 1.CASE (1): b > 1. Let R be an � � � re
tangle inside the region, with p3=2 < � < a,1 < � < b, and � = max(3p1� �2;p1� �2 + p1� �2=4). To see that this is possible,�rst assume that a � 2=p5. Then, as noted above, max(3p1� a2;p1� a2 +p1� a2=4) =3p1� a2. Let � = a� �, where � is small enough so that both � > p3=2 and 3p1� �2 < b.Now assume that a > 2=p5. Then, as noted above, max(3p1� a2;p1� a2 +p1� a2=4) =p1� a2 + p1� a2=4. Let � = a � �, where � is small enough so that both � > 2=p5 andp1� �2 +p1� �2=4 < b.We show what is immediately known about the 
olor of points on the top and bottomsides of R: Put a tri-rod inside R with one 
orner on the bottom-left 
orner of R and another
orner on the top side. Slide the tri-rod rightward until it tou
hes the right side of R, keepingtra
k of points 
rossed by the left and top 
orners of the tri-rod (Figure 24a). Now slide thetop 
orner right and the right 
orner downward until it rea
hes the bottom right 
orner ofR, keeping tra
k of points 
rossed by just the top 
orner of the tri-rod (Figure 24b). Finally,slide the tri-rod leftward until it rea
hes the left side of R, keeping tra
k of points 
rossed byjust the right 
orner of the tri-rod (Figure 24
). Ea
h set of points 
rossed by a 
orner of the24
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Figure 25: Four non-isomorphi
 potential 3-
olorings of a re
tangle for a > p3=2, b >max(3p1� a2;p1� a2 +p1� a2=4), and b > 1.tri-rod must be mono
hromati
 and have di�erent 
olors from ea
h other (Lemma 4.4); seeFigure 24d. Ea
h line segment on the bottom has length � � (p32 � + 12p1� �2). The linesegment on the top is p1� �2 distant from ea
h side, so it has length � � 2p1� �2.Similarly, by symmetry, there are three line segments, the left of the top side, the middleof the bottom side, and the right of the top side, that are mono
hromati
 and have di�erent
olors from ea
h other. Sin
e p32 < � < 1, it may be veri�ed that none of the segments overlap.Putting everything together produ
es, up to isomorphism (with respe
t to renaming 
olorsand left-right re
e
tions) only four types of 
oloring on the segments: Figure 25. Type (a)
orresponds to the verti
al stripes 
oloring, type (b) 
orresponds to the non-stripes 
oloring,and type (
) 
orresponds to the mixed stripes 
oloring. Type (d) does not 
orrespond to any
oloring method used, and does not seem to be a good approa
h. We will show that, underour assumptions, none of the four types produ
es a 3-
oloring of the re
tangle.Start with type (a). The middle two segments have the same 
olor. The right endpointsof the two segments are exa
tly distan
e � (whi
h is < 1) apart. Ea
h segment has length� � 2p1� �2, and, sin
e � > 3p1� �2, ea
h segment has length at least p1� �2. So theright endpoint of one segment and the left endpoint of the other are at least one unit apart. By
ontinuity, two points, one on ea
h segment, are exa
tly one unit apart. So type (a) does notprodu
e a 3-
oloring. The same reasoning shows that type (d) does not produ
e a 3-
oloring.To handle types (b) and (
), we extend our knowledge of the 
oloring of R by piggyba
kingon the earlier 2-
oloring results. Suppose that the middle and right segments on the bottomside have the same 
olor, say green (as shown in Figure 26). We will see that the middle andright segments on the top side must have the same 
olor (as ea
h other), as must all of the25
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B

GFigure 27:points in between the two segments. It will follow by symmetry that on the bottom side thepoints in between the two segments must be green.Consider the 
losed line segment S on the top side of R between the middle and rightsegments (Figure 26a). Ea
h point on S is one unit away from some point on the middlesegment of the bottom side, sin
e that segment starts distan
e p1� �2 from the right sideand, as we just showed, has length at least p1� �2. So points on S 
annot be green, and sin
eR is stri
tly inside the re
tangle-region neither 
an points near S. Consider the unit radius ar
of points in R 
entered at the bottom right 
orner point of R. These points and points nearby
annot be green (Figure 26b), sin
e the 
orner and points nearby must be green. (This latterfa
t holds be
ause a tri-rod 
an be pla
ed inside the re
tangle with one 
orner at the bottomright 
orner point of R, whi
h itself is inside the full re
tangle.) Together the points on andnear S and on and near the ar
 form a region that is 2-
olorable (with red and blue). Put oneend of a rod on one endpoint of S and the other end on the ar
. Slide the top end of the rodalong S until it rea
hes the other endpoint of S, keeping the bottom end of the rod on the ar
(Figure 26
). By Lemma 3.4, the points on S must be mono
hromati
, and sin
e S interse
tsthe middle and right segments on the top side (whi
h are mono
hromati
), the entire segmentfrom the left endpoint of the middle segment to the right 
orner of R must be mono
hromati
.Now 
onsider type (b) (in Figure 25). The bottom middle and the bottom right segmentsare both green, so by the above argument the top middle and top right segments must be thesame 
olor, but they are not. Thus, type (b) does not produ
e a 3-
oloring.Finally 
onsider type (
) (Figure 27). By the above argument, all of the points on thetop side starting distan
e p1� �2 from the left and going right must be blue, and all of thepoints on the bottom side starting distan
e p1� �2 from the left and going right must begreen. Consider the point exa
tly in the middle of the right side of R. It is exa
tly one unitaway from a blue point on the top side of R, and exa
tly one unit away from a green point on26
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Figure 28:the bottom side, sin
e � � p1� �2 +p1� �2=4. So it must be red. Now 
onsider the pointexa
tly one unit to the left of this point. It is also exa
tly one unit away from a point on thetop blue segment, and exa
tly one unit away from a point on the bottom green segment, so ittoo must be red. Contradi
tion. Thus, type (
) does not produ
e a 3-
oloring.CASE (2): b � 1.Re
all that we are assuming b > max(3p1� a2;p1� a2 + p1� a2=4). If a � 2=p5 �0:8944 then (as noted in the beginning of the proof) b > 3p1� a2, so 3p1� a2 < 1. Solvingfor a yields a > p8=9 � 0:9428, whi
h is a 
ontradi
tion.Thus it must be the 
ase that a > 2=p5, whi
h (as noted in the beginning of the proof)implies b > p1� a2 +p1� a2=4. Let R be an �� � re
tangle inside the region with 2=p5 <� < a, � � � < b, and � = p1� �2 +p1� �2=4. To see that this is possible, let � = a� �,where � is small enough so that p1� �2 +p1� �2=4 < b.Sin
e � < b � 1, p1� �2 +p1� �2=4 < 1. Solving for � yields � > r89 �p13� 52� �:9913. Let � equal this lower bound for �. Furthermore, � is maximized and � is minimizedwhen � = �. Solving, � = p1� �2+p1� �2=4, yields � = � = 8p65 � 0:9923. Call this value� and �. Thus, there is a very narrow range of values for � and �::9913 � � < � � � = � � � < 1 :Be
ause of this, all of the �gures here will be drawn as squares (even though they may not bequite squares).We show what is immediately known about the 
olor of points on all four sides of R, along27
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Figure 29:with some nearby points in the interior. Put a tri-rod inside R with the left 
orner on thebottom left 
orner of R and the right 
orner on the right side of R. Slide the tri-rod upwarduntil the top 
orner tou
hes the top of R, only keeping tra
k of the points 
rossed by the top
orner (Figure 28a). Now, slide the top 
orner leftward and the left 
orner downward until ittou
hes the bottom left 
orner of R, keeping tra
k of the points 
rossed by the left and top
orners of the tri-rod (Figure 28b). Now, slide the tri-rod rightward until the right 
ornertou
hes the right side of R, keeping tra
k of the points 
rossed by the left and right 
ornersof the tri-rod (Figure 28
). Finally, slide the the right 
orner downward and the left 
ornerleftward until it tou
hes the bottom left 
orner of R, only keeping tra
k of the points 
rossed bythe right 
orner of the tri-rod (Figure 28d). Ea
h L-segment 
rossed by a 
orner of the tri-rodmust be mono
hromati
 and have a di�erent 
olor by Lemma 4.4 (Figure 28e). Following asimilar pro
edure for ea
h 
orner produ
es twelve mono
hromati
 L-segments (Figure 28f).Not only does ea
h group of three asso
iated L-segments have to be 
omposed of threedi�erent 
olors, but there are restri
tions between L-segments in di�erent groups. In parti
ular,as we will see, an interior (i.e. non-
orner) L-segment must have a di�erent 
olor than eitherinterior L-segment on the opposite side. Furthermore, we will see that, if a 
orner L-segmentand the (interior) L-segment next to it on a side have the same 
olor, then the 
orner L-segmentand the L-segment next to it on the opposite side must have the same 
olor (as ea
h other).It is possible (depending on the values of � and �) for the 
orner L-segments to overlapthe neighboring interior L-segments on the short sides (i.e., the left and right sides), but noton the long sides (i.e., the top and bottom sides). We never use this information.We will need to know the exa
t positions and sizes of the L-segments. This is easy toderive using Lemma 4.2. An interior L-segment on a long side, say the left of the top side asin Figure 28e, starts p1� �2 from the top left 
orner, goes right until it is �2 � p32 p1� �2from the top left 
orner, and then goes down � � (p32 � + p1��22 ). An interior L-segment ona short side, say the lower right side as in Figure 28e, starts p1� �2 from the bottom right
orner, goes up until it is �2 � p32 p1� �2 from the bottom right 
orner, and then goes left� � (p32 �+ p1��22 ).Consider two \opposite" L-segments on the long sides, an interior L-segment on, say, theleft of the top side and one on the left of the bottom side as in Figure 29a. Let � be the lengthof the line segment on the boundary. Then� =  �2 � p32 q1� �2!�p1� �2 > �2 � p32 q1� �2 �q1� �2 :28
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Figure 30:Call the �nal value �. The distan
e between the left endpoint of the top segment and the rightendpoint of the bottom segment isp�2 + �2 > q�2 + �2 � 1:02414 > 1 :The two left endpoints are distan
e � < 1 apart. By 
ontinuity, there must be two points,one on ea
h segment, exa
tly one unit apart, so the two segments must have di�erent 
olors.Similary, 
onsider two opposite L-segments on the short sides, an interior L-segment on, say,the top of the left side one on the top of the right side as in Figure 29b. Let � be the lengthof the segment on the boundary. Then� =  �2 � p32 p1� �2!�q1� �2 > �2 � p32 q1� �2 �q1� �2 :Call the �nal value �. The distan
e between opposite endpoints of the two line segments isp�2 + �2 > q�2 + �2 � 1:02520 > 1 :The two top endpoints are distan
e � < 1 apart. Again, by 
ontinuity, there must be twopoints, one on ea
h segment, exa
tly one unit apart, so the two segments must have di�erent
olors.Now 
onsider two \
addy-
orner" L-segments on the long sides, an interior L-segment on,say, the left of the bottom side and one on the right of the top side as in Figure 30a. Considerthe two 
losest points (whi
h are the interior endpoints of the verti
al segments). We obtainupper bounds on the horizontal and verti
al distan
es, whi
h we 
all h and v, between the twopoints. The horizontal distan
e between them ish = p3q1� �2 � p3q1� �2 = h ;and the verti
al distan
e isv = 2(p32 � + p1� �22 )� � = p3� +q1� �2 � � < p3 � 1 +q1� �2 � � = v :The distan
e between the two points isph2 + v2 < qh2 + v2 � :89107 < 1 :29



On the other hand, the left endpoint of the bottom segment and the right endpoint of the topsegment are obviously more than one unit apart. So, by 
ontinuity, there must be two points,one on ea
h L-segment, exa
tly one unit apart.Consider two 
addy-
orner L-segments on the short sides, an interior L-segment on, say,the bottom of the left side and one on the top of right side as in Figure 30b. Consider the two
losest points (whi
h are the endpoints of the horizontal segments). We obtain upper boundson the verti
al and horizontal distan
es, whi
h we 
all V and H, between the two points. Theverti
al distan
e between them isV = p3p1� �2 < p3q1� �2 = V ;and the horizontal distan
e isH = 2(p32 �+ p1� �22 )� � = p3�+p1� �2 � � < p3 ��+q1� �2 � � = H :The distan
e between the two points ispV 2 +H2 < qV 2 +H2 � :88761 < 1 :The points on opposite 
orners are obviously more than one unit apart. And, again, by
ontinuity, there must be two points, one on ea
h L-segment, exa
tly one unit apart.We now show that, if a 
orner L-segment and the interior L-segment next to it, 
all it T ,on a side have the same 
olor, then the 
orner L-segment and the L-segment next to it on theopposite side have the same 
olor (as ea
h other) as do all of the points in between the twoL-segments. The argument is the same as above with b > 1 (see Figure 26). We need to 
he
kthat if the two segments are on a long side (length �) then T starts p1� �2 from its nearby
orner (whi
h is unit distan
e from the opposite 
orner) and has length at least p1� �2, andif the two segments are on a short side (length �) then T starts p1� �2 from its nearby 
orner(whi
h is unit distan
e from the opposite 
orner) and has length at least p1� �2. In both
ases, T starts exa
tly the desired distan
e from its nearby 
orner. If the two segments are ona long side, T has length �2 � p32 p1� �2 �p1� �2. So we need,�2 � p32 q1� �2 �p1� �2 � p1� �2 :Substituting � for � and � for �, de
reases the left side and in
reases the right side. Ityields, :25722 � :13150, whi
h suÆ
es. If the two segments are on a short side, T has length�2 � p32 p1� �2 �p1� �2. So we need,�2 � p32 p1� �2 �q1� �2 � q1� �2 :Again, substituting � for � and � for �, de
reases the left side and in
reases the right side. Ityields, :25774 � :12404, whi
h suÆ
es.Putting everything together redu
es the possible 
olorings to a manageable number. Sin
ethere are four 
orners, two of them must be the same 
olor. Either they are (a) diagonallyopposite, or (b) on the a same side.CASE (2a): Two diagonally opposite 
orners are the same 
olor: say the the bottomleft and the top right are red. Then from the bottom left 
orner 
ounting 
lo
kwise, its twoasso
iated L-segments are, say, blue and green (Figure 31a). Sin
e the top side has a blue L-segment, from the red L-segment on the top right 
orner 
ounting 
lo
kwise its two asso
iated30
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R Figure 31:L-segments must be green and blue (Figure 31b). The top left 
orner must be blue, sin
eif it were red or green the right side or bottom side would have to have a blue L-segment(Figure 31
). Sin
e the top left 
orner and the L-segment next to it on the top are bothblue, the bottom left 
orner and the L-segment next to it on the bottom must be the same
olor. Similarly, sin
e the top left 
orner and the L-segment next to it on the left side areboth blue, the top right 
orner and the L-segment next to it on the right side must be thesame 
olor. These two 
orners are both red, so the two nearby L-segments must also be red.(Figure 31d). But these two L-segments are in the same group, so they 
annot be the same
olor. Contradi
tion.CASE (2b): Two 
orners on a same side are the same 
olor: say both 
orners on theleft side are red. Then from the bottom left red 
orner 
ounting 
lo
kwise, its two asso
iatedL-segments are, say, blue and green (Figure 32a). Sin
e the top side has a blue L-segment, fromthe top left red 
orner 
ounting 
lo
kwise its two asso
iated L-segments must be blue and green(Figure 32b). Sin
e the right side has both a blue and a green L-segment, the two L-segmentson the left side must be red (Figure 32
). So the remaining L-segment on the top side must beblue and the bottom right 
orner must be green (Figure 32d), and the remaining L-segmenton the bottom side must be green and the top right 
orner must be blue (Figure 32e).Let m be the point in the middle of the side opposite the four red segments. We willshow that m is distan
e exa
tly 1 from a blue point, a green point, and a red point, whi
h isimpossible. There are a
tually two possible orientations, depending on whether the four redL-segments are on a short side (with length �) as shown in Figure 33a (and Figure 32e), or ona long side (with length �) as shown in Figure 33b.Assume the former (Figure 33a). Consider the 
losest point to m of the upper interiorL-segment on the left side (whi
h is the endpoint of the horizontal segment). The verti
al31
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distan
e between the two points isv = �2 � (�2 � p32 p1� �2) = p32 p1� �2 ;and the horizontal distan
e is h = p32 � + p1� �22 :The square of the distan
e between the two points isv2 + h2 = (p32 p1� �2)2 + (p32 �+ p1� �22 )2 = 1 � �24 +p3�p1� �2� 1 � �24 +p3�q1� �2 � :9806 < 1 :So, the distan
e between the two points is less than 1. Clearly, the distan
e between thefarthest point of the upper interior L-segment on the left side to m is greater than 1. So,by 
ontinuity, there must be some point on the L-segment exa
tly distan
e 1 from m. So, m
annot be red.Consider the left interior L-segment on the top side. Its leftmost point is the farthest pointfromm. Its (horizontal) distan
e to the top right 
orner is ��p1� �2. The (verti
al) distan
eof m to top right 
orner is �=2. So, in order for the distan
e from m to the left side of theL-segment to be at least 1, we need(� �p1� �2)2 + (�=2)2 � 1 ;whi
h is equivalent to � � p1� �2 + q1� �2=4 :This is satis�ed by the initial 
ondition on � (at the beginning of Case (2)). Clearly, thedistan
e between the 
losest point of the left interior L-segment on the top side to m is lessthan 1. So, by 
ontinuity, there must be some point on the L-segment exa
tly distan
e 1 fromm. Similarly, there must be some point on the left interior L-segment on the bottom sideexa
tly distan
e 1 from m. So, m 
annot be blue or green. Contradi
tion.Now assume that the four red L-segments are on a long side, say the bottom side (Figure33b). Consider the 
losest point to m of the left interior L-segment on the bottom side (whi
his the endpoint of the horizontal segment). The verti
al distan
e between the two points isV = �2 � (�2 � p32 q1� �2) = p32 q1� �2 ;and the horizontal distan
e is H = p32 � + p1� �22 :The square of the distan
e between the two points isV 2 +H2 = (p32 q1� �2)2 + (p32 � + p1� �22 )2 = 1 � �24 +p3�q1� �2� 1 � �24 +p3�q1� �2 � :9684 < 1 :33
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Figure 34: 3-
oloring of square-region for side length s = 8p65So, the distan
e between the two points is less than 1. Clearly, the distan
e between thefarthest point of the left interior L-segment on the bottom side to m is greater than 1. So,by 
ontinuity, there must be some point on the L-segment exa
tly distan
e 1 from m. So, m
annot be red.Consider the lower interior L-segment on the left side. Its lowest point is the farthest pointfrom m. Its (verti
al) distan
e to the top left 
orner is ��p1� �2. The (horizontal) distan
eof m to top left 
orner is �=2. So, in order for the distan
e from m to the left side of theL-segment to be at least 1, we need(��q1� �2)2 + (�=2)2 � 1 ;whi
h is equivalent to � � q1� �2 + q1� �2=4 :We show that this 
ondition is satis�ed for � � 8p65 . Let f(x) = p1� x2=4 + p1� x2.Then � = f(�) by the de�nition of � at the beginning of Case(2), and we want to show that� � f(�) = f(f(�)). In the range [f�1(1); 1℄, f(x) is monotoni
ally de
reasing with derivativef 0(x) < �1, and has �xed point x0 = 8p65 . By the 
hain rule f Æ f(x) has derivative > 1.Sin
e � � x0, this suÆ
es. Clearly, the distan
e between the 
losest point of the lower interiorL-segment on the left side to m is less than 1. So, by 
ontinuity, there must be some point onthe L-segment exa
tly distan
e 1 from m. Similarly, there must be some point on the lowerinterior L-segment on the right side exa
tly distan
e 1 from m. So, m 
annot be blue or green.Contradi
tion.This 
ompletes the proof.Corollary 4.11 A square-region is 3-
olorable if and only if the length of a side s � 8p65 �0:9923.Figure 34 shows the 
oloring of a square with side length s = 8p65 .
34
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Figure 35: 4-
oloring of 
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le-region for r = 1p2
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Figure 36: 4-
oloring of re
tangle-region for a2 + b2 = 45 4-COLORINGSWe 
an not know the true bounds for 4-
olorings without determining if the plane is 4-
olorable.Here are some obvious 4-
olorings; mu
h more 
lever 4-
olorings are 
ertainly plausible.The 
ir
le-region of radius � 1 and a � b re
tangle-region for a2 + b2 � 4, 
an both be 4-
olored by partitioning into four quadrants. The only diÆ
ulty is when the radius of a 
ir
le isexa
tly 1, or when the re
tangle has a2+ b2 = 4, where one must be 
areful about the \
orner"points (Figures 35, 36). A regular polygon-region where 4jn 
an be similarly 4-
olored. Anequilateral triangle-region with side � 2 
an be 4-
olored by partitioning into four smallerequilateral triangles; when the side = 2, one must again be 
areful about the \
orner" points(Figure 37). The in�nite strip of width � 2p2=3 
an be 4-
olored with blo
ks of width 1=3 byrotating 
olors red, blue, green, yellow, red, blue, green, yellow, et
.
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Figure 37: 4-
oloring of triangle-region for side = 26 OPEN PROBLEMS� Other than the few 
olorings with isolated points, all of the 
olorings are \ni
e": they
onsist of few mono
hromati
 regions that are easy to 
onstru
t. What is a natural,formal de�nition of a \ni
e" 
oloring? Can you prove that some 
olorings require isolatedpoints (in
luding the maximum sized squares for 2-
olorings and 3-
olorings); in otherwords prove that they do not have ni
e 
olorings.� How big a region 
an you 4-
olor, 5-
olor, or 6-
olor? Obviously non-
olorability resultswould imply (partial) solutions to the 
hromati
 number of the plane problem, so thiswould be unlikely. But, what if you restri
t the type of 
oloring? Can you �nd a size sothat a region of that size is 4-
olorable if and only if the plane is 4-
olorable?� Can you generalize the results to Rn (n � 3)? In parti
ular, do the rod 
ertainly has thesame properties in 3-spa
e as it has in 2-spa
e. What about the tri-rod? What about atetrahedron?� Can you generalize the results to regions that are not simply 
onne
ted, for example theannulus? The basi
 non-
olorability lemmas (Lemmas 3.3 and 4.4) used in this paperstill apply.� By a 
ompa
tness argument, if a region 
annot be k-
olored there must be a �nitesubgraph of the region (an obstru
tionist subgraph) that 
annot be k-
olored. Can you�nd (ni
e) �nite, obstru
tionist subgraphs for the regions dis
ussed in this paper? For2-
oloring regular n-gons for n odd, our non-
olorability arguments did produ
e �nite,obstru
tionist subgraphs, whi
h, in fa
t, had only n verti
es. For regions where the sizethat 
annot be k-
olored has a stri
t inequality (for example, a 
ir
le-region 
annot be2-
olored if it has radius stri
tly greater than 1=2), there will have to be a sequen
e ofsubgraphs, whi
h likely will be
ome more 
ompli
ated as the size of the region de
reases.Most of our results for 2 and 3 
olorings are like that (the only ex
eptions being 2-
oloringa regular n-gon for n odd, as just dis
ussed, and 2-
oloring a nonsquare re
tangle).Bohannon, et al. ([Boha℄ do 
reate �nite obstru
tionist subgraphs, and the bounds mat
hfor their 2-
olorings. Can you produ
e �nite obstru
tionist subgraphs with mat
hingbounds for our 3-
olorings? It is not 
lear how to use our te
hniques, be
ause the proofof the tri-rod lemma (Lemma 3.3) is non
onstru
tive.36



7 APPENDIXWe summarize the 
oloring results of Bohannon, et al. ([Boha℄). They only 
onsider 
ir
lesand re
tangles. For 2-
olorings, they obtain tight bounds.Their 3-
oloring of the 
ir
le-region is optimal. For re
tangles, they only use the verti
alstripes method, so their 3-
oloring is optimal only for a � 2p5 . Their non-
olorability resultsfor �nite regions are never tight. Here are their 3-
oloring results:Boundary of region 3-
olorable if not 3-
olorable if
ir
le radius � 1p3 radius > p32a� b re
tangle, a � ba � p32 alwaysa > p32 b � 3p1� a2 b � 52square side � 3p10 side � 52Their 4-
oloring of the re
tangle-region use four verti
al stripes for most of the range, anda di�erent method for the more squarish re
tangles. Neither method is as good as 
uttingregion into four quadrants. Here are their 4-
oloring results:Boundary of region 4-
olorable if
ir
le radius � 1p2a� b re
tangle, a � ba � 2p23 always2p23 < a � p154 b � 4p1� a2p154 � a � 1 b � 1square side � 18 ACKNOWLEDGEMENTSThe author thanks Ri
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