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Abstract

In this paper we give improved approximation algorithms for some network design problems.
In the Bounded-Diameter or Shallow-Light k-Steiner tree problem (SLkST), we are given an
undirected graph G = (V,E) with terminals T ⊆ V containing a root r ∈ T , a cost function
c : E → R+, a length function ` : E → R+, a bound L > 0 and an integer k ≥ 1. The goal is to
find a minimum c-cost r-rooted Steiner tree containing at least k terminals whose diameter under
` metric is at most L. The input to the Buy-at-Bulk k-Steiner tree problem (BBkST) is similar:
graph G = (V,E), terminals T ⊆ V , cost and length functions c, ` : E → R+, and an integer
k ≥ 1. The goal is to find a minimum total cost r-rooted Steiner tree H containing at least k
terminals, where the cost of each edge e is c(e) + `(e) · f(e) where f(e) denotes the number of
terminals whose path to root in H contains edge e. We present a bicriteria (O(log2 n), O(log n))-
approximation for SLkST: the algorithm finds a k-Steiner tree of diameter at most O(L · log n)
whose cost is at most O(log2 n · opt∗) where opt∗ is the cost of an LP relaxation of the
problem. This improves on the algorithm of [25] (APPROX’06/Algorithmica’09) which had
ratio (O(log4 n), O(log2 n)). Using this, we obtain an O(log3 n)-approximation for BBkST,
which improves upon the O(log4 n)-approximation of [25]. We also consider the problem of
finding a minimum cost 2-edge-connected subgraph with at least k vertices, which is introduced
as the (k, 2)-subgraph problem in [32] (STOC’07/SICOMP09). This generalizes some well-
studied classical problems such as the k-MST and the minimum cost 2-edge-connected subgraph
problems. We give an O(log n)-approximation algorithm for this problem which improves upon
the O(log2 n)-approximation algorithm of Lau et al. [32].

1 Introduction

We consider some network design problems where in each one we are given an undirected graph
G = (V,E) with a terminal set T ⊆ V (including a node r ∈ T called root) and some cost functions
defined on the edges, plus an integer k ≥ 1. The goal is to find a subgraph satisfying certain
properties with minimum cost which contains at least k terminals. Below, we describe each of
these problems in details.

Bounded Diameter or Shallow-Light Steiner Tree and k-Steiner Tree: Suppose we are
given an undirected graph G = (V,E), a cost function c : E → R+, a length function ` : E → R+, a
subset T ⊆ V called terminals which includes a root node r, and a positive bound L. The goal is to
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find a Steiner tree over terminals T and rooted at r such that the cost of the tree (under c metric)
is minimized while the diameter of the tree (under ` metric) is at most L. This problem is referred
to as Bounded Diameter (BDST) or Shallow-Light Steiner Tree (SLST). In a slightly more general
setting, in the input we also have an integer k ≥ 1 and a feasible solution is an r-rooted Steiner
tree containing at least k terminals. We refer to this as Shallow-Light k-Steiner Tree (SLkST).

Another closely related class of network design problems are buy-at-bulk network design prob-
lems defined below.

Buy-at-Bulk Steiner Tree (BBST) and k-Steiner Tree (BBkST): Suppose we are given
an undirected graph G = (V,E), a set of terminals T ⊆ V including root r, a sub-additive monotone
non-decreasing cost function fe : R+ → R+ for each edge e, and positive real demand values {δi}i,
one for each ti ∈ T . In the BBST problem the goal is to find an r-rooted Steiner tree to route
the demands from the terminals to the root which minimizes the sum of cost of the edges, where
the cost of each edge e is fe(δ(e)) where δ(e) is the total demand routed over edge e. This is also
refered to as single-sink buy-at-bulk problem. Similar to SLkST, one can generalize the BBST
problem by having an extra parameter k ≥ 1 in the input and a feasible solution is an r-rooted
Steiner tree which contains at least k terminals (instead of all of the terminals). This way, we
obtain the Buy-at-Bulk k-Steiner Tree (BBkST) problem. It can be shown that the definition of
buy-at-bulk problems given above is equivalent (with a small constant factor loss in approximation
factor) to the following variation which is also called cost-distance. The input is the same except
that instead of function fe for every edge e, we have two metric functions on the edges: c : E → R+

is called cost and ` : E → R+ is called length. The cost of a feasible solution H is defined as:∑
e∈H c(e) +

∑
i δi ·L(ti), where L(ti) is the length (w.r.t `) of the r, ti-path in H. It is easy to see

that this formulation is a special case of buy-at-bulk since a linear function (defined based on c and
`) is also sub-additive. It turns out that an α-approximation for the cost-distance version implies
a (2α+ ε)-approximation algorithm for the buy-at-bulk version too (see [2, 14, 34]). For simplicity,
we focus on the two cost function (cost+distance) formulation of buy-at-bulk from now on.

Network optimization problems with multiple cost functions, such as buy-at-bulk network design
problems, have been studied extensively because of their applications. These problems can model,
among others, situations where every edge e (link) can be either purchased at a fixed price c(e)
or rented at a price r(e) per amount of flow (or load). The selected edges are required to provide
certain bandwidth to satisfy certain demands between nodes of the graph. So if an edge is rented
and there is a flow of f(e) on that edge the cost for that edge will be r(e) · f(e) whereas if the edge
is purchased, the cost will be c(e) regardless of the flow. It can be shown that this problem and
some other variations can be modeled using buy-at-bulk network design defined above (see [25]).
Buy-at-bulk problems and their special cases have been studied through a long line of papers in the
operation research and computer science communities after the problem was introduced by Salman
et al. [37] (see e.g. [2, 3, 4, 11, 14, 21, 23, 24, 25, 30, 31, 34]).

Another major line of research in network design problems has focused on problems with con-
nectivity requirements where one has another parameter k, and the goal is to find a subgraph
satisfying the connectivity requirements with a lower bound k on the total number of vertices. The
most well-studied problem in this class is the minimum k-spanning tree problem, a.k.a. k-MST.
The approximation factor for this problem was improved from

√
k [35] to 2 [20] in a series of pa-

pers. A very natural common generalization of both the k-MST problem and the minimum cost
λ-edge-connected spanning subgraph problem is the (k, λ)-subgraph problem inroduced in [32]. In
this paper we focus on the case of λ = 2:

(k, 2)-Subgraph Problem: In the (k, λ)-subgraph problem, we are given a (multi)graph G =
(V,E) with a cost function c : E → R+, and a positive integer k. The goal is to find a minimum
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cost λ-edge-connected subgraph containing at least k vertices.
We should point out that the cost function c is arbitrary (i.e. does not necessarily satisfy the

triangle inequality). Furthermore, we are not allowed to take more copies of an edge than present
in the graph. In particular, if G is a simple graph the solution must be simple too. The (k, λ)-
subgraph problem contains some classical problems as special cases. For example, (k, 1)-subgraph
problem is the k-Minimum Spanning Tree problem (k-MST) and (|V |, λ)-subgraph is simply asking
for a minimum cost λ-edge-connected spanning subgraph. It was proved in [32] that the minimum
densest k-subgraph problem has a poly-logarithmic reduction to the (k, λ)-subgraph problem. Since
the densest k-subgraph has proved to be an extremely difficult problem (the best approximation

algorithm for it has ratio O(n
1
4 ) [9]), this shows that for general λ, the (k, λ)-subgraph problem is

a very hard problem too.
Related Work: In the multi-commodity buy-at-bulk problem (which is a generalization of

BBST) we are given p source-sink pairs of terminals {si, ti}pi=1 each with a demand δi. A subset
of edges E′ is feasible if for every 1 ≤ i ≤ p there is a (si, ti)-path in G′ = (V,E′). The goal is to
minimize

∑
e∈E′ c(e) +

∑
i δi · distG′(si, ti) where the distance is with respect to length function `.

In the uniform version of buy-at-bulk all the values along the edges are the same, i.e. c(e) = c(e′)
and `(e) = `(e′), for all e, e′ ∈ E (we refer to the version we defined as non-uniform). The uniform
multi-commodity buy-at-bulk has an O(log n)-approximation [4, 6, 19]. There are constant factor
approximations for the single-sink uniform case and some other special cases [21, 23, 24, 31]. Mey-
erson et al. [34] gave a randomized O(log n)-approximation for the (non-uniform) BBST and this
was derandomized in [15] using an LP formulation. For the (non-uniform) multi-commodity version
[12] gave the first polylogarithmic approximation with ratio O(log4 n). In [30] this was improved to
O(log3 n) if all the demands are polynomial in n. Some generalizations of these problems to higher
connectivity are considered in [3, 22]. For hardness of approximation, Andrews [1] showed that
unless NP ⊆ ZPTIME (npolylogn) the buy-at-bulk multicommodity problem has no O(log1/2−ε n)-
approximation algorithm for any ε > 0. For the BBST [17] showed that the problem cannot be
approximated better than Ω(log log n) unless NP ⊆ DTIME(nlog log logn).

The BBkST and SLkST problems generalize some classic problems such as Steiner tree and
k-MST. The k-MST problem [5, 10, 20] is the special case of SLkST when L = ∞ and also the
bounded diameter spanning tree problem [27] is the special case when costs are zero. Also, the
SLST problem studied in [33] is a special case of SLkST with k = |T |. Even the k = |T | special case
is NP-hard and also NP-hard to approximate within a factor better than c log n for some universal
constant c [7]. An (α, β)-bicriteria approximation algorithm for SLST or SLkST is an algorithm
which finds a Steiner tree H (which has all the terminals in SLST or at least k terminals in SLkST)
whose diameter (under ` metric) is at most βL and whose cost is at most α times an optimum
solution with diameter bound L. For k = |T | an (O(log n), O(log n))-approximation algorithm is
given in [33] for SLST.

For the (k, 2)-subgraph problem, an O(log n · log k)-approximation was presented in [32]. For
the more general problem of requiring the k-subgraph to be 2-node-connected an O(log n · log k)-
approximation was presented in [16]. These are the best known approximation algorithms for the
(k, 2)-subgraph problem. In [22] using a different approach an O(log3 n)-approximation was given.
For metric cost functions, [36] presented an O(1)-approximation for (k, λ)-subgraph (the constant
is very large though).

Our results: Our first result is an improved bicriteria approximation for SLkST.

Theorem 1 There is a polynomial time (O(log2 n), O(log n))-approximation for SLkST. More
specifically, the algorithm finds a k-Steiner tree of diameter at most O(L · log n) whose cost is
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at most O(opt∗ · log2 n) where opt∗ is the cost of an LP relaxation of the problem.

To prove this theorem we use ideas from all of [8, 14, 15, 30]. We first prove that the algorithm
of Marathe et al. [33] for SLST actually finds a solution with diameter at most O(L · log |T |) whose
cost is at most O(opt∗ · log |T |), where opt∗ is the cost of a natural LP-relaxation, so we give a
stronger bound (based on an LP relaxation) for the cost of their algorithm. This uses some ideas of
[15] which gives a deterministic version of the algorithm of [34] for BBST. Then we use an idea in
[30] to write an LP for SLkST and use a trick in [8] for rounding this LP (the problem considered
in [8] is completely unrelated to SLkST, namely k-ATSP tour problem). The only previous result
for SLkST was [25] which had ratio (O(log4 n), O(log2 n)). This was obtained by applying the
following theorem iteratively:

Theorem 2 [25] There is a polynomial time algorithm that given an instance of the SLkST problem
with diameter bound L returns a k

8 -Steiner tree with diameter at most O(log n ·L) and cost at most
O(log3 n · opt), where opt is the cost of an optimum shallow-light k-Steiner tree with diameter
bound L.

Then a set-cover type analysis yields an (O(log4 n), O(log2 n))-approximation for SLkST. We
should point out that this theorem was the main ingredient in a greedy typeO(log4 n)-approximation
for multi-commodity buy-at-bulk in [12, 14] as well. In [25], the following lemma was also proved:

Lemma 1 [25] Suppose we are given an approximation algorithm for the SLkST problem which
returns a solution with at least k

8 terminals and has diameter at most α ·L and cost at most β ·opt.
Then we can obtain an approximation algorithm for the BBkST problem such that given an instance
of BBkST in which all demands are one (δi = 1) and a given parameter M ≥ opt (where opt is
the optimum cost of the BBkST instance) returns a solution of cost at most O((α+ β) log k ·M).

The corollary of this lemma and Theorem 2 is an O(log4 n)-approximation for the BBkST for
unit demand instances; this can also be extended to an O(log3 n · logD)-approximation for general
demands where D =

∑
t δt. Using Theorem 1 and Lemma 1 we obtain:

Corollary 1 There is an O(log2 n · logD)-approximation for BBkST, where D is the sum of de-
mands.

This improves the result of [25] for BBkST by a log n factor. Finally, we improve the result of
[32] for the (k, 2)-subgraph problem:

Theorem 3 There is an O(log n)-approximation for the (k, 2)-subgraph problem.

This is based on rounding an LP relxation of the problem similar to the one presented in [32].
Our LP rounding algorithm has similarities to the we present for BBkST.

2 Shallow-Light Steiner Trees

In this section we prove Theorem 1. In order to prove this we first show that the algorithm of [33] in
fact bounds the integrality gap of the SLST problem too. Recall that the instance of SLST consists
of a graph G = (V,E) with costs c(e), lengths `(e), terminal set T ⊆ V including a node r. The
goal is to find a Steiner tree H over T with minimum

∑
e∈H c(e) such that the diameter w.r.t. `
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function is at most L. First, let us briefly explain the algorithm of [33] for SLST. Denote the given
instance of SLST by I and define graph F over terminals as below. For every pair of terminals
u, v ∈ T , let b(u, v) be the (approximate) lowest c-cost path between them whose length (under `)
is no more than L (there is an FPTAS for computing the value of b(u, v) [26]); let the weight of
edge between (u, v) in F be cost of b(u, v). It is a simple exercise to show that in the optimum
solution of I, we can pair the terminals (except possibly one if the number of them is odd) in such
a way that the unique paths connecting the pairs in the optimum are all edge-disjoint. Therefore,
the total cost of these paths is at most the value of optimum solution, denoted by opt, and the
length of each of them is at most L. So, if we consider a minimum cost maximum matching in F ,
the cost of this matching is at most (1 + ε)opt. We find a minimum cost maximum matching in F
and let say terminals {ui, vi}i are paired. We pick one of the two (arbitrarily), say ui and remove
vi from the terminal set; let this new instance be I ′. Clearly the cost of optimum solution on I ′,
denoted by opt′, is at most opt (as the original solution is still feasible). Also, for any solution of
I ′, we can add the paths defined by b(ui, vi) to connect vi to ui. This gives a solution to instance
I of cost at most opt′ + (1 + ε)opt and the diameter increases by at most L. We can do this
repeatedly for O(log |T |) iterations until |T | = 1, since each time the number of terminals drops by
a constant factor.

Remark: A similar algorithm was desgined in [34] to obtain an O(log n)-approximation for
BBST problem. Then an LP-based algorithm was presented by Chekuri et al. [15] to derandomize
the algorithm of [34] for BBST.

We use the same approach as in [15] to bound the integrality gap of SLST. This LP is a flow-
based LP (like those used in [14, 15]). We use the idea of [30] which only considers bounded lengths
flow paths. For each terminal t ∈ T let Pt be the set of all paths of length at most L from t to r
in G. We assume that the terminals are at distinct nodes (we can enforce this by attaching some
dummy nodes with edge cost and length equal to zero to the original nodes). Therefore, Pt and
Pt′ are disjoint. For every edge e we have an indicator variable xe which indicates whether edge e
belongs to the tree H or not. For each path p ∈

⋃
t Pt, f(p) indicates whether path p is used to

connect a terminal to the root.

LP-SLST min
∑

e c(e) · xe
s.t.

∑
p∈Pt|e∈p f(p) ≤ xe ∀e ∈ E, t ∈ T (1)∑

p∈Pt
f(p) ≥ 1 t ∈ T (2)

xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt (3)

Define graph F over terminals T as above, i.e. the weight of edge e = (u, v) ∈ F for two
terminals u, v ∈ T will be the cost of (1 + ε)-approximate minimum c-cost u, v-path of length at
most L computed using algorithm of [26]. Let (x∗, f∗) be an optimal solution to LP-SLST with cost
opt∗. We show that the cost of algorithm of [33] is at most O(opt∗ · log |T |) while the diameter is
at most O(L · log |T |). The proof of the following lemma is similar to that of Lemma 2.1 in [15].
We present a proof for it in Appendix A for completeness.

Lemma 2 The graph F contains a matching M of size at least |T |/3 whose cost is at most (1 +
ε)opt∗.

Suppose we have a matching M as above with cost CM . For every pair of terminals ui, vi
matched by M pick one of the two as the hub for connecting both of them to r and remove the
other one from T . Let opt′ be the LP cost of the new instance. The current solution (x∗, f∗) is still
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feasible for the new instance; therefore opt′ ≤ opt∗. Also, the cost of routing all terminals that
were deleted to their hubs is at most CM ≤ (1 + ε)opt∗. Doing this iteratively, an easy inductive
argument (using the fact that the number of terminals drops by a constant factor at each iteration).
shows that we obtain a solution whose cost is at most O(log |T | · opt∗) and the diameter of the
solution is at most O(L · log |T |).

Now we prove Theorem 1. Our algorithm is based on rounding a natural LP relaxation of the
problem. Before presenting the LP we explain how we preprocess the input. We first guess a value
opt′ such that opt ≤ opt′ ≤ 2opt. We do a binary search between zero and the largest possible
value of opt (e.g.

∑
e∈E c(e)). The solution returned by the algorithm satisfies the bounds if

opt′ ≥ opt. If the algorithm fails we adjust our guess. We define V ′ ⊆ V to be the set of vertices
v such that v has a path p to r with c(p) ≤ opt′ and length at most L. Clearly, every vertex of
any optimum solution must belong to V ′. We can safely delete all the vertices of V \ V ′; so let G
be the new graph after pre-processing. The following LP is similar to LP-SLST, except that we
have an indicator variable yt for every terminal.

LP-SLkST min
∑

e c(e) · xe
s.t.

∑
p∈Pt|e∈p f(p) ≤ xe ∀e ∈ E, t ∈ T (4)∑

p∈Pt
f(p) ≥ yt t ∈ T (5)∑

t∈T yt ≥ k (6)
yt ≤ 1 t ∈ T (7)

xe, f(p) ≥ 0 ∀e ∈ E, p ∈ ∪tPt

If we replace yt in the 2nd constraint with 1 and drop Constraints (6) and (7) (and remove yt
variables) then we obtain the LP-SLST. Our rounding algorithm is similar to those in [14, 8] for two
completely different problems (density version of Buy-at-Bulk Steiner tree in [14] and k-ATSP tour
in [8]). Since we need to solve this LP let’s briefly say that although LP-SLkST has an exponential
number of variables, one can obtain an optimum feasible solution if one can give a separation oracle
for the dual. It is easy to verify that a shortest-path algorithm gives a separation oracle for the
dual LP. Suppose that (x∗, y∗, f∗) is an optimum feasible solution to LP-SLkST with value opt∗.
Our first step is to convert (x∗, y∗, f∗) to an approximate solution in which yt values are of the
form 2−i, 0 ≤ i ≤ d3 log ne. Lemmas 3 and 5 are analogous of Lemma 9 and Theorem 10 in [8].

Lemma 3 There is a feasible solution (x′, y′, f ′) to LP-SLkST of cost at most 4opt∗ such that
each y′t is equal to 2−i for some 0 ≤ i ≤ d3 log ne.

Proof. Let (x∗, y∗, f∗) be an optimal feasible solution to LP-SLkST. We set x′e = 4x∗e for all
e ∈ E and f ′(p) = min(4f∗(p), 1) for all t ∈ T and p ∈ Pt. For each t ∈ T and i such that
1/2i ≤ y∗t < 1/2i−1, if i > d3 log(n)e set y′t = 0; otherwise, y′t = min(1, 1/2i−2). It is easy to see
that cost of (x′, y′, f ′) is at most 4opt∗. Also, the first constraint is satisfied. The second constraint
is also satisfied since it is clearly satisfied if f ′(p) = 4f∗(p) for all p ∈ Pt, and if this is not the case
then at least one f ′(p) = 1 which at least as big as y′t since y′t ≤ 1. So it only remains is to show
that the last constraint is satisfied.

Let Y0 be the set of terminals t for which y∗t > 0 but y′t = 0. These are the only terminals whose
y value has decreased. Note that for each t ∈ Y0: y∗t ≤ 1/n3; so

∑
t∈Y0 y

∗
t ≤ 1/n2. Let Y1 be the set

of terminals t with y′t = 1. If |Y1| ≥ k, then the last constraint clearly holds. Otherwise, |Y1| ≤ k−1
which implies that

∑
t6∈Y1 y

∗
t ≥ 1 must be true; therefore

∑
t6∈Y1∪Y0 y

∗
t ≥ 1−1/n2 ≥ 1/n2 ≥

∑
t∈Y0 y

∗
t .

Also, note that for each vertex t 6∈ Y0 ∪ Y1: y′t ≥ 2y∗t . Thus, the amount
∑

t∈Y0 y
∗
t that is decreased

in y′ is compensated for by
∑

t6∈Y0∪Y1 y
′
t therefore the last constraint holds too.
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Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ d3 log ne. Note that∑d3 logne
i=0 2−i · ki ≥ k. Consider the instance of SLST defined over Ti ∪ {r}. First observe that

we can obtain a feasible solution (x′′, f ′′) to LP-SLST over this instance of SLST of cost at most
2i+2 · opt∗ in the following way: define x′′e = 2i · x′e for each edge e ∈ E and f ′′(p) = 2i · f ′(p) for
each t ∈ Ti and path p ∈ Pt. The cost of this solution is O(2i+2 · opt∗) since x′′e = 2i+2 · x∗e. Now
since we proved the integrality gap of LP-SLST is O(log n), we obtain the following.

Lemma 4 For each Ti, we can find a Steiner tree over Ti ∪ {r}, rooted at r of total cost O(2i+2 ·
opt∗ · log n) and diameter O(L · log n).

Next we prove the following lemma.

Lemma 5 Given a Steiner tree Hi over Ti (0 ≤ i ≤ d3 log ne) with total cost O(2i+2 · opt∗ log n)
and diameter O(L · log n), for every 0 ≤ i ≤ d3 log ne we can find a Steiner tree H ′i rooted at some
ri ∈ Ti containing at least dki/2ie terminals of Ti of cost at most O(opt∗ · log n) and diameter at
most O(L · log n).

For now, let us assume this lemma and see how to complete the proof. Suppose that H ′i is the
Steiner tree promised by Lemma 5 which contains dki/2ie terminals of Ti and is rooted at at a
node r′i. Let pi be the minimum cost path from r′i to r with length at most L (note that because
of the pre-processing we did, such path pi exists). Let H ′′i = H ′i ∪ pi and let H =

⋃
iH
′′
i . Observe

that H contains at least
∑d3 logne

i=0 2−i · ki ≥ k terminals. Also, the total cost of H is at most∑d3 logne
i=0 c(H ′′i ) ≤ O(opt∗ · log2 n). Since the diameter of each H ′′i is at most O(L · log n) (because

diameter of H ′i is at most O(L · log n) and we added a path pi of length at most L to H ′i) and since
all of H ′′i ’s share the root r, the diameter of H is at most O(L · log n) as well. This completes the
proof of Theorem 1.

So it only remains to prove Lemma 5. If we are given the Steiner tree Hi over Ti we use the
following lemma with β = dki/2ie to edge-decompose Hi into F1, . . . , Fd such that the number of
terminals of each Fi is in [β, 3β). It follows that d = Θ(2i) and so by an averaging argument, at
least one of Fi’s has cost O(opt∗ · log n). The proof of the following lemma is implicit in [18] and
is explicitly proved in [29].

Lemma 6 Given a rooted tree F containing a set of k terminals and given an integer 1 ≤ β ≤ k
we can edge-decompose F into trees F1, . . . , Fd with the number of terminals of each Fi in [β, 3β),
1 ≤ i ≤ d.

3 O(log n)-approximation (k, 2)-subgraph problem

In this section we prove Theorem 3. In fact (similar to the algorithm in [32]) our algorithm works
for a slightly more general case in which along with the weighted graph G = (V,E) and integer k
we are also given a set of terminals T ⊆ V and the goal is to find a minimum cost 2-edge-connected
subgraph that contains at least k terminals. Since our algorithm is based on that of [32], let us
briefly explain how their algorithm works. The algorithm of [32] is for the rooted version of the
problem, in which we are given an extra parameter r ∈ V in the input and the solution must
contain root r. Since one can try every possible vertex as the root, we can reduce the un-rooted
version to the rooted version as well. A partial solution is a 2-edge-connected subgraph containing
the root and the density of a partial solution is the ratio of the cost of the edges over the number
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of terminals it contains. The algorithm of [32] was based on finding a good density partial solution
iteratively until the number of terminals is at least k. They presented an O(log n)-approximation
algorithm for finding good density partial solutions using an LP rounding procedure and since one
has to repeat the procedure until the number of terminals covered is at least k, a simple set-cover
type analysis shows the final approximation ratio would be O(log n · log k). One has to be careful
as in an iteration where we are looking to cover k′ terminals (for some k′ ≤ k) it is possible to
find a partial solution with much larger than k′ terminals (and so the combined solution has much
larger than k terminals). In that case the algorithm has to be able to prune the partial solution
to obtain a good density solution with about k′ terminals. Lau et al. [32] present an algorithm for
this pruning step which we will use too.

Our algorithm will round a LP relaxation directly instead of iteratively finding good density
partial solutions. This is similar to the overall structure of the algorithm we presented for the
SLkST. Note that, it is sufficient to find a solution in which every terminal has two edge-disjoint
paths to r. Similar to [32] first we preprocess the graph by deleting the vertices that cannot be
part of any optimum solution. For that for every vertex v we find two edge-disjoint paths between
v and r of minimum total cost, let us denote it by d2(v, r). For this we can use a minimum
cost flow algorithm between v and r [38]. Suppose we know have guessed a value opt′ such that
opt ≤ opt′ ≤ 2opt, where opt is the value of optimum solution. Clearly every vertex v with
d2(v, r) > opt′ cannot be part of any optimum solution and can be safely deleted. We work with
this pruned version of graph G. Our algorithm is guided by the solution of an LP relaxation of the
problem. Consider the following LP relaxation which is similar to what proposed by Lau et al.[32].

LP-k2EC min
∑

e c(e) · xe
s.t. x(δ(U)) ≥ 2yv U ⊆ V − {r}, v ∈ U (8)

x(δ(U))− xe′ ≥ yv U ⊆ V − {r}, v ∈ U, e′ ∈ δ(U) (9)∑
v∈T yv ≥ k (10)

yr = 1 (11)
yt ≤ 1 t ∈ T (12)

xe, yv ≥ 0 ∀e ∈ E, v ∈ T

There are two types of indicator variables, xe for each e ∈ E and yv for each v ∈ T ; for every
subset U ⊆ V , δ(U) is the set of edges across the cut (U, V −U). Constraints (8) and (9) guarantee
2-edge-connectivity to the root. Our algorithm solves this LP and then uses the solution to find
an integral solution of cost at most O(log(n)) apart from the optimal value, in order to do that
we merge ideas from [8] and [32]. As argued in [32] this LP is a relaxation of the (k, 2)-subgraph
problem and we can find an optimum solution of this LP. We run the following algorithm whose
detailed steps are explained below.

In the rest of this section we show that Algorithm K2EC finds a 2-edge-connected subgraph of
value O(log(n) · opt) for the (k, 2)-subgraph problem. First we provide the details of the steps of
the algorithm. Assume we sort all the vertices v according to their d2(v, r) value and let L be the
kth smallest value. It is easy to see that L ≤ opt ≤ k.L. So we can start with L as our guess
for opt′; if the algorithm fails to return a feasible solution of cost at most O(opt′ · log n) then we
double our guess opt′ and run the algorithm again. Note that in O(log k) many steps will have a
guessed value opt′ with opt ≤ opt′ ≤ 2opt and therefore all the vertices that are deleted surely
cannot be part of an optimum solution. Let (x∗, y∗) be an optimum feasible solution to LP-k2EC
with value opt∗. For Step 5 of K2EC we round y values of the LP following the schema in [8]. The
proof of following lemma is very similar to Lemma 3 and appears in Appendix A
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(k, 2)-Subgraph Algorithm (k2EC)

Input: Graph G = (V,E), terminal set T ⊆ V with root r, and integer k ≥ 1
Output: a 2-edge-connected subgraph containing at least k terminals including r
1. Guess a value of opt′ for optimum solution and run the following algorithm.
2. U ← r
3. Start from original graph G and remove all the vertices with d2(v, r) > opt′

4. Solve LP-K2EC and let its solution be (x∗, y∗)
5. Obtain (x′, y′) from (x∗, y∗) according to Lemma 7
6. Let Ti be the set of terminals v with y′v = 2−i plus the root, for 0 ≤ i ≤ d3 log(n)e
7. Find a 2-edge-connected subgraph Hi over Ti ∪ {r} with cost O(2i · opt∗)
8. From Hi, find a 2-edge-connected subgraph H ′i containing r and at least d|Ti|/2ie and

at most 2d|Ti|/2ie vertices of Ti of cost at most O(opt∗) and add it to U ;
if failed for any i then double the guess for opt′ and start from Step 2.

9. Return U .

Figure 1: Algorithm K2EC

Lemma 7 There is a feasible solution (x′, y′) to LP-K2EC of cost at most 4opt∗ such that all
nonzero entries of y′ belong to {2−i|0 ≤ i ≤ d3 log(n)e}.

Let Ti be the set of terminals with y′t = 2−i and ki = |Ti|, for 0 ≤ i ≤ d3 log ne. Note

that
∑d3 logne

i=0 2−i · ki ≥ k. Consider an instance of classical survivable network design problem
over terminals in Ti ∪ {r} with connectivity requirement 2 from every node in Ti to root. In the
following lemma we show that we can compute a 2-edge-connected subgraph Hi over Ti ∪ {r} of
cost at most O(2i ·opt∗). This describes how to perform Step 7. The proof of this lemma is similar
to Lemma 5.2 in [32].

Lemma 8 In Step 7, For each 0 ≤ i ≤ d3 log ne, we can find a 2-edge-connected subgraph Hi of
cost at most 2i+3 · opt∗ containing terminals Ti ∪ {r}.

Proof. In order to bound the cost of 2-edge-connected subgraph over Ti∪{r} we use the following
natural LP for the special case of survivable network design problem in which all connectivity
requirements are 2:

LP-2EC min
∑

e c(e) · xe
s.t. x(δ(U)) ≥ 2 U ⊆ V − {r}, U ∩ Ti 6= ∅ (13)

1 ≥ xe ≥ 0 ∀e ∈ E

Jain [28] proved that the integrality gap of this LP is at most 2. Here, we show that after
scaling (x′, y′), we can find a feasible solution of LP-2EC over terminals Ti ∪ {r} of value at most
2i+2 ·opt∗. Using Jain’s algorithm, we can then obtain an integer solution, i.e. a 2-edge-connected
subgraph over Ti ∪ {r} of cost at most 2i+3 · opt∗, which completes the proof of lemma.

Consider (x′, y′) obtained by Lemma 7 and define x̂e = min(1, 2i · x′e). We will show that x̂ is a
feasible solution for LP-2EC, which clearly has cost at most 2i+2 · opt∗ since 2i · x′e = 2i+2 · x∗e.

To verify that x̂ is feasible for LP-2EC, take any set U ⊆ V − r with U ∩ Ti 6= ∅ and the
corresponding Constraint (13) in LP-2EC: x(δ(U)) ≥ 2. This has the corresponding Constraints
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(8) in LP-k2EC x(δ(U)) ≥ 2yv for each v ∈ U − {r}. Suppose we define x̂e = min{1, 2i · x′e} and
ŷv = min{1, 2i ·y′v}. Note that for each v ∈ Ti: ŷv = 1. If all the edges e ∈ δ(U) have values x′e ≤ y′v
then after scaling we will have x̂(δ(U)) ≥ 2 because the left hand side of x(δ(U)) ≥ 2yv is grown at
least as much as the RHS is scaled. If there is at least one edge e′ ∈ δ(U) with x′e′ > y′v then because
of Constraints (9) in LP-k2EC and since (x′, y′) is feasible, we have x′(δ(U))−x′e′ ≥ y′v. Thus after
the scaling we still have x̂(δ(U))− x̂e′ ≥ 1 because again the LHS is grown at least as much as the
RHS. Also x̂e′ = 1 because ŷv = 1 and x′e′ > y′v; so x̂(δ(U)) ≥ 2. This shows Constraints (13) in
LP-2EC are satisfied, therefore there is a feasible solution to LP-2EC with terminal set Ti ∪ {r}
with cost at most 2iopt∗.

In the following we show how to find subgraph H ′i in Step 8, which is 2-edge-connected, has
root r, and has cost O(opt′), assuming that opt′ ≥ opt. Note that union of all Hi’s (0 ≤ i ≤
d3 log ne) will be 2-edge-connected (since r is common in H ′i’s), has at least k terminals, and has
cost O(opt′ · log n). This will complete the proof of approximation ratio of the algorithm.

To show how to find a subgraph H ′i we use the same trick as in Section 5.1 of [32] for pruning a
large good density solution to a smaller one. A nowhere-zero 6-flow in a directed graph D = (V,A),
is a function f : A → Z6 such that we have flow conservation at every node (i.e. f(δin(v)) =
f(δout(v))) and no edge gets f value of zero. If there is an orientation of an undirected graph H
in which a nowhere-zero 6-flow can be defined we say H has a nowhere-zero 6-flow. Seymour [39]
proved that every 2-edge-connected graph has a nowhere-zero 6-flow which can also be found in
polynomial time. We obtain a multigraph D = (Hi, A) from Hi by placing f(e) copies of e with
the direction defined by the flow. From Lemma 8 and the fact that we have at most 6 copies of
each edge, the cost of D can be at most 6× 2i+3 · opt∗.

Note that D does not have directed cycle of length 2, therefore has an Eulerian Walk. Start
from r and build an Eulerian walk and partition the walk into the segments P1, P2, . . . , P` each of
which includes d|Ti|/2ie terminals of Hi excepts possibly P` which can have between d|Ti|/2ie and
2d|Ti|/2ie terminals. Thus, ` ≥ max(1, 2i−1) and so there is an index 1 ≤ q ≤ ` such that the cost
of path Pq is at most 6×2i+2 ·opt∗/2i−1 = 48opt∗. Let u,w be the endpoints of Pq and let Q1

u and
Q2
u be the two edge-disjoint paths of d2(u, r) (in G) and Q1

w and Q2
w be the two edge-disjoint paths

of d2(w, r) (again in G) of minimum total cost. Because of the preprocess step, the sum of costs of
Q1
u, Q2

u, Q1
w, and Q2

w is at most 2opt′. Let Fq be the simple graph in G defined by the edges of Pq
and let H ′i = Fq∪Q1

u∪Q2
u∪Q1

w∪Q2
w. It follows that H ′i has cost at most 48opt∗+2opt′ ≤ 50opt′.

It only remains to show that H ′i is 2-edge-connected. By way of contradiction, suppose there is an
edge e′ such that H ′i − e′ has two components C1 and C2. Because of Q1

u, Q2
u, Q1

w, and Q2
w the two

endpoints u and w are in the same component let say C1. Since Pq is a directed walk from u to w
and there is no cycle of size 2, there must be another edge e′′ 6= e′ between C1 and C2 which goes
in opposite direction of e′, thus e′ is not a cut edge.
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A Missing Proofs

Proof of Lemma 2. The structure of the proof is as follow. We show that the optimal value
of the dual of LP-SLST in G is not less than the optimal value of a dual LP for min-cost perfect
matching defined in graph F . Therefore, by LP duality, the value of LP-SLST (opt∗) is equal to
the value of its dual and is greater than the value of min-cost perfect matching LP. Then we argue
that from a basic feasible solution of the matching LP we can build an integral matching whose
cost is not greater than the value of min-cost perfect matching LP and has at least |T |/3 edges.
Taking into consideration the fact that graph F is built with edges that are (1 + ε) approximation
of the actual values, we conclude that M costs at most (1 + ε)opt∗.

Consider the following LP for the min-cost perfect matching problem (MMP) in graph F , along
with its dual (MMD) in which b∗(u, v) represents the optimal minimum c-cost (u, v)-path of length
at most L:

MMP MMD
min

∑
(u,v)∈E(F ) b

∗(u, v)x(u, v) max
∑

u∈V (F ) y(u)∑
v∈V (F ) x(u, v) = 1 ∀u ∈ V (F ) y(u) + y(v) ≤ b∗(u, v) ∀u, v ∈ E(F )

x(u, v) ≥ 0 ∀(u, v) ∈ E(F ) y(u) ≥ 0 ∀u ∈ V (F )

We show that the optimal solution of dual LP for SLST (D-SLST) has value at least as big as
the optimal value of MMD which implies the optimal value of MMP is not greater than opt∗ using
LP duality. The LP D-SLST is the following:

D-SLST:
max

∑
t∈T αt∑

t∈T β
t
e ≤ c(e) e ∈ E (14)

αt −
∑

e∈p β
t
e ≤ 0 t ∈ T, p ∈ Pt (15)

αt, β
t
e ≥ 0 e ∈ E, t ∈ T (16)

Let y∗t be an optimal solution for MMD and d(u, v) be the shortest path between u and v with
regard to cost function c in G. We make a ball Bt of radius y∗t around each t ∈ T in G. More
formally, let Bt be a set containing all the nodes v with d(v, t) ≤ y∗t and the edges e = (u, v) which
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at least one of d(u, t) < y∗t or d(v, t) < y∗t is true. Let gt(e) be the fraction of edge e = (u, v)

contained in ball Bt, in other words gt(e) = min{y
∗
t−min{d(u,t),d(v,t)}

c(e) , 1} .

Define β̂te = gt(e) · c(e) and α̂t = y∗t . In the following we prove that β̂ and α̂ form a feasible
solution to D-SLST. It is clear that β̂ and α̂ do not violate constraints (16). The main observation
here is that balls {Bt}t∈T are disjoint as we have y(u) + y(v) ≤ b∗(u, v), ∀(u, v) ∈ E(F ) in MMD.
This observation directly shows that constraints (14) are not violated. Note that r is also in V (F ) so
the ball Br is also disjoint from the other balls. As a result, each path p ∈ Pt consists of at least one
part in Bt and one part in Br, therefore p is longer than the radius of Bt which makes constraints
(15) be tight. Thus, α̂ and β̂ are feasible solution to D-SLST with value at least

∑
u∈V (F ) y

∗
u and

hence D-SLST has value at least as big as that of MMD.
Now we show how to find an integral matching containing at least |T |/3 nodes. Notice that

there is no odd-set constraints in MMP which makes it integral (the integral LP with odd set
constraints is known as Edmond’s matching polytope). It is well known that in a basic feasible
solution to MMP all x(u, v) are in the set {0, 12 , 1} and the edges with value 1

2 make odd cycles
[38]. This can be proved from the fact that any basic feasible solution cannot be written as convex
combination of two other feasible solutions.

Let x∗ be a basic feasible solution to MMP. We add all the edges e with x∗(e) = 1 to M .

Moreover, from each odd cycle O, it is easy to see that we can add at least |O|3 of its edges to
M such that the total cost of added edges is less than

∑
e∈O x

∗(e) · c(e) taking into account that

x∗(e) = 1
2 for all e ∈ O. Therefore, M has at least V (F )

3 edges whose cost is not more than the
MMP’s value. As we showed that the value of MMP is not greater than opt∗ and as we are able
to find a (1 + epsilon)-approximation to b∗(u, v) for each edge of F , the proof of lemma follows.
Proof of Lemma 7. We set x′e = min(4x∗e, 1) for all e ∈ E and for all v ∈ T , select i such that
2−i ≤ yv < 2−i+1, then if i > d3 log(n)e set y′v = 0; otherwise, y′v = min(1, 2−i+2). It is easy to see
that cost of (x′, y′) is at most 4opt∗; what remains is to show that (x′, y′) is a feasible solution to
LP-K2EC. It is easy to see that Equations (8),(9),(11), and (12) are true for (x′, y′) as LHS is scaled
at least as much as the RHS. Equation (10) is the only one to verify. As in the proof of Lemma
3, let Y0 be the set of vertices v such that y∗v > 0 but y′v = 0. Note that

∑
v∈Y0 y

∗
v ≤ 1/n2. These

vertices are the only ones whose y value has decreased. Let Y1 be the set of vertices v with y′v = 1.
If |Y1| ≥ k, then Constraint (10) holds. Otherwise, |Y1| ≤ k − 1 which implies

∑
v 6∈Y1 y

∗
v ≥ 1, and

therefore
∑

v 6∈Y1∪Y0 y
∗
v ≥ 1− 1/n2 ≥

∑
v∈Y0 y

∗
v . Note also for each vertex v 6∈ Y0 ∪ Y1, we know that

y′v ≥ 2y∗v . Thus, the amount
∑

v∈Y0 y
∗
v is compensated for with

∑
v 6∈Y0∪Y1 y

′
v; therefore Constraint

(10) continues to hold.
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