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ABSTRACT

We analytically develop a filter that is able to measure
the linear stretch of the transformation around a point, and
present results of applying it to real signals. We show that
this method is a real-time alternative solution for measuring
local signal transformations. Experimentally, this method can
accurately measure stretch, however, it is sensitive to shift.

Index Terms— Frequency domain analysis, Image anal-
ysis, Signal analysis

1. INTRODUCTION

In many situations, one is given two signals, where one of
them is a transformed version of the other, and the goal is
to recover this transformation. Assuming one wants to esti-
mate the zero (shift) and first order (stretch) component of
the transformation, a general method is to use the log of the
magnitude of the Fourier transform. This technique, which
is known asCepstral analysis, was first introduced by Bogert
et al. [1] and was made widely known by Oppenheim and
Schafer [2]. It is commonly used in speech processing [3] to
separate different parts of the speech signal. Cepstral analy-
sis requires an explicit FTT on both signals with complexity
O(N log(N)). Is this paper we present a more efficient al-
ternative for estimating stretch, assuming known shift. This
method only requires the application of a single filter at one
point in each image with constant complexity. This computa-
tional advantage is offset to an increased sensitivity to errors
in shift estimation.

1.1. Related Work

In computer vision, phase (frequency) based techniques have
been mainly used to estimate the shift between two signals,
as in the case of stereo [4],[5] or optical flow [6]. A more
general approach for retrieving both the stretch and the shift
of 2D signals (i.e. 4 parameters) was employed by Srinivasa
[7] for image registration. Recently, the importance of stretch
estimation in the case of stereo was recognized (e.g. [8]), but

methods for directly measuring the stretch are generally not
used.

Related to our approach are the “scale representation" by
L. Cohen [9] and the Mellin transform. Both of these meth-
ods decompose the signal using a set of basis functions. The
stretch is encoded as a phase shift in these representations.
Conversely, the current method uses only a single filter to es-
timate the stretch.

2. GABOR FUNCTION AND NOTATION
PRELIMINARIES

According to its definition, a Gabor filter consists of a gaus-
sian function of spatial bandwidthσ, that modulates a com-
plex sinusoid of frequencyω.

G(x, ω, σ) =
1√
2πσ

e−
x
2

2σ
2 e2πiωx (1)

We consider the spatial bandwidth (σ) to be fixed with respect
to the frequency (ω)

σ =
c

ω
, (2)

wherec is a constant (e.g. Sanger usesc = 1 [4]) . As a
consequence, the Gabor function only has two parameters,
namelyx andω.

Denote with calligraphic font the Fourier transform (Fω)
of a signal (or a filter). In order to avoid any confusion, we
denote with a subscript the integration variable when needed.

3. ESTIMATING THE STRETCH

Suppose that one is given two signalsI1(x) andI2(x), where
I2 is a “stretched version ofI1.

∀x ∈ R, I2(x) = I1(αx) (3)

In this paper we describe a way to estimate the unknown
stretch parameterα. Our approach is based on two obser-
vations:



• Convolving the first signal (I1) with a Gabor filter of
frequencyω is equivalent to convolving the second sig-
nal (I2) with a Gabor filter of frequencyαω (Theorem
3.1).

• Considering the log-frequency domain of the Gabor fil-
ters the multiplication is transformed into addition (i.e.,
stretch is transformed into shift) and thus can be es-
timated using the phase shift property of the Fourier
transform (Theorem 3.2).

In the remaining section we formally present our approach in
incremental steps using two theorems. We note that the final
result is asingle filter on the spatial domain, even thought we
are using the frequency domain in our proofs.

Theorem 3.1. If the two stretched signals (I1, I2) are as in
Eq. 3, then

∀ω, [I1(x) ? G(x, ω)](0) = [I2(x) ? G(x, αω)](0) (4)

Proof. According to the definition of a Gabor filter (Eq. 1)
and its standard deviation (Eq. 2) we get

G(x, αω) =
1√
2πσ′

e−
x
2

2σ
′2 e2πiαωx,

σ′ = σαω =
c

αω
=
σω

α

Thus,

G(x, αω) =
α√
2πσ

e−
x
2

α
2

2σ
2 e2πiωαx = αG(αx, ω). (5)

From the definition of convolution we have

[I1(x) ? G(x, ω)](0) =

∫
x

I1(x)G(−x, ω)dx. (6)

Similarly,

[I2(x) ? G(x, αω)](0) =

∫
x

I2(x)G(−x, αω)dx

=

∫
x

I1(αx)G(−x, αω)dx (7)

Settingy = αx, thendy = αdx,

[I2(x) ? G(x, αω)](0) =

∫
y

I1(y)G(− y

α
, αω)

dy

α
.

Using Eq.5 we have

[I2(x) ? G(x, αω)](0) =

∫
y

I1(y)G(−y, ω)dy

= [I1(x) ? G(x, ω)](0).

Based on Theorem 3.1 the response of the convolution of
I1, I2 with the gabor filter is a function of the frequencyω,
that is

R1(ω) = [I1(x) ? G(x, ω)](0) =

[I2(x) ? G(x, αω)](0) = R2(αω). (8)

If we consider the log frequencyψ instead of the frequencyω

ψ = eω ⇔ ω = logψ, (9)

then Eq. 8 is transformed to

R1(ψ) = R2(ψ + logα). (10)

In principle, we could estimate the shift (in the log-frequency
domainψ) by transforming it into a phase shift using the
Fourier transform

R1(u) = Fψ{R1} = e2πi logαuR2(u) (11)

and measuring the difference in the phase ofR1 andR2 for
any specific frequencyu1. While this is a valid approach, it is
rather computationally expensive. For every point of the two
signals one has to compute the frequency responseR1, R2 (by
convolving with Gabor filters of different frequencies) and
then take the Fourier transform of those responses. The fol-
lowing theorem provides an alternative solution that amounts
to convolving the two signals with a single filter.

Theorem 3.2.There exists a filterH(x, u) whose convolution
with I1, I2 directly encodes the stretch as

[I1(x)?H(x, u)](0) = e2πi logαu[I2(x)?H(x, u)](0). (12)

Specifically, the filter has the analytic form

H(x, u) =

∫
ω

G(x, eω)e−2πiωudω. (13)

Proof. From Eqs. 8,9 and 10 we have

R1(e
ω) = R2(e

ω + logα)

If we consider the Fourier transform ofR1(e
ω) with respect

to ω, then

R1(u) =

∫
ω

e−2πiωuR1(e
ω)dω

=

∫
ω

e−2πiωu[

∫
x

I1(x)G(−x, eω)dx]dω

=

∫
x

I1(x)[

∫
ω

G(−x, eω)e−2πiωudω]dx

=

∫
x

I1(x)H(−x, u)dx

= [I1(x) ? H(x, u)](0).

1We have noticed that the following issue is often at first confusing to
readers. We use two different frequency domains. Symbolsω (andψ) denote
the frequency in the “traditional” sense, while symbolu denotes the Fourier
transform ofψ, so in some sense is the“frequency of the frequency domain".



Algorithm 1 Estimating the Stretch

Input :
I1, I2 : Input Signals
x0 : A single point along the X-axis

Output :
α : The stretch between the two signals

around pointx0

Algorithm :
Create the filterH(x, u) =

∫ ω2

ω1

G(x, eω)e−2πiωudω

Convolve the two signals (I1, I2) with H(x, u) aroundx0

Compute the difference in phase of the two measurements (∆θ)
Compute the “log-frequency shift”∆ψ = ∆θ

2πu

Compute the stretchα = e∆ψ

Similarly forR2(e
ω) we get

R2(u) = [I2(x) ? H(x, u)](0).

From the phase shift property of the Fourier transform we get

R1(u) = e2πi logαuR2(u)

and thus

[I1(x) ? H(x, u)](0) = e2πi logαu[I2(x) ? H(x, u)](0).

The algorithm is a straightforward implementation of the
theory and is presented in Alg. 1.

4. EXPERIMENTS

4.1. Stretch without Shift Experiments

On this first set of experiments, the original signal (I1) is the
horizontal lines of various textures [10] (Fig. 1). We ran-
domly selected 200 scanlines and stretched each one of them
around its center in order to produce a second signal (Fig. 2,
first and second row). Then we convolved both signals with a
single filterof frequencyu = 0.25 as shown in Fig. 2 (third
row). Following the steps described in Alg. 1 we estimated
the stretch. We experimentally found that frequencies in the
rangeu = [0.25 . . . 0.5] worked well. The higher the fre-
quency, the better the results were for stretches closer to1
and the worse for stretches closer to0. For the lower and up-
per bounds of integralH (Eq. 13) we used the values−3.5
and−1, respectively.

In Fig. 3 we present the results as a function of the stretch
α. Each graph corresponds to an image from Fig. 1. For each
stretch value we pick 200 random points and synthetically
stretch the signal about each. We plot both themedianvalue
and the99% confidence intervalfor the estimated stretches.
The results are good considering the following facts. First,

Fig. 1. Texture images

we are using a single filter to estimate the stretch. Second, the
size of the filter is∼ 20 pixels. Third, we have discrete sig-
nals, thus for a stretch ofα = 0.5 only 10 pixels are common
in the original and the stretched image. Fourth, for practical
purposes, we are usually interested in stretches close to one
(e.g.α = [0.9 . . . 1.1]) in which case the estimated stretch is
quite accurate. Thus, in Fig. 4 we display the results on that
range of stretches. In all cases the estimated stretch is very
close to the real stretch between the two signals.

4.2. Stretch Estimation in the Presence of Translation

In real applications, the most common case is for the two sig-
nals to be both shifted and stretched i.e.,i2(x) = i1(αx+β).
In such cases, estimation of the stretch (α) is affected by the
shift (β) and vice versa. In the following experiments, we em-
pirically investigate the sensitivity of the stretch estimation in
the presence of translation between the two signals. Fig. 5 we
display the error in the stretch estimates, when the two sig-
nals are stretched and shifted, as a function of the shift. As
expected (due to the small size of the filters), this approachis
very sensitive to shifts. Furthermore, the error in the stretch
estimation increases with the shift.

5. CONCLUSIONS

In this paper we presented a filter that retrieves the local
stretch of two signals. We also presented experiments that
indicate that this approach produces very good results, but
is also very sensitive to the shift between the two signals.
From Fig. 5, it appears that there is an approximate linear
dependence between the error in stretch estimation and the
original translation of the two signals. Future work could
address this dependence theoretically. The comparison of this
method with traditional stretch estimation techniques based
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Fig. 2. First Row: Original and stretched image (α = 0.5).
Second Row: The intensities along a single scanline on both
images. Third Row: The stretch filterH we are using.

on phase correlation is also left as future work.
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Fig. 3. Results for various stretchesα
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Fig. 4. Results when the stretch is close to one.
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Fig. 5. Stretch estimation vs. translation error


