MEASURING 1°7 ORDER STRETCH WITH A SINGLE FILTER
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ABSTRACT methods for directly measuring the stretch are generalty no

We analytically develop a filter that is able to measureSed: _
the linear stretch of the transformation around a point, and Related to our approach are the “scale representation” by
present results of applying it to real signals. We show that- Cohen [9] and the Mellin transform. Both of these meth-
this method is a real-time alternative solution for measyri ©dS decompose the signal using a set of basis functions. The
local signal transformations. Experimentally, this metican stretch is encoded as a phase shift in these representations

accurately measure stretch, however, it is sensitive fa shi Conversely, the current method uses only a single filterto es

_ . timate the stretch.
Index Terms— Frequency domain analysis, Image anal-

ysis, Signal analysis
2. GABOR FUNCTION AND NOTATION

PRELIMINARIES
1. INTRODUCTION

According to its definition, a Gabor filter consists of a gaus-

In many situations, one Is given two signals, where one c?gian function of spatial bandwidt, that modulates a com-
them is a transformed version of the other, and the goal 'ﬁlex sinusoid of frequency

to recover this transformation. Assuming one wants to esti-

mate the zero (shift) and first order (stretch) component of 1
the transformation, a general method is to use the log of the Glz,w,0) =
magnitude of the Fourier transform. This technique, which

is known asCepstral analysiswas first introduced by Bogert We consider the spatial bandwidi)(to be fixed with respect

et al. [1] and was made widely known by Oppenheim ando the frequencyw)

Schafer [2]. It is commonly used in speech processing [3] to o= E, (2)
separate different parts of the speech signal. Cepstréj-ana w

sis requires an explicit FTT on both signals with complexitywherec is a constant (e.g. Sanger uses= 1 [4]) . As a

O(N log(N)). Is this paper we present a more efficient al-consequence, the Gabor function only has two parameters,
ternative for estimating stretch, assuming known shiftisTh namelyz andw.

method only requires the application of a single filter at one Denote with calligraphic font the Fourier transfore.()

point in each image with constant complexity. This computa©f & signal (or a filter). In order to avoid any confusion, we
tional advantage is offset to an increased sensitivity torer ~ denote with a subscript the integration variable when neéede
in shift estimation.

22 .
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3. ESTIMATING THE STRETCH
1.1. Related Work

L . Suppose that one is given two signdjéz) andl>(x), where
In computer vision, phase (frequency) based techniques ha\f2 is a “stretched version df, .

been mainly used to estimate the shift between two signals,

as in the case of stereo [4],[5] or optical flow [6]. A more Ve e R, I(z) = I (ax) ()
general approach for retrieving both the stretch and thi¢ shi

of 2D signals (i.e. 4 parameters) was employed by Srinivasl this paper we describe a way to estimate the unknown
[7] for image registration. Recently, the importance oé&th  stretch paramete. Our approach is based on two obser-
estimation in the case of stereo was recognized (e.g. [81), b vations:



e Convolving the first signall{) with a Gabor filter of Based on Theorem 3.1 the response of the convolution of
frequencyw is equivalent to convolving the second sig- I, I with the gabor filter is a function of the frequeney
nal (I5) with a Gabor filter of frequencyw (Theorem  thatis
3.1). Ri(w) = [I1(z) x G(z,w)](0) =

o Considering the log-frequency domain of the Gabor fil- [I2(z)  G(z, aw)](0) = Ra(aw). (8)
ters the multiplication is transformed into addition (i.e. If we consider the log frequenay instead of the frequeney
stretch is transformed into shift) and thus can be es-
timated using the phase shift property of the Fourier P =e S w=logy, 9)

transform (Theorem 3.2). then Eq. 8 is transformed to

In the remaining sect?on we formally present our approach_ in R1(¢) = Ra(¢) + log av). (10)
incremental steps using two theorems. We note that the final ' o
result is asingle filter on the spatial domajieven thought we [N principle, we could estimate the shift (in the log-freqag

are using the frequency domain in our proofs. domain ) by transforming it into a phase shift using the
Fourier transform

Theorem 3.1. If the two stretched signald{, I2) are as in i og ccu
Eq. 3, then Ri(u) = Fy{R1} = e "Ry (u) (11)

and measuring the difference in the phas&gfand R, for
any specific frequency®. While this is a valid approach, it is
rather computationally expensive. For every point of the tw
signals one has to compute the frequency resp@s&, (by
convolving with Gabor filters of different frequencies) and
G, ow) = 1 e,%eQWiaw ther_1 take the Fourie_r transform of tr_lose responses. The fol-
’ 20! ’ lowing theorem provides an alternative solution that an®un
to convolving the two signals with a single filter.

Vo, [Ii(2) x G(z,w)](0) = [Iz2(z) x Gz, aw)](0)  (4)

Proof. According to the definition of a Gabor filter (Eq. 1)
and its standard deviation (Eq. 2) we get

0' =0 = w  a Theorem 3.2. There exists afiltef (x, u) whose convolution
Thus with I, I, directly encodes the stretch as
o 202 (I (x) % H(z,u)](0) = e2™ 18U [, (z)x H (x,u)](0). (12)
G(z,aw) = e 20 2T — 0Gax,w).  (5) N i )
2ro Specifically, the filter has the analytic form
From the definition of convolution we have ‘
H(z,u) = / G (z,e¥)e2mwudy, (13)
[I1(z) x G(z,w)](0) = /Il(x)G(—x,w)dx. (6) =
z Proof. From Egs. 8,9 and 10 we have
Similarly, Ri(e”) = Ra(e” +loga)
[I(z) * G(z, aw)](0) = /IQ(I)G(—CC, aw)dz If we consider the Fourier transform &f; (e*) with respect
x tow, then
= /Ifl(al‘)G(*I,aw)dI (7) Rl(u) — / ewiiqul(ew)dw
Settingy = ax, thendy = adzx, _ / 6727Tiwu[/ I1(2)G(~z, e*)dz]dw
Lo(2) + Gz, aw)(0) = [ LnG(—Y,aw)™ i i :
2 ' ~J, 1y a’ o = / Il(x)[/ G(—z,e*)e 2" dw]dx
Using Eqg.5 we have - / L (2)H (—z,u)dx
[ () % G(z, aw)](0) = / L(y)G(—y,w)dy = [l1(z) » H(z,u)|(0).

Iwe have noticed that the following issue is often at first osirfg to

- [Il (:v) * G(:v, W)] (0) readers. We use two different frequency domains. Symb@éndi)) denote
the frequency in the “traditional” sense, while symhadienotes the Fourier

O transform ofy, so in some sense is thigequency of the frequency domain”



Algorithm 1 Estimating the Stretch

Input :
I, 1, : Input Signals
Z :Asingle point along the X-axis
Output :
«@ . The stretch between the two signals
around pointzg
Algorithm

Create the filtefd (z, u) = f:’lz G(z,e)e 2™ v dw
Convolve the two signald{, I2) with H(z, u) aroundzo
Compute the difference in phase of the two measureméxéty
Compute the “log-frequency shifiAy = %

Compute the stretch = ¢2¥

Similarly for Ry (e*) we get Fig. 1. Texture images

Ro(u) = [Ia(x) x H(x,u)](0).
we are using a single filter to estimate the stretch. Secbed, t

From the phase shift property of the Fourier transform we gesize of the filter is~ 20 pixels. Third, we have discrete sig-
nals, thus for a stretch ef = 0.5 only 10 pixels are common
in the original and the stretched image. Fourth, for prattic
purposes, we are usually interested in stretches closeeto on
(e.g.« = [0.9...1.1]) in which case the estimated stretch is
(I () % H(z, u)](0) = €218 (L, (z) x H(z,u)](0). quite accurate. Thus, in Fig. 4 we displqy the results on that

range of stretches. In all cases the estimated stretch ys ver

] close to the real stretch between the two signals.

Rl (u) _ e27ri log auR2 (u)

and thus

The algorithm is a straightforward implementation of the

theory and is presented in Alg. 1. 4.2. Stretch Estimation in the Presence of Translation

In real applications, the most common case is for the two sig-

4. EXPERIMENTS nals to be both shifted and stretched iig(z) = i1 (ax + 3).
In such cases, estimation of the stretah is affected by the
4.1. Stretch without Shift Experiments shift (5) and vice versa. In the following experiments, we em-

g . - : pirically investigate the sensitivity of the stretch esdiion in
On this first set of experiments, the original signal)(s the the presence of translation between the two signals. Fige 5w

horizontal lines of various textures [10] (Fig. 1). We ran- . ; : o
domly selected 200 scanlines and stretched each one of thedn'1S play the error in the stretch estimates, when the o sig

) . . . Qals are stretched and shifted, as a function of the shift. As
around its center in order to produce a second signal (Fig.

first and second row). Then we convolved both signals with ae?xpected (due to the small size of the filters), this apprdsch

. ! A : very sensitive to shifts. Furthermore, the error in thetstre

single filterof frequencyu = 0.25 as shown in Fig. 2 (third T . .

row). Following the steps described in Alg. 1 we estimated” stimation increases with the shift.

the stretch. We experimentally found that frequencies  th

rangeu = [0.25...0.5] worked well. The higher the fre- 5. CONCLUSIONS

quency, the better the results were for stretches closeér to

and the worse for stretches closeOtd-or the lower and up- In this paper we presented a filter that retrieves the local

per bounds of integralf (Eq. 13) we used the values3.5  stretch of two signals. We also presented experiments that

and—1, respectively. indicate that this approach produces very good results, but
In Fig. 3 we present the results as a function of the stretcis also very sensitive to the shift between the two signals.

«. Each graph corresponds to an image from Fig. 1. For eadirom Fig. 5, it appears that there is an approximate linear

stretch value we pick 200 random points and syntheticallgdependence between the error in stretch estimation and the

stretch the signal about each. We plot bothriedianvalue  original translation of the two signals. Future work could

and the99% confidence intervalor the estimated stretches. address this dependence theoretically. The comparisdrisof t

The results are good considering the following facts. Firstmethod with traditional stretch estimation techniquesebas
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Fig. 3. Results for various stretches
Fig. 2. First Row: Original and stretched image & 0.5).
Second Row: The intensities along a single scanline on both
images. Third Row: The stretch filtéf we are using.
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on phase correlation is also left as future work. Dg: Dg;
goves goves
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