An experimental study of color-based
segmentation algorithms based on the mean-shift
concept

K. Bitsakos, C. Fermiiller and Y. Aloimonos

Center for Automation Research,
University of Maryland, College Park, USA

kbitsQcs.umd.edu, {fer,yiannis}@cfar.umd.edu

Abstract. We point out a difference between the original mean-shift
formulation of Fukunaga and Hostetler and the common variant in the
computer vision community, namely whether the pairwise comparison is
performed with the original or with the filtered image of the previous
iteration. This leads to a new hybrid algorithm, called Color Mean Shift,
that roughly speaking, treats color as Fukunaga’s algorithm and spa-
tial coordinates as Comaniciu’s algorithm. We perform experiments to
evaluate how different kernel functions and color spaces affect the final
filtering and segmentation results, and the computational speed, using
the Berkeley and Weizmann segmentation databases. We conclude that
the new method gives better results than existing mean shift ones on four
standard comparison measures (v~ 15%, 22% improvement on RAND and
BDE measures respectively for color images), with slightly higher run-
ning times (v~ 10%). Overall, the new method produces segmentations
comparable in quality to the ones obtained with current state of the art
segmentation algorithms.

Keywords: image segmentation, image filtering, mean-shift

1 Introduction

Mean shift is an unsupervised clustering technique that over the last decade
gained popularity and is now widely used in computer vision for color based
segmentation. Though conceptually simple, an extensive amount of mathemati-
cal formalism has been used to precisely describe the method. As a result, some
of the important characteristics of the method were “hidden underneath the
surface”. This paper simplifies the formulation and brings forth its important
features by describing mean shift as an optimization problem. This leads to two
contributions; a) we propose a new variation, denoted Color Mean Shift, that
combines Fukunaga’s mean shift superior cluster ability with most of the compu-
tational advantages of Comaniciu’s variant, and b) we experimentally compare
different variations of the algorithm both in terms of the computational speed
and the segmentation quality. Color Mean Shift is found to outperform the cur-
rent methods in terms of the quality of segmentation, while it is slightly (-~ 10%)

2 K. Bitsakos, C. Fermiiller and Y. Aloimonos

slower . More specifically, it produced «~ 15%, 22% better results on the Berkeley
dataset with the RAND and the BDE measure respectively.

1.1 Related Work

Despite its existence for more than three decades [1], mean-shift only recently
gained popularity in the computer vision community. Cheng [2] first modified
the method and used it for non-parametric clustering and then, Comaniciu and
Meer [3] used it for image filtering and segmentation. Since then, mean-shift
has been used in computer vision for object tracking [4], 3D reconstruction [5],
texture classification [6] and video segmentation [7] among other problems. The
relatively high computational cost of a naive implementation of the method
combined with the need for fast image processing led researchers to propose fast
approximate variations of it. Most notably, two solutions for finding pairs of
points within a radius have been proposed; the Improved Fast Gauss Transform
based mean shift [8] for Normal kernels and the Locality Sensitive Hashing based
mean shift [6].

Cheng [2] was the first to recognize the equivalence of mean shift to a
step-varying gradient ascent optimization problem, and much later Fashing and
Tomashi [9] showed that it is equivalent to Newton’s method with piecewise
constant kernels, and is a quadratic bound maximization for all other kernels.
Still the dominant way to describe it is by using density estimation terms [3],
namely using kernels and their shadow and profile functions.

1.2 Contributions

In this paper, we describe mean shift as an optimization problem. The simplicity
of the formulation not only leads to a better understanding of the method, but
also brings forth the difference between the original method and its variation
that is used in computer vision!. In the same section (Sec. 2), we propose our
own variant of mean shift, denoted Color Mean Shift (CMS), that lies between
the two methods. The next two sections contain an experimental comparison be-
tween the methods. First, in Sec. 3, we present the filtering results for different
kernel functions and color spaces. Then, we study the filtering speed of the algo-
rithms with respect to a number of optimization parameters. In Sec. 4 we show
results on two different segmentation datasets (the Berkeley [10] and Weizmann
Institute [11] databases) containing 300 images and 1387 human segmentations
(in total) using 4 standard comparison measures. In these experiments the new
method (i.e, color mean shift) exhibits an improvement of > 15% compared to
the existing method on color images. A similar improvement was also achieved
for the grayscale images of Weizmann dataset. Summary and future work (Sec.
5) conclude this paper.

! In the recent papers, the original “mean shift” approach is called “blurring mean
shift”. In the rest of the paper we use the abbreviations FHMS and CMMS for
Fugunaga and Hostetler’s and Comaniciu and Meer’s method of mean shift respec-
tively.

A study of mean shift based color segmentation algorithms 3

2 Image Filtering Using the Mean Shift algorithm

2.1 Notation

We consider the image on the 5D space with spatial and color dimensions. More
specifically, x; is a 2D vector representing the spatial coordinates and s; is a
vector that represents the three color channels of pixel i (i =1...N).

In the following paragraphs we use bold letters to represent vectors and the
notation [x;,s;] to indicate a concatenation of vectors. To indicate the evolution
of a vector over time we use superscripts, eg. [x?,s?] indicates pixel x; having
the initial intensity values s!.

2.2 Kernel Functions

In our experiments we use two different kernel functions; the Epanechnikov and
the Normal (Gaussian) kernel. The Epanechnikov kernel has the analytic form

Tx) xTx <1

0 otherwise '

cg(l—x
Kp(x) = { ((1)
where cg is the normalization constant.
The multivariate Normal kernel with variance 1 has the analytic form

Ki(x) = (27)F exp(—5x"x). 2)

The Normal kernel is symmetrically truncated to obtain a kernel with finite
support.

2.3 Fukunaga and Hostetler’s Mean Shift (FHMS)

The original mean shift formulation [1] (applied to a color image) treats the
image as a set of 5 — D points. Each point is iteratively moved proportionally
to the weighted average of its neighboring points. At the end, clusters of points
are formed. We define mean shift to be the gradient descent solution of the
optimization problem

arg [)Icnisn] — ZK([Xi,Sz‘] - [x5,85]), (3)
i

wherez defines the summation over all pairs of pixels in the image. This prob-
i,

lem has a global minimum when all the pixels “collapse” into a single point. We

seek a local minimum instead. That’s why we initialize the features [x;,s;] with

the original position and color of the pixels of the image and perform gradient

descent iterations till we reach the local minimum. The instabilities caused by

this behavior are studied in a recent work of Rao et al. [12].

4 K. Bitsakos, C. Fermiiller and Y. Aloimonos
2.4 Comaniciu and Meer’s Mean Shift (CMMS)

The modified mean shift formulation proposed by Comaniciu and Meer [3]
(CMMS) can also be expressed as a gradient descent solution of the optimization
problem

arg min — Z K([xi,8:] — [xjo-,s?]). (4)

[x:,8:] —
]

There is a subtle difference between CMMS and FHMS, that significantly
affects the behavior. In the former formulation each feature point is compared
against the original set of 5 — D points [x7,s}], while in the latter case the point
is compared against the set of points from the previous iteration [x;,s;].

Fig. 1 presents the results of both methods in a smoothly varying intensity
image. Notice that the gradient of the kernel function, everywhere but in the
boundaries, is zero and so CMMS filtering only changes the intensity on the
boundaries (that change is not very visible). FHMS, on the other hand, produces
artificial segments of uniform intensity. Intuitively, each iteration of the process
results in more clustered data which in turn leads to better clustering results in
the next iteration. On the downside, a fast FHMS implementation is challenging
(if not impossible) due to the fact that the feature points and the comparison
points do not lie on a regular spatial grid anymore. Thus one would have to
compare the current feature [x;,s;] against all the remaining feature points.

2.5 Color Mean Shift (CMS)

Our method alleviates the computational problem of FHMS by using the original
spatial location of the points for comparison, while it uses the updated intensity
values of the previous iteration for improved clustering ability. In a sense, we
perform FHMS on the color dimensions and CMMS on the spatial dimensions
(that is the reason for naming the method “color mean shift”). As above, CMS
can be expressed as the gradient descent solution of the optimization problem

arg min] = K([xi,si] — [x),5)). (5)

[x:,8; —
7

We have included the results of color mean shift filtering in the smoothly
varying image of Fig. 1. It is clear that individual clusters of uniform intensities
are formed (as in the case of the original mean shift). Note that in this example
there is not a single right solution for the segmentation problem and one can
argue that a single segment is the best solution. We present this example only
to exhibit one “weakness” of the CMMS algorithm, that is addressed in both our
solution and the original mean shift algorithm. In Fig. 2 we present both CMS
and CMMS algorithms.

A study of mean shift based color segmentation algorithms 5

(a) CMMS (b) CMS (c) FHMS

Fig.1: All the described algorithms applied on a 256 x 100 pixels smoothly varying
image. All the filtering algorithms were executed with spatial resolution hs = 21 and
range resolution h, = 10 and used a Normal kernel.

CMS CMMS
Input: Input:
set of pixels x{ with intensities s? set of pixels x{ with intensities s?
a function g a function g
Output: Output:
feature vector [x, s;] feature vector [x,s;]
Algorithm: Algorithm:
initialize feature points [x;,s;] « [x¥,s?] initialize feature points [x;,s;] «— [x?,sY)
repeat until convergence for all features [xi, si]
for all features [x;, s;] repeat until convergence

3, bx5085)a(11Bxs.84) = [x0.8,1112) >, 15,8519 (xs.5:1— [x9,891112)
5, 9(1IBi sl 5<0.5,1112) 55 9B sl — x0.s01112)

Connected Components Grouping

[xi,8i]

[xi,8i]

Input:

set of pixels x; with intensities s;

grouping threshold ¢
Output:

label [; for pixel x;
Algorithm:

repeat until convergence

for all pixels x;
for all x; adjacent to x;
if ||s; — sj]|> < t and 2;, z; have different labels:
merge the labels of z; and z; (I; = ;)

Fig. 2: All the algorithms. g(z) = [z < 1] (indicator function in Iverson notation) for
the Epanechnikov and g(x) = exp(—z/2) for the Normal kernel.

6 K. Bitsakos, C. Fermiiller and Y. Aloimonos

3 Filtering Comparison

Fig. 3: Epanechnikov vs Normal kernel. We use hs = 5 and h, = 19. All images are
processed on the RGB color space. E.,; N. stand for Epanechnikov kernel and Normal
kernel respectively. The Normal kernel produces smoother regions. Also, CMS produces
more uniform regions even in heavily textured areas, eg. the grass and the roof.

Following the example of Comaniciu and Meer [3], we normalize the spatial
and color coordinates of each pixel vector by dividing by the spatial (hs) and
color (h,) resolutions. Thus, the original feature vector [x;,s;] is transformed
to [3%, 2-] (not included in the equations for simplicity). The spatial resolution
hs affects the size of the neighborhood around each pixel that the algorithm
considers and in all the experiments is constant (hs; = 5 corresponding to a
11 x 11 window). Then, we perform the optimization; one pixel at a time in the
case of CMMS (Fig. 2, top right), or one iteration of the whole feature set at a
time in the FHMS and CMS cases (Fig. 2, top left). FHMS has a complexity that
is quadratic on the number of pixels of the whole image. Thus, its running time
for a reasonably size image (eg. 640 x 480 pixels) is several minutes, making it
prohibitively slow for any computer vision application. For that reason, we omit

the results of this algorithm in the experiments.

A study of mean shift based color segmentation algorithms 7

3.1 Filtering Using an Epanechnikov or a Normal Kernel

First we present the effect of using different kernels: Epanechnikov and Normal
(Fig. 3). Each column of the figure depicts the filtering result with a different
algorithm (CMMS or CMS) and each row for a different kernel function (N., E.
stand for Normal and Epanechnikov kernels respectively). In all cases the Normal
kernel produces smoother results, while still preserving edge discontinuities. As a
matter of fact, the color resolution h, is the parameter that defines the gradient
magnitude above which there is an edge (to be preserved). So for the “hand”
image, a color range of h, = 19 results in smoothing most of the texture of the
background, while a value of h, = 10 retains most of it (in RGB with a Normal
kernel).

Overall CMS seems to produce more crisp boundaries between segments while
creating more uniform regions within a segment (eg. it suppresses the skin color
variation on the “hand” image). The former is particularly important for the
segmentation step as we will see in Sec. 4.

L.

Fig. 4: Filtering in RGB vs Luv color space. We use hs = 5 and h, = 5. All images are
processed with a Normal kernel. R, L stand for RGB and Luv respectively. Filtering
in Luv makes smoother images. Moreover, CMS produces more uniform regions.

8 K. Bitsakos, C. Fermiiller and Y. Aloimonos

3.2 RGB vs Luv Color Space

In Fig. 4 we present the results when filtering on the RGB or Luv color space.
In general, filtering in Luv produces smoother images.This is due to two facts;
the Euclidean distance between two Luv values is perceptually meaningful, i.e.,
it is proportional to the distance of colors as perceived by a human observer,
and the range of values for each component (L, u, v) is different (for example
in our implementation L € [0...100], v € [-100...180], v € [-135...110].),
while each of the red, green and blue components have values from 0 to 255.

Overall, CMS smooths the image more than CMMS, while preserving the
boundaries better.

3.3 Filtering Speed Comparison

With the increasing demand for processing large volumes of data computational
speed has become an important characteristic of any algorithm, that along with
accuracy determines its usefulness. That is the reason why a number of ap-
proaches to speed up mean shift filtering have been proposed [6,8]. In this section
we try to compare the speed of the two methods.

An objective comparison of the filtering speed of the different methods is
not a simple task. Besides the implementation details that greatly affect the
speed, there is also a number of algorithmic parameters that can significantly
speedup or slow down the convergence of the optimization procedure. We start
our comparison by evaluating the role of these parameters and then we discuss
whether general speed up techniques that have been proposed in the literature
can be applied to the different methods or not. For fairness sake, we use our own
implementation of all the filtering methods that consists of Matlab files for the
image handling and the general input/output interface, while the optimization
code is written in C2. We perform all the experiments on a desktop computer
with an Intel Core2 Quad CPU @Q3GH 3.

Image Size In theory the complexity of both CMS and CMMS increases
linearly with the number of pixels (if the kernel is bounded), since each pixel
represents a feature vector that needs to be processed*. The theoretical predic-
tion is verified in practice as Fig. 5a shows.

Spatial Resolution h, Theoretically, both filtering methods depend quadrat-
ically on the spatial bandwidth. In practice, other parameters, explained below,
make the dependence less than quadratic. Fig. 5b displays the filtering speed
with respect to the spatial resolution for the methods, when all the other pa-
rameters are the same.

Epanechnikov vs Normal kernel For each pair of pixels, computation of
the weight using the Epanechnikov kernel only requires a comparison, while the

2 All the code is available and can be downloaded from the author’s website
http://www.cs.umd.edu/ " kbits/code.htm

3 Due to Matlab’s limitation only one core is used in the experiments.

1 FHMS’s complexity, on the other hand, is not linear with respect to the image size
since whole areas can collapse into single points.

A study of mean shift based color segmentation algorithms 9

chus|
oMM, 160, cms

oms 140 CMMS (Ep)

L CMMS (N)
oM (Ep)

g4 T oMs (V) g

6 8 10 12 1 16 0o 5 10 15 10 100 0 0
‘Numbor of Pxels ot Spatal resoluton Convergonce te shold

(a) Speed vs Image Size (b) Speed vs hs (c) Speed vs Convergence
(hs = 5) threshold

Fig.5: We use the “workers” image (size 321 x 481 pixels) and perform the filtering
on the RGB color space with h, = 15. A solid line denotes the use of Epanechnikov
kernel while the dotted line (middle figure) the use of Normal kernel. We also limit
the number of iterations to 20 and the convergence threshold is 0.001. We perform the
filtering 5 times for each image size and only plot the median value.

calculation of an exponential number is necessary for the case of the Normal
kernel. As a result the former operation is much cheaper than the latter and
thus filtering with an Epanechnikov kernel is faster compared to filtering with a
Normal kernel as is shown in Fig. 5b.

The overall speed of the segmentation process is also affected by the quality
of the result of the filtering process. We experimentally found, that a Normal
kernel produced better results and as a consequence sped up the grouping step.
The use of a Normal kernel still resulted in slower segmentation times, but the
time difference was not as large as Fig. 5b shows.

Convergence Threshold On each iteration of the optimization procedure
each pixel vector is compared against its neighbors and shifted. If this shift is
less than a predefined value (denoted convergence threshold) then we ignore
that pixel in subsequent iterations of the optimization procedure. Intuitively the
convergence threshold denotes how close to the “true” solution the optimization
should reach before termination. Note that in CMMS the shift of each pixel is a
monotonically decreasing function of the iteration number, while for CMS it is
not. Fig. 5c displays the filtering speed with respect to the convergence threshold.
The higher the threshold the faster the filtering. Especially for thresholds less
than 0.1 the filtering time decreases almost exponentially.

Overall, from Fig. 5, CMS is «~ 10% slower than CMMS. A number of tech-
niques can be used to perform the filtering faster. In the core of all filtering
algorithms the pairwise distance between feature points needs to be computed.
As suggested in [3] employing data structures and algorithms for multidimen-
sional range searching can significantly improve the running time of all methods.
In CMMS the trajectory of most feature points lay along the path of other feature
points. Christoudias et al. [13] report a speed up of about five times when they
“merge” the feature points together. This trick can directly be used in CMMS.
A variation of the same concept could also be used to speed up CMS. The in-
troduction of multicore CPUs and, especially, GPUs has provided a new way to

10 K. Bitsakos, C. Fermiiller and Y. Aloimonos

improve the execution speed of algorithms through a parallel implementation.
Both filtering algorithms are parallel in nature, so a careful implementation on
a modern GPU is expected to run in real time for VGA or even larger sized
images.

4 Segmentation Comparison

In a number of applications, like image denoising or deblurring, filtering is the
final step. In most other applications filtering is an intermediate step followed
by image segmentation. We are interested in the latter case. Thus, following the
example of [3], we use the connected component grouping algorithm described
in Fig. 2 to perform color-based segmentation. The simplicity of the grouping
step allows for an objective evaluation of the filtering methods for the task of
image segmentation. This algorithm has a single parameter, namely the grouping
threshold ¢. In all our experiments ¢t = 0.5 * h,. 5.

We use the Berkeley database of human segmentations [10] to evaluate the
performance of the two methods. This is the biggest, publicly available database
containing 200 color, training images and 1087 human created segmentations.
We also present the results from the Weizmann Institute segmentation database
[11], that consists of 100 grayscale images and 300 segmentations into foreground
and background. Before presenting the results we need to describe the different
measures that are used in the evaluation.

We use all the standard measures for the evaluation of the two algorithms,
namely the Global Consistency Error (GCE) [10], the Variation of Information
(VI) [14], the Probabilistic Rand index (PR) [15] and the average Boundary
Displacement Error (BDE) [16]°. From the previous measures for GCE, VI and
BDE the lower the value the better the quality of the segmentation, while PR is
a measure of similarity and as such a value of 0 indicates no similarity with the
human created database, while a value of 1 indicates the highest similarity.

We create the following graphs by varying the color resolution h, of the fil-
tering methods. More specifically, we let h, to obtain values from 0.6 to 20 in
increments of 0.3. We keep the remaining filtering parameters constant i.e., the
maximum number of iterations for convergence is set to 20 and the convergence
threshold to 0.1. For comparison we use the algorithm by Felzenswalb and Hut-
tenlocher [18], denoted as GAT (Grouping with an Adaptive Threshold) on the
figures. Again we vary the grouping threshold k (k = [10...1500] in increments
of 20).

® This is the same value for ¢ that the EDISON system [13] uses. In practice, the
threshold does not affect the resulting segmentation much, as long as it is larger
than the convergence threshold of the optimization problem. In our experiments
t = 0.5 > 0.1 = convergence threshold.

® We use the code provided by J. Wright and A. Yang [17] to compute them.

A study of mean shift based color segmentation algorithms 11

We compute the comparison measures for each image of the database and
further aggregate the results for the whole database using the median value’.
These values are plotted on the Y-axis of each figure. On the X-axis we plot the
average segment size, instead of the color resolution h,.. Thus all the plots below
show the implicit curve of one comparison measure with respect to the average
segment, size.

4.1 Segmentation Results

BDE vs average segment size (less is better) PR vs average segment size (more is better)

Vlvs average segment size (less is better)
' ' ' "]+ cMMS RGBN.
~—*— CMMS RGB/Ep.

- CMMS Luv/N.

~—*— CMMS Luv/Ep.

* CMS RGB/IN.

* CMS RGB/Ep.
CMS Luv/N.
CMS Luv/Ep.

——GAT

Fig. 6: Segmentation results for the Berkeley database. The solid and dash-dot lines
represent the use of the Epanechnikov (Ep.) and Normal (N.) kernel, and the black
and orange circle the use of the RGB and Luv color space respectively. Note that the
new method (CMS) is in green, while the existing method (CMMS) is in blue. From
the top graphs it is clear that the green plots are better than the corresponding blue
ones.

First we present the collective segmentation results from the Berkeley database.
We compare the two mean shift versions (CMMS and CMS) in two different color
spaces (RGB and Luv) and using two different kernel functions (Epanechnikov

" Since the comparison measures vary significantly for different images we choose the
median value as opposed to the mean value because it is more robust to outliers.

12 K. Bitsakos, C. Fermiiller and Y. Aloimonos

and Normal kernel) for a total of 2 x 2 x 2 = 8 combinations. That is why we
display 8 curves on each graph of Fig. 6 plus a red curve for GAT.

Before analyzing the results any further we want to emphasize two facts. The
results of the Global Consistency Error measure are misleading. As Martin et al.
[10] mention, this measure only produces meaningful results when the number
of segments in the computer segmentation is similar to the one in the human
segmentation. In all other cases, i.e., when the number of computer generated
segments is too high or too low GCE goes to zero. Indeed, as we observe in
Fig. 6, all the curves for the GCE measure start from close to 0 (for very small
average segment size) and asymptotically go to 0 (for very large average segment
sizes). In between the two extremes, GCE values are larger, but since we display
the average value for all the images it is impossible to determine the range of
average segment sizes where GCE values are meaningful. The second fact is that
the values of the Variation of Information measure for all the curves are really
close together, making VI the least discriminative measure. On the opposite side,
both the Probabilistic Rand index and the average Boundary Displacement Error
are discriminative enough to compare the different segmentation algorithms in
this setting.

The segmentation results verify our earlier observations about the effect of
the different kernels (Sec. 3.1) and color spaces (Sec. 3.2) on the amount of
smoothing performed (for a given color resolution h,). Filtering on the RGB
color space results in less smoothing of the images and as a consequence in
more image segments (and smaller average segment sizes). This is denoted by
the close placement of the circles on the RGB plots compared to their Luv
counterparts. The same observation, i.e., smaller average segment sizes, is valid
for the Epanechnikov kernel function compared to the Normal kernel.

In the mean shift literature there are references that the Normal function
produces better results than the Epanechnikov kernel [3], but so far an thor-
ough experimental comparison of the two kernels was not performed. According
to the plots of Fig. 6 this prediction is absolutely right. The use of a Normal
kernel produced better results in both measures (PR and BDE) and for both
filtering methods (CMMS and CMS). Furthermore, the coupling of the Normal
kernel with the Luv color space produced far superior results than all the other
combinations.

Finally, the newly introduced variant of mean shift, i.e., Color Mean Shift,
outperformed CMMS in all combinations of kernel functions and color spaces.
Overall, CMS filtering on Luv color space with a Normal kernel produced the
best results compared to all other methods. Compared to CMMS filtering on
Luv color space with a Normal kernel (i.e., the next best algorithm) the new
method produced on average «~ 17% better on the PR index and - 22% better
on the BDE measure. Furthermore, this algorithm in most cases outperformed
the current state of the art GAT algorithm [18].

On Fig. 7 we present the segmentation results for the Weizmann dataset con-
sisting of 100 images and 300 manual segmentations into foreground and back-
ground. Before analysing them we want to mention that this dataset is different

A study of mean shift based color segmentation algorithms 13

from the previous one in the following aspects. All the images are grayscale and
not color. Furthermore, the texture variation is significantly less than the one
in the Berkeley database. The purpose of the dataset is to provide a testbed for
segmentation into objects and as such only the single dominant object per image
is marked as forground and the rest is background®. As a result many boundary
edges are not reported in the manual segmentation. Both algorithms performed
very well, with CMS performing better than CMMS on the BDE measure. In
this database CMS performed slightly worse than GAT.

BDE vs average segment size (less is better)

- CMMS Normal
CMMS Epan.

= + CMS Normal
1 L CMS Epan. ||
—GAT

0 50 100 150 200 250 300 350 400 450

Fig. 7: Segmentation results for the Weizmann Institute database. The solid and dash-
dot lines represent the use of the Epanechnikov (Epan.) and Normal kernel respectively.

5 Conclusions

This paper presents the current variations of the mean shift algorithm from an
optimization viewpoint and emphasizes the difference between Fukunaga’s and
Comaniciu’s versions of the method, namely whether the pairwise comparison
for moving each point is performed with the original image or with the filtered
image of the previous iteration. A new variation of the mean shift algorithm,
denoted Color Mean Shift, that lies between the existing two is also proposed.
Extended experiments are presented both for the edge-preserving filtering and
the segmentation tasks. In filtering, we mostly focus on the effect of different
parameters on the speed of the filtering process. For segmentation, we use the
Berkeley and the Weizmann Institute datasets to evaluate the performance of
the algorithms using different kernel functions and color spaces. We conclude
that Color Mean Shift performed on Luv color space using a Normal kernel
function outperforms all other mean shift based algorithms for color images and
is marginally better than current of the art segmentation algorithms. In the

® The PR measure is misguiding in this dataset because of the existance of only two
segments. Thus, a uniform segmentation of the whole image produces a result of
~ 0.97, i.e., very close to the maximum 1.

14

K. Bitsakos, C. Fermiiller and Y. Aloimonos

future we want to investigate how the methods perform when they are coupled
with more sophisticated grouping techniques, such as [18].

Acknowledgements

The support of the EU under the Poeticon project (Cognitive Systems) is also
gratefully acknowledged.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function
with applications in pattern recognition. IEEE Trans. Information Theory 21
(1975) 3240

Cheng, Y.: Mean shift, mode seeking, and clustering. PAMI 17 (1995) 790-799
Comaniciu, D., Meer, P.. Mean shift: A robust approach toward feature space
analysis. IEEE Trans. on PAMI (2002) 603-619

. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25

(2003) 564- 577

Wei, Y., Quan, L.: Region-based progressive stereo matching. CVPR, (2004) 106—
113

Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimen-
sions: A texture classification example. ICCV (2003) 456-463

DeMenthon, D., Megret, R.: Spatio-temporal segmentation of video by hierarchical
mean shift analysis. Technical report (2002)

Yang, C., Duraiswami, R., Gumerov, N., Davis, L.: Improved fast gauss transform
and efficient kernel density estimation. ICCV (2003) 464-471

Fashing, M., Tomasi, C.: Mean shift is a bound optimization. PAMI 27 (2005)
471-474

Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. ICCV 2 (2001) 416-423

Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic
bottom-up aggregation and cue integration. CVPR (2007) 1-8

Rao, S., Martins, A., Principe, J.: Mean shift: An information theoretic perspective.
Pattern Recognition Letters 30 (2009) 222 — 230

Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. ICPR 4
(2002) 150-155

Meila, M.: Comparing clusterings: an axiomatic view. ICML (2005) 577 — 584
Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation
of image segmentation algorithms. Workshop on Empirical Evaluation Methods in
Computer Vision, CVPR (2005)

Freixenet, J., Munoz, X., Raba, D., Marti, J., Cuff, X.: Yet another survey on
image segmentation: Region and boundary information integration. ECCV (2002)
408-422

Yang, A.Y., Wright, J., Ma, Y., Sastry, S.: Unsupervised segmentation of natural
images via lossy data compression. Comput. Vis. Image Underst. 110 (2008) 212—
225

Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.
1JCV 59 (2004) 167-181

