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Abstract In the neural superposition eye of a dipteran
fly every ommatidium has eight photoreceptors, each
associated with a rhabdomere, two central and six
peripheral, which altogether result in seven functional
light guides. Groups of eight rhabdomeres in neighbor-
ing ommatidia have largely overlapping fields of view.
Based on the hypothesis that the light signals collected
by these rhabdomeres can be used individually, we inves-
tigated the feasibility of estimating 3D scene informa-
tion. According to Pick (Biol Cybern 26:215–224, 1977)
the visual axes of these rhabdomeres are not paral-
lel, but converge to a point 3–6 mm in front of the
cornea. Such a structure theoretically could estimate
depth in a very simple way by assuming that locally the
image intensity is well approximated by a linear func-
tion of the spatial coordinates. Using the measurements
of Pick (Biol Cybern 26:215–224, 1977) we performed
simulation experiments to find whether this is practi-
cally possible. Our results indicate that depth estimation
at small distances (up to about 1.5–2 cm) is reasonably
accurate. This would allow the insect to obtain at least
an ordinal spatial layout of its operational space when
walking.

1 Introduction

In the biological world a large variety of eye designs
exists. It has been estimated that eyes have evolved no
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fewer than 40 times, independently, in different parts
of the animal kingdom (Dawkins 1996). An adapta-
tionist’s logic leads to the conclusion that these eye
designs and therefore the images they capture, are highly
adapted to the tasks the animal has to perform. For
many years neurobiologists have performed compara-
tive studies of eyes at the physical level. Some examples
are investigations of the physical limits of visual discrimi-
nation (Barlow 1964) and comparisons of factors such as
resolving power and sensitivity (Land 1981). It is well
understood that eyes always embody in their design
complicated compromises between different competing
physical factors. Recently, in the literature of Robot-
ics and Computer Vision, an effort started to design
new camera systems which are better suited than stan-
dard cameras for solving specific tasks. Along with these
efforts, computational researchers also started to com-
pare the performance of different eyes or cameras at
a higher level, that is at the level of the computational
tasks. To give an example, it was shown that eyes cover-
ing a full sphere have a computational advantage over
eyes with smaller field of view for the task of visual 3D
motion interpretation (Dahmen et al. 1997; Fermüller
and Aloimonos 2000).

Here, we take a look at the compound eye of flies.
Is there an advantage to the particular arrangement of
many ommatidia, each with a few photoreceptors and
each with its own lens? Or is this implementation sim-
ply a cost-effective solution? We investigate whether this
architecture allows for easy distance estimation. Ordi-
nary stereo between the two eyes, as it has been found in
the praying mantis (Rossel 1983) does not seem likely,
because there is hardly any overlap of the images in the
outward pointing compound eyes of flies. Regular ste-
reo between neighboring ommatidia of individual eyes,
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because of the small distances between them, is not
meaningful either. Another form of deriving distance
may still be possible.

In the compound eye of the dipteran fly, the rhabdo-
meres of an ommatidium are not fused, as in many other
compound eyes, but sample different parts of the image
produced by the corneal lens. The eight rhabdomeres,
two narrow ones in the center stacked one on top of the
other, and six wider ones arranged around the central
pair, form a pattern of one central plus six peripheral
lightguides (Franceschini 1975). Groups of seven rhab-
domeres (counting the central pair as one) each from a
different ommatidium possess largely overlapping visual
fields. The two central photoreceptors project directly
to the medulla, without synapsing in the lamina. The six
peripheral receptors send their input to a common car-
tridge (neurommatidium) in the lamina where the sig-
nals are among other things superpositioned to obtain
enhanced light sensitivity; thus the name, “neural super-
position”. It is generally considered that the visual axes
of the six rhabdomeres of one neurommatidium are par-
allel, such that perfect signal enhancement for all spa-
tial wavelengths can occur. Pick [1977], however, found
that there is no parallelism. Instead the six visual axes
of one neurommatidium converge to a point 3–6 mm
in front of the corneal surface. He also showed that
the non-parallelism does not conflict with the basic con-
cept of neural superposition. He argued that this special
arrangement of the rhabdomeres is an adaptation for
high absolute light sensitivity (increasing light sensitiv-
ity and reducing optical crosstalk between neighboring
rhabdomeres). He also suggested that it may possibly aid
in estimating distances of visual objects. Following this
thought, in this paper we present a mathematical theory
and experiments on how depth could be obtained with
such an eye architecture.

We compare the optical system of the fly’s eyes to a
system of cameras. It is like an array of closely spaced
simple cameras with seven pixels each arranged on a
sphere (or two hemispheres). In the abstract, camera
systems can be studied through the concept of the plen-
optic function, which is the function of all the light rays
covering a certain space. Any camera system samples
a subset of the plenoptic function. In Neumann et al.
[2004] it has been shown that theoretically a spheri-
cal arrangement of very closely spaced pinhole cameras
could allow for easy estimation of distance.

The underlying idea is as follows. Assuming the plen-
optic function to be continuous, it can be linearized in a
small spatial neighborhood (as we usually do in image
motion estimation). We then can compare the change of
intensity of adjacent rays through the same focal point
with the change of intensity of parallel rays through

adjacent focal points. From the comparison of similar
triangles, we obtain that their ratio provides distance.

According to the Pick model we have rays from close
by scene points forming images on multiple (seven)
ommatidia, with all the rays carrying different image
information. Thus, using the linearization we could
obtain distance. The question is whether the few rays
and the low acuity of the fly’s eye would actually al-
low for any reliable estimate. We find it is possible at
close distances. In the remainder of the paper we re-
cap the theory on how the distance parameters can be
estimated and present results from experiments using
synthetic images as those seen by compound eyes.

The paper is organized as follows. Section 2 describes
the model of the eye of dipteran flies that we used for our
simulations. Section 3 synopsizes the theoretical back-
ground and the tools used to analyze the images taken
from such an eye. Then a detailed explanation on how
depth estimation using these images can be performed,
is provided. Section 4 presents a plausible implementa-
tion of the estimation algorithm using a neural network
and discusses some biological issues. Section 5 describes
experiments and an analysis relating the distance esti-
mation to the filtered signal. Finally, Sect. 6 provides a
summary and discussions.

2 The model

The compound eye of a dipteran fly (Fig. 1) consists
of many single eyes, called ommatidia, arranged on the
surface of a spheroid. Each ommatidium is adjacent to
six other ommatidia and contains eight photoreceptors
R1–R8 each with a rhabdomere (that contains the visual
pigments). In Fig. 2a only seven photoreceptors are de-

Fig. 1 The compound eye of a housefly (Musca domestica) con-
sists of approximately 3,000 ommatidia arranged on a spherical
structure. Courtesy of Duncan Waddell
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Fig. 2 a Schematic longitudinal and transverse section of a fly
ommatidium. A retinula-cell axon; Cc crystalline cone; L cornea
lens; Pc pigment cell; Rc retinula cell; Rh rhabdomere. b Filled
circles indicate the pattern of retinula cells whose visual field axes
are parallel. Dorsal left eye: ommatidia 1, 2, 3 are located me-
dial, 5 and 6 caudal as seen from outside the eye. c Illustration of
retina-to-lamina projection with one synaptic cartridge. �φr de-
notes the divergence angle between the visual axes of neighboring
rhabdomeres, �φo the interommatidial angle (redrawn from Pick
1977)

picted, because the rhabdomere of R8 lies on top of the
one of R7 and has the same visual axis.

The angle formed by the optical axes of the cen-
tral rhabdomeres of two adjacent ommatidia is denoted
by �φo, and according to (Pick 1977) is approximately
1.88◦.1 The optical axes of the rhabdomeres within the
same ommatidium have a divergence angle �φr, which
is systematically larger than �φo, with values ranging
from 2.18◦ to 2.23◦ (Pick 1977). As a consequence, the
optical axes of the central rhabdomere of an ommatid-
ium and a properly chosen peripheral rhabdomere of an
adjacent ommatidium form an angle �φs = �φr − �φo,
which is about 16 − 19% of �φo (see Figs. 2c, 4a).

For our model it is sufficient to consider a small part
of the compound eye consisting of seven ommatidia,
a central surrounded by six peripheral ones as shown
in Fig. 3. We model each ommatidium as a hexagonal
planar patch, tangent to a sphere of unit radius.
Photoreceptors R7 and R8 are treated as a single one
that we denote R7. For the sake of simplicity, we place

1 All the measurements mentioned in Pick [1977] refer to females
houseflies (Musca domestica).
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Fig. 3 We model the compound eye of the fly as a collection of
planes tangent to the surface of a unit sphere. Each ommatidium
is a hexagonal patch and consists of seven photoreceptors (repre-
sented by dots). In our model, six of them are placed symmetrically
around the center of the hexagon

the six peripheral photoreceptors (R1–R6) symmetri-
cally around the center of the hexagon where R7 (and
R8) lie. The distance between R7 and any peripheral
photoreceptor is one-half the height of the equilateral
triangle (the hexagon is made up of six such triangles).
Figure 4 shows a cross-section through the model.
Figure 4a sketches the visual fields as seen by the periph-
eral photoreceptors according to the Pick model, and
Figure 4b shows what the visual fields would look like if
the axes where parallel.

It is well known that in the compound eye of flies
the peripheral photoreceptors (R1–R6) and the central
photoreceptors (R7, R8) exhibit different functional
characteristics; achromatic vs chromatic input; better
versus worse photon absorbance capability; higher ver-
sus lower signal to noise ratio; faster versus slower
response and lower versus higher absolute gain, respec-
tively (Anderson and Laughlin 2000). Also, the angular
sensitivity and the acceptance (or opening) angle �ρ of
the two groups of photoreceptors is different, and it
changes with the light level. In our model we do not
consider the dependence of the opening angle to the
rhabdomere’s type, light’s wavelength and intensity. We
consider �ρ to be a constant approximately equal to the
interommatidial angle (�ρ = 1.9◦). Since we need to
combine intensity estimates within the two groups, we
assume that there is a normalization step, as has been
suggested in Laughlin [1981], that ensures that the ratio
of outputs from different classes of photoreceptors re-
mains invariant as a function of the changing light inten-
sity. In Sect. 4 we discuss how the angular sensitivity of
the different photoreceptors in the compound eye might
affect the performance of the described algorithm.



490 Biol Cybern (2006) 95:487–501

Δφo-Δφr

O3

O3

O6

O6

O7

O7

R3
3

R3
3

R7
7

R7
7

R6
6

R6
6

Δρ

Δρ

Δφo

Δφ o

Δφr

Δφr

Π1

Π1

Π2

Π2

Π3

Π3

S1 S2

S1 S 
1 S 

1

a 

b 

3 Plenoptic video geometry

Most work in computational vision is applicable to pin-
hole cameras and human vision. The compound eye of
dipteran flies, as described in Sect. 2, is quite different

�Fig. 4 a Converging case: The optical axes of the central photore-
ceptors of adjacent ommatidia diverge at an angle �φo, while the
optical axes of a central and a peripheral photoreceptor within the
same ommatidium diverge at an angle �φr (>�φo). As a result
the axes of the central rhabdomere of the central ommatidium
(R7

7) and the peripheral rhabdomere of an adjacent ommatidium

Rj
j, j ∈ {1 . . . 6} form an angle �φr − �φo > 0. Each photore-

ceptor’s field of view is represented by a cone with opening angle
�ρ. The intersection plane (�1) is located 3–6 mm in front of
the ommatidium. The cones of the converging rhabdomeres coin-
cide at �1, and as the depth of the scene increases they diverge
(denoted by the distance S1 < S2). b The hypothetical case of
�φo = �φr: the distance of the visual axes through the peripheral
photoreceptors, denoted as S′

1, is the same for all depth values
(denoted by the scene planes �1, �2 and �3). As a result, for
larger depth values S′

1 is much smaller than the diameter of the
visual field and can be ignored

from the human eye. To analyze compound eye images,
we need to extend some concepts and tools used for
analyzing images taken by conventional cameras. In this
section we will present these concepts.

The visual space is completely described by all the
light rays in it. Any camera can be viewed as a device that
samples a subset of the space of light rays. A mathemat-
ical description of this space is given by the “plenoptic"
function as described by Adelson and Bergen [1991].
For every position in space, every instance of time, and
every orientation it records the intensity of the light ray
or, more generally, the spectral energy at multiple wave-
lengths. For our purposes we will only consider it a scalar
function, which at a certain time instance maps position
and orientation to intensity. A number of studies in com-
puter vision and computer graphics have recently used
representations of the plenoptic function for rendering
visual information, for example the “light field" (Levoy
and Hanrahan 1996) and the “lumigraph" (Gortler et al.
1996). In Neumann and Fermüller [2003] the concept of
the “polydioptric" camera was introduced. This camera
consists of a surface with an array of pinhole cameras
at closely spaced positions and allows for easy depth
estimation.

We model the compound eye as a very sparse imple-
mentation of the polydioptric camera. We use the same
concepts, but the sparseness of the image receptors
makes the estimation a bit more complicated. The esti-
mation of depth is performed in two computational
steps. The first step estimates through interpolation the
intensity difference between (hypothetical) parallel rays,
and the intensity difference of converging rays along
the gradient direction. This amounts to solving an over-
determined system of linear equations (Sect. 3.3). The
second step computes the depth as the ratio of the two
intensity differences (Sect. 3.4). Together the two steps
provide a mathematically solid way, which uses all the
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data available and does not depend on the specific reg-
ular geometry of the model. However, the neural struc-
ture of the fly may instead compute in simpler ways
approximations to this estimate. In Sect. 3.5 we discuss
an estimation that uses every available direction in the
image independently; that is, there is no interpolation
step.

Let the image intensity function of interest be a scalar
function L(x, r), where x denotes the position, that is the
coordinates on the surface, r denotes the parameters of
the orientation of the ray. Both x and r are two-dimen-
sional. However, for ease of notation, we use coordi-
nates on a sphere and express them as three-dimensional
vectors. Let then x be the vector from the coordinate
center to a point on the surface, and let r be an orienta-
tion vector of unit length.

3.1 Directional derivative ∇rL

First, let us consider the image formed by a spherical
perspective camera. The model consists of a spherical
surface �, the image surface, which is one unit distance
away from the 3D world point O, the center or center
of projection. Let us attach a coordinate system uvw to
the center of projection. The image is formed on � by
intersecting the pencil of rays through O with the imag-
ing surface. In this case we are capturing a subset of
the space of light rays, namely those passing through
a single point (O). Thus, the image can be considered
as a function of varying orientation (r = (u, v, w)T).
The partial derivatives of L(x, r) with respect to orienta-
tion ( ∂L

∂u , ∂L
∂v , ∂L

∂w )T = ∇rL indicate how the intensity at a
given point changes as the direction of the light changes.

3.2 Positional derivative ∇xL

Now, let us consider the theoretical concept of an ortho-
graphic camera. The model consists of a plane �, the
image plane and an orientation in the 3D world r. Let
us attach a coordinate system xyz to the center. The
image is formed on � by all rays with orientation r cross-
ing this plane. So the image at any time can be viewed
as a function of varying position (x = (x, y, z)T). The
partial derivatives of L(x, r) with respect to position,
( ∂L

∂x , ∂L
∂y , ∂L

∂z )T = ∇xL indicate how the intensity for a
given orientation changes as the position of the light ray
changes.

3.3 Estimating the derivatives

Our camera model combines elements of both ortho-
graphic and perspective cameras. More precisely if we
consider the central photoreceptors only, then we have a

spherical perspective camera.2 Similarly, if we consider
each ommatidium in isolation, then we have a planar
perspective camera. On the other hand, if we think of
the almost converging light rays recorded by the pho-
toreceptors of a single neurommatidium, then both the
position and the orientation differ, so we have a mixed
camera model. From the given image intensity measure-
ments we have to compute the positional (∇xL) and
directional derivatives (∇rL) at the central photorecep-
tor of an ommatidium. Assuming that the image inten-
sity is linear in a local neighborhood, we can then obtain
these derivatives by considering their projections on the
given receptor measurements. That is, we compute the
scalar products of the derivative vectors with the differ-
ence vectors of orientation and position. The projection
of vector a on b is written a · b, with “·” denoting the
scalar products, and in matrix notation this is expressed
as aTb. In the following equations we use the index-
ing as applied in Fig. 3. We denote the ommatidium
that a photoreceptor belongs to with a superscript and
the position of the photoreceptor inside the ommatid-
ium with a subscript. The central ommatidium and the
central photoreceptor are numbered 7 and the rest are
numbered 1–6. 3 A ray at photoreceptor Rj

i has orienta-
tion rj

i and position xj
i and Lj

i is the intensity “seen" by
the photoreceptor. We then obtain:

central
photoreceptors

∇rLT(ri
7 − r7

7) = Li
7 − L7

7 , i ∈ {1 . . . 6}
(1)

“neuro
-ommatidium”
photoreceptors

(∇xL
∇rL

)T
⎛
⎜⎝

x3+j
3+j − xj

j

r3+j
3+j − rj

j

⎞
⎟⎠ = L3+j

3+j − Lj
j,

for j ∈ {1 . . . 3}.
(2)

In addition,

radiance constancy along r ∇rLTr7
7 = 0 (3)

radiance constancy along r ∇xLTr7
7 = 0 (4)

Equation (1) expresses the relationship between the
central photoreceptors (R7

7, Ri
7, i ∈ {1 . . . 6}) of two adja-

cent ommatidia (O7, Oi). Equation (2) expresses the

2 All the rays pass through the center, while the image is formed
on the surface of the sphere.
3 The numbering convention is the same as the one used in Pick
[1977], Fig. 2.
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relationship between two peripheral photoreceptors of
two peripheral ommatidia with converging visual axes
(R4

4–R1
1, R5

5–R2
2 and R6

6–R3
3). While the central photo-

receptor of the central ommatidium (R7
7) also has an

almost parallel optical axis with the aforementioned
photoreceptors it is not included in (2), because only the
six peripheral retinula cells send their input to a com-
mon synaptic cartridge in the lamina (Trujillo-Cenoz
and Melamed 1966; Braitenberg 1967).

Equations (3) and (4) express the fact that a trans-
parent medium such as air does not change the intensity
of the light, thus the radiance along the viewing direc-
tion r is constant and both directional and positional
derivatives along r are zero.

The above Eqs. (1) and (2) form a linear system A ·
X = B. If we assume that the central photoreceptor of
the central ommatidium (R7

7) lies on the z axis i.e., has
position and orientation x7

7 = r7
7 = (0, 0, 1)T, then the

z-component of the positional and the directional deriv-
ative is zero ( ∂L

∂z = ∂L
∂w = 0) and we obtain the following

system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 u1
7 v1

7

...
...

...
...

0 0 u6
7 v6

7

x4
4 − x1

1 y4
4 − y1

1 u4
4 − u1

1 v4
4 − v1

1

x5
5 − x2

2 y5
5 − y2

2 u5
5 − u2

2 v5
5 − v2

2

x6
6 − x3

3 y6
6 − y3

3 u6
6 − u3

3 v6
6 − v3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

∂L
∂x

∂L
∂y

∂L
∂u

∂L
∂v

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1
7 − L7

7
...

L6
7 − L7

7

L4
4 − L1

1

L5
5 − L2

2

L6
6 − L3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

X = (Xj) is a 4 × 1 vector containing the unknown
derivatives (two directional and two positional deriva-
tives), A = (ai,j) is a 9 × 4 matrix and B = (Bi) is a 9 × 1
vector containing the differences in the intensity values.
In the ideal case, this system is clearly over-determined,
as only four linear independent equations are needed
to solve it. In practice, the intensity values of vector
B are not perfect, so we need to find the “best" esti-
mate for X by minimizing the error. We use the sum of
squared differences as the cost function and solve the
least squares minimization

minX∈R4‖AX − B‖2
2 = minX∈R4

9∑
i=1

⎛
⎝ 4∑

j=1

aijxj − bi

⎞
⎠

2

.

(6)

The four components of X are not independent. From
Eqs. (3) and (4) we obtain that the directional and the
positional derivative vectors are parallel. This relation
can be enforced by requiring the cross-product of the
two vectors to be zero. The optimization problem then
takes the form:

minX∈R4‖AX − B‖2
2

subject to ∇rL × ∇xL = 0. (7)

The last constraint makes the optimization problem
non-linear and thus more difficult to solve. In our exper-
iments we found that it does not lead to significantly
better results. Thus, for a simple implementation, it is
not necessary to enforce this constraint.

Before going on, let us consider also how our equa-
tions would look like if the visual axes of the photore-
ceptors of an neurommatidium were parallel. Then in
Eq. (2)

r3+j
3+j − rj

j = 0 for all j ∈ {1 . . . 3},
and thus Eq. (2) simplifies to
(∇xL

)T
(

x3+j
3+j − xj

j

)
= L3+j

3+j − Lj
j, for j ∈ {1 . . . 3} (8)

In this case Eqs. (1) and (2) are independent. The
positional derivatives are simply interpolated from the
rays of the peripheral receptors, and the directional
derivatives are interpolated from the rays of the central
receptors.

3.4 Distance estimation

Using the estimated values for the positional and direc-
tional derivatives (∇xL, ∇rL), one can approximate the
distance of the object viewed. 4 This relationship can be
obtained from the law of similar triangles. It was first
derived in Bolles et al. [1987] for differential stereo and
image plane analysis. The derivation is shown next.

Let us attach a coordinate system xyz for position and
a coordinate system uvw for orientation to the center of

4 Let us clarify: the term depth is usually used to refer to the
distance along the z-axis in planar cameras. In spherical imaging
systems, as in the eye of the fly, we are computing the distance
from the center of the sphere to the object, which is also called
the range. In this paper we have used loosely the term depth, as
locally the distance was measured along the z-axis. Globally, how-
ever, with respect to the whole eye, these measurements always
refer to distance.
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our spherical camera O. The two coordinate systems are
aligned. Consider a plane �O : z = 0 at the center and a
plane �R : z = 1 tangent to the unit sphere. The camera
sees a planar object �Obj, which we assume to be parallel
to �O and �R, located Z0 units away from the center O.
Consider three points P0, P1 and P2 on the object, which
are viewed by the rays LP0 = L(x, r), LP1 = L(x + dx, r)
and LP2 = L(x, r + dr) as shown in Fig. 5. That is, the
change in orientation between rays through P0 and P2 is
dr = (du, dv, 0)T, and the change in position between
rays through P0 and P1 is dx = (dx, dy, 0)T, with r·dx = 0
and r · dr = 0. Figure 5 shows a cross-section parallel to
the y-axis through the setting, thus showing only the x
and u components.

Since

dx = du (9)

we have that

dx=‖−−−→
POP1‖= 1

Z0
‖−−→P0P2‖ (similar triangles argument).

Assuming that the intensity in the object plane varies
linearly, we obtain

LP1 − LP0

LP2 − LP0

= ‖−−→P0P1‖
‖−−→P0P2‖

⇒

L(x + dx, u) − L(x, u)

L(x, u + du) − L(x, u)
= ‖−−→P0P1‖

‖−−→P0P2‖
= 1

Z0
.

Taking the limit of the above equation as dx and du
go to zero we obtain

lim
du,dx→0

L(x + dx, u) − L(x, u)

L(x, u + du) − L(x, u)
= Lx

Lu
= 1

Z0
.

O

Z

P0 P1 P2

dx

duR0 R1

ΠO

ΠR

ΠObj

Fig. 5 Depth estimation using the positional and directional
derivatives

Similarly we can calculate distance using the Ly, Lv val-
ues, thus in general:

Z0 = Lu

Lx
= Lv

Ly
. (10)

The distance value calculated from Lu, Lx should be
the same as the distance value calculated from Lv, Ly.
This is enforced by constraint (7).

3.5 Direct distance estimation using the equal triangles
principle

Let us ignore the interpolation. Assuming the photore-
ceptors are arranged symmetrically, we could compute
the distance from any of three orientations in the plane.
For example, we could use ommatidia O7, O3 and O6

(Fig. 3). This is shown next.
Let us take a look at a one-dimensional cross-section

through the ommatidia in the model. Referring to Fig. 6,
I denotes the intersection of two rays from neighboring
ommatidia converging at an angle �φs = �φr−�φo. I is
at distance D0 from the center of the eye and at distance
D1 from the object. A, B, C, D are points on the object
projecting on photoreceptors R7

7, R6
7, R6

6 and R3
3. Let E1

be the intensity difference between rays through A and
D (we actually obtain the intensity difference between
the rays through C and D, which is 2E1), and let E2 be
the intensity difference between the rays through A and
B.

Then

C̄D = 2ĀD = 2D1 tan �φs and

ĀB = (D0 + D1) tan �φo.

Taking the ratio and ignoring the tan, because angles
�φs and �φo are sufficiently small, we have

ĀD

ĀB
= E1

E2
= D1�φs

(D0 + D1)�φo
.

A

D

C

B

O I

Δφo Δφs
R7

7

R6
6

R3
3

R6
7

D0

D1

E2

2E1

Fig. 6 Cross-section through three neighboring ommatidia
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Through some manipulation we obtain

D1 = D0

(�φs/�φo)(E2/E1) − 1
.

Thus the total distance D is

D = D0 + D1 = D0 + D0

(�φs/�φo)(E2/E1) − 1
. (11)

Notice that D0 is a constant. Let us estimate its value.
In our model the distance ¯R7

7R6
6 is approximately (5/4)

�φo (the distance from R7
7 to R6

7 is ∼ �φo, the dis-
tance from R6

7 to R6
6 is ∼ (1/4)�φo and the three points

approximately lie in a straight line). Thus, from the rela-
tion

5
4
�φo = �φs(D0 − 1)

by substituting

�φo = 1.88◦ and �φs = 0.3◦

we obtain

D0 = 5
4

�φo

�φs
+ 1 	 8.8. (12)

So far, we have purposely avoided to mention the
distance unit. In our model, we consider the sphere as
having a radius of one unit, so every other distance is
expressed in terms of the radius of our spherical camera.
Having said that, if we consider a camera the size of an
insect’s eye i.e., radius equal to 0.5 mm, and an object
that is 30 units away, then the actual distance of the ob-
ject from the camera is 30×0.5 mm = 15 mm = 1.5 cm.
Moreover the distance between the central points seen
by the central photoreceptors of two adjacent omma-
tidia is �d ≈ D tan �φo ≈ 0.5 mm (when the plane is
15ṁm away). For such small distances, it is reasonable
to assume that the intensity function obtained by the
photoreceptors varies smoothly.

The results of the distance calculation for a number
of different textures are presented in Sect. 5.

4 Neural network implementation

4.1 Artificial neural network

We first describe a simple artificial neural network
approximating the computations described in Sects. 3.3
and 3.4. It consists of two networks in series; the first
estimates the directional and positional derivatives by
a simple linear system, the second one implements the
depth computation as the ratio of the derivatives by a
lookup table.

Linear Neuron with Vector InputInput Output

B1

B2

B9

W1,1

W1,2

W1,9

W4,2

W4,9

Lx

Ly

Lu

Lv

b1

b2

b3

b4

Σ

Σ

Σ

Σ

Fig. 7 Neural network computing the positional and directional
derivatives. B9×1 codes the intensity difference values obtained
by the photoreceptors, W4×9 is the weight vector, b4×1 is the bias
vector. The transfer function is the identity

In the first stage, the linear system (Eq.5) is solved
with a single layered neural network using a linear trans-
fer function, as shown in Fig. 7. The input to the network,
denoted as B is a 9×1 vector which codes the differences
in the intensity values recorded by the photoreceptors
(the righthand side in Eq. 5). W is a 4×9 array that con-
tains the weights of the neural network. Element Wij
specifies how the jth entry of B affects the ith unknown
Xi. b contains the bias weights for each unknown. Vec-
tor X codes the x and y components of the directional
and positional derivatives. The transfer function f is the
identity function (i.e., f (X) = X). Training the neural
network amounts to estimating the elements of W and
b. After that, vector X is computed as:

X = f (WB + b) = WB + b. (13)

In the second stage, depth is obtained as ratio of the
directional and positional derivatives (Eq. 10). Instead
of directly calculating the ratio, an approximate depth
value is found using a lookup table. There are many pos-
sible neural network architectures approximating func-
tion mappings (Kohonen 2000). We use a counterpropa-
gation neural network (CPN) (Hecht-Nielsen 1987, 1988),
which can self-organize lookup tables. The basic idea is
that, during adaptation, pairs of example vectors (Xe,
Ye) are presented to the network in the first and last
layer. These vectors then propagate through the net-
work in a counterflow manner to yield output vectors X
and Y, which are approximations of Xe and Ye. For our
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Fig. 8 The forward-only CPN implementing a lookup table for
the estimation of distance as the ratio of directional and positional
derivatives

purposes we use a simple variant of the CPN, which
is known as forward-only counterpropagation neural
network (see Fig. 8). It consists of one hidden layer,
two input layers (with five neurons coding X1 − X4
and De) and one output layer (one neuron D). The
input units X1 −X4 represent the four values of the posi-
tional and directional derivatives ( ∂L

∂x , ∂L
∂y , ∂L

∂u , ∂L
∂v ) and

are connected with all the elements of the hidden layer.
The hidden units compete with one another and a single
“winner" emerges. Finally, the output unit D receives
the output of the hidden units and produces as result
the estimated depth. Neuron De is only connected with
the output unit D, and it is used in the training stage
only. It codes the true distance value, which could be
provided from other sensor measurements. The size of
the hidden layer greatly affects the accuracy of the esti-
mated distance. From our experiments (Sect. 5) a layer
of a few dozens neurons is expected to give reasonable
results.

4.2 Discussion of biological implementation

It is well known that in the first stage the group of periph-
eral photoreceptors (R1–R6) terminate on the first optic
neuropil (lamina) (Kirschfeld 1967), while the two cen-
tral photoreceptors’ axons bypass the lamina and project
directly to the medulla (Campos-Ortega and Strausfeld
1972). In a second stage the signals from the peripheral
photoreceptors (R1–R6) are conveyed from the lamina
to the medulla by the L3 monopolar cells (Strausfeld
1989), where they associate with input from the cen-
tral photoreceptors (Strausfeld 1984). There is also evi-

dence of two independent, parallel pathways leading
from medulla to lobula and lobula plate, respectively
(Strausfeld and Lee 1991). It has been suggested that
processing in the lobula plate is related to motion detec-
tion, while in the lobula the computation of form and
color is performed (Bausenwein et al. 1992). Based on
those findings the computations of depth, hypothesized
here, would probably be realized in the lobula or in the
medulla.

First, we want to point out that estimating the depth
from the theory described here is just as complex as
estimating image motion along the dominant gradient
direction (the so-called normal flow Horn 1986). This
becomes very clear when we compare the method to mo-
tion estimation techniques using image gradients. Such
techniques require the spatial and temporal derivatives
of the image intensity function to be computed; image
motion is derived as the ratio of the temporal derivative
over the spatial derivative. Other image motion models
in the literature are based either on energy responses in
the frequency domain or on correlation responses. They
require finding the maximum energy response among a
number of filter responses, or the maximum correlation
response among a number of candidates. In addition,
any method uses some form of interpolation. Depth esti-
mation may be realized in a similar way. The derivatives
as well as the ratio of derivatives may be derived
using place coding (that is by choosing among a number
of candidates) as opposed to value coding (that is by
computing parametric values).

The network proposed above is simple enough to be
implemented with only a few neurons. It is also quite
robust, because by combining multiple intensity mea-
surements in the first stage some noise and non-linear-
ities can be tolerated. Alternatively, the depth may be
estimated independently from the three directions of the
photoreceptors, as described in Eq. (11). When comput-
ing depth from any individual direction, only the ratio of
the intensity differences is required. Thus, this estima-
tion could be approximated with a lookup table using a
CPN in a way similar to the second network above. Fol-
lowing, the three depth estimates need to be combined.
This can be realized by averaging, which amounts to
lowpass filtering. The estimation of the image deriva-
tives themselves can simply be implemented by a linear
filter.

We have not mentioned the time dimension yet. The
image intensities are also integrated over time, and this
has the effect of additional low pass filtering. On the
other hand, it could also be possible to defer the depth
computations to the time domain. Image motion in the
fly is modeled by the Reichardt detector (Reichardt
1969), which correlates two spatially and temporally
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displaced signals. Estimating the motion amounts to
choosing the time difference which best corresponds to
the spatial difference. Using the motion hardware, in-
stead of encoding depth through intensity differences,
depth could be encoded as the time difference of Reic-
hardt correlators. One set of Reichardt detectors could
correlate the center rays, and another one the converg-
ing rays of neighboring ommatidia. The temporal time
delay is inverse proportional to the spatial intensity
change. Thus, the depth could be obtained, by modifying
Eq. (11) to

D = D0 + D0

(�φs/�φo)(T1/T2) − 1
, (14)

where T1 and T2 denote the time difference between the
peripheral and the central photoreceptors, respectively.

An important characteristic of the compound eye
that we haven’t discussed yet, is the angular sensitiv-
ity of the rhabdomeres (van Hateren 1984). Due to its
small cross-section, incident light is channeled into the
rhabdomere from a narrow range of directions, giving
the photoreceptor a limited field of view. The spatial
distribution function is called angular sensitivity and in
the majority of compound eyes (including those of dip-
teran flies) is a triangular or bell-shaped function that is
often approximated by a Gaussian curve (Götz 1964). Its
shape is determined by the geometry and optical com-
ponents of the ommatidium (Stavenga 2003a, 2004a).
The half-width of the Gaussian is called the acceptance
(or opening) angle �ρ. It is found that the angular sen-
sitivity depends on the wavelength of the incident light
as well as its intensity. For low-light conditions �ρ is
wider, while in bright light conditions it is narrower
(Stavenga 2004b). More importantly, the angular sen-
sitivity of the peripheral rhabdomeres (R1–R6) is dis-
tinctly larger than that of the central photoreceptors
(R7–R8) (Stavenga 2003b). �ρ also depends on the spe-
cies, with the ratio of acceptance angle to interommati-
dial angle commonly being one or less (Kirschfeld 1976).

In our model the intensity differences from the
peripheral receptors are much smaller than those of the
central receptors. Thus, it is critical that their estimates
are quite accurate. A larger opening angle for those
receptors and thus larger overlap of the visual fields in
effect creates more low pass filtering. This should lead
to a larger signal to noise ratio and thus better estima-
tion. The signal to noise ratio generally is worse for low
intensity values. A larger opening angle for decreasing
light levels should make the depth estimation more sta-
ble at low light levels. Thus, in summary, the change in
opening angle should have a positive effect on the depth
estimation. But we do not expect that there is a signifi-
cant difference in the accuracy of the depth estimation

at different light levels because of the change in the size
of the opening angle.

5 Experiments

5.1 Methodology

In the absence of a camera similar to the compound eye,
we used the following methodology to test our algo-
rithm. We gathered a number of images picturing real
objects (e.g., trees, flowers, soil etc) as well as created
a few images displaying special cases (e.g., linear, qua-
dratic and cubic textures, horizontal and vertical edges,
corners etc). We assume that those pictures are fronto-
parallel to the compound eye at various distances. Then
we calculate the intensity value seen by each photore-
ceptor by intersecting its visual axis with the plane. We
consider the angles �φo and �φr to be 1.88◦ and 2.18◦,
respectively, and use bilinear interpolation to get sub-
pixel accuracy. We also assume that each photoreceptor
has a field of view, described by an angular sensitivity
function with acceptance angle �ρ = 1.9◦. Thus, we
use a 2D Gaussian function whose size is determined
by intersecting the plane with an appropriately oriented
cone centered at the photoreceptor. As a consequence,
the size of the Gaussian filter depends on the distance of
the plane from the compound eye. The standard devi-
ation of the function is also related to the size, more
specifically we have chosen the standard deviation to be
the same as the filter size. In the previous sections we
presented two equivalent ways to estimate the distance,
namely the non-linear optimization problem (Eq. 7) and
the direct distance calculation using Eq. (11). Under
ideal conditions (linear texture, no noise) both meth-
ods should give the same results. In practice the esti-
mates are slightly, but not significantly different. Also
note that the “equal-triangles” methods produces three
estimates, one for each principal direction of the pho-
toreceptors. Reasonable results are possible only if the
data behaves linearly in the neighborhood considered.
Thus, we chose the following simple implementation of
a “linearity test”. If the three distance values are close
then we just average, otherwise we perform a linearity
test on the intensity values. (That is, we check whether
Lj

7 − L7
7 is close in value to L7

7 − Lj+3
7 and Lj

j − L7
7 is

close in value to L7
7 − Lj+3

j+3, j ∈ {1 . . . 3}). Then we keep
only the distance value corresponding to the directions
which are better approximated as linear.

For each image and for distances ranging from 2 to
300 units away we apply both methods multiple times.
Each time we assume that the central photoreceptor of
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Fig. 9 The synthetic textures
used in our experiments.
From left to right the linear,
quadratic and cubic texture is
displayed. The four circles
reveal the part seen by the
seven ommatidia for distances
10, 50, 100 and 300 units away
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Fig. 10 The results of our experiments for linear, quadratic and
cubic texture with noise using the non-linear optimization formu-
lation. We use multiplicative noise with zero mean value and 2%
standard deviation. We have taken 61 measurements for each tex-
ture (by considering a different center each time) and we present

the median estimated distance and its interquartile range (IQR)
divided by 2 using a dot and a vertical error bar, respectively. The
effect of the multiplicative error is large in the case of the linear
texture and very small for the other two textures

the central ommatidium sees a different pixel, thus we
consider a different part of the picture. Then, we calcu-
late a measure for the average value and its dispersion.
In order to be robust in the presence of outliers we use
the median value and the interquartile range i.e., the
difference between the 75th and 25th percentile of the
data. For simplicity, we only present the values obtained
with the non-linear optimization problem. The results
obtained with the other method are in most cases simi-
lar.

5.2 Results

Initially we use a plane with a linear, quadratic and cu-
bic texture (Fig. 9). We obtain precise depth estimates
for linear and quadratic textures. For cubic textures the
results are within 1% of the real values for all but very
large depth values (>1,000 units). Next, we superimpose
multiplicative Gaussian noise with zero mean value and
2% standard deviation on the previous textures. The re-
sults are presented in Fig. 10. In this experiment distance
estimation becomes more accurate as the real distance
increases, which seems to contradict with the common
sense. This phenomenon can be explained by the fact
that the area seen by each photoreceptor increases as
the texture is placed further away from the eye and as

a consequence the effect of noise, which was added to
the original image, is decreased. We elaborate more on
the effect of noise on distance estimation later on this
paper.

Next, we test the algorithm with real images.5

Figure 11 presents a small but representative fraction
of the images used. In order to simulate the limited acu-
ity of each photoreceptor we filter each image with a
circular averaging filter before applying our algorithm.
The results are presented in Table 1.

According to that table as well as the outcome of
our method with the rest of the images, depth can be
estimated with good accuracy (<10% error) for close by
(<20 units away) and with fair accuracy (∼25% error) for
medium distances (<40 units away). More specifically
from the table we observe that we got good distance
estimates for the glass, medium for the rose and pave-
ment and bad for the mud texture. The reason for the
good results with the glass pattern is that this image has
a good “linear” structure; going from dark on the lower
left to bright on the upper right corner. So even though
it contains significant energy at high spatial frequencies,
which can be observed as fluctuations in the intensity

5 Part of the images we used were from the collection cited in van
Hateren and van der Schaaf [1998].
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Fig. 11 Images of real objects
used in our experiments.
Starting from the upper left
image and going clockwise: a
rose, the microscopic
structure of a glass, a
pavement and a mud texture
are depicted. Note that only
the part of the rose inside the
black rectangle was used in
our experiments. Also note
that the three concentric
circles shown on each image
reveal the area taken into
account during the calculation
of depth for distances of 10,
50 and 100 units respectively

Table 1 The results of our experiments for real images

True Estimated depth

depth Rose texture Glass texture Mud texture Pavement texture

4 3.87 ± 0.19 3.96 ± 0.12 3.94 ± 0.07 3.94 ± 0.11
6 5.98 ± 0.22 5.97 ± 0.11 5.93 ± 0.09 5.93 ± 0.17
8 8.00 ± 0.13 7.99 ± 0.05 7.94 ± 0.05 7.97 ± 0.07
10 10.08 ± 0.25 10.03 ± 0.10 10.17 ± 0.10 10.06 ± 0.14
12 12.30 ± 0.58 12.10 ± 0.24 12.82 ± 0.43 12.19 ± 0.35
14 14.53 ± 1.35 14.33 ± 0.50 16.04 ± 1.33 14.47 ± 1.04
16 16.64 ± 2.41 16.61 ± 0.81 20.68 ± 3.60 16.81 ± 1.67
18 18.48 ± 3.14 19.10 ± 1.39 25.38 ± 8.75 19.02 ± 2.57
20 20.76 ± 4.84 21.64 ± 1.54 28.09 ± 17.43 21.94 ± 3.09
25 26.97 ± 7.30 28.62 ± 2.10 17.75 ± 36.54 28.48 ± 6.41
30 34.58 ± 11.10 38.45 ± 6.74 −13.66 ± 31.76 33.31 ± 16.57
40 37.32 ± 27.12 56.31 ± 15.16 −8.52 ± 19.49 26.26 ± 42.73
50 46.01 ± 28.30 70.52 ± 11.78 −8.80 ± 4.91 20.13 ± 46.45
60 57.05 ± 80.45 75.37 ± 17.67 −6.13 ± 1.54 17.46 ± 40.08
70 −59.67 ± 71.23 80.18 ± 51.87 −4.44 ± 1.50 8.42 ± 37.69
80 −45.48 ± 22.92 94.87 ± 86.92 −3.34 ± 1.15 −8.08 ± 35.04
90 −32.41 ± 15.46 108.83 ± 80.24 −2.17 ± 1.35 −9.41 ± 28.44
100 −23.21 ± 10.77 131.69 ± 64.44 −1.02 ± 1.26 −10.40 ± 30.69

The sizes for the rose, glass, mud and road texture used are 120 × 120, 600 × 600, 444 × 500 and 1, 024 × 1, 024 pixels, respectively. At
a distance of 10 units away from the camera the distance between two outer opposite ommatidia centers i.e., R6

7 and R3
7 (referring to

Fig. 3) is 6.6 pixels for the rose and mud image and 13.2 pixels for the other images. Similarly, for depths 50 and 100 units the distance
is 32.8, 65.6 and 65.6, 131 pixels, respectively. We have taken 61 measurements for each image (by considering a different center each
time) and we display the median estimated distance and its interquartile range divided by 2
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values of neighboring pixels, after the low-band filtering
step the “linear” structure emerges and makes distance
estimation accurate. The two patterns, glass and pave-
ment, have dominant low frequencies. As we explain
in the next section, this fact makes depth estimation at
larger distances less accurate. Finally, the mud pattern
contains significant medium and high frequencies and
doesn’t have the linear structure of the glass image. This
is the most unreliable case for our algorithm.

5.3 Analysis of the distance estimation

The method is based on the linearity assumption, namely
that the scene observed by the part of the compound eye
has linear texture. In practice this assumption may not
hold, resulting in poor distance estimation. In this sec-
tion we explain why the algorithm is not accurate for
medium and large distances. We also take a look at the
signal in the frequency domain to investigate the effect
of dominant low and high frequencies on distance esti-
mation.

As it is derived in Eq. (11), the analytical relation
between distance and image intensity is

D = D0 + D1 = D0 + D0

(�φs/�φo)(E2/E1) − 1
.

If we consider the ratio E2/E1 as a single variable x
then the above equation is a hyperbolic function

D(x)= α+ α

βx−1
, where α = D0, β = �φs

�φo
, x=E2

E1
.

Figure 12 presents the plot of D(x). It is clear from the
graph that for distances greater than 25 units good mea-
surements of E2/E1 are needed, as a small error in this
ratio will result in a large error in distance estimation.

To backup the previous argument, in Fig. 13 we pres-
ent the part of the pavement texture seen by the set of
seven ommatidia at various distances between 18 and
50 units. We consider the three principal directions by
connecting antidiammetric diamonds along the periph-
ery of the large circle. Bottom-left to top-right is direc-
tion one, top-left to bottom-right is the second, and top
to bottom is the third. According to our experiments,
depth estimation is quite accurate (less than 20% error)
for all distances along the first direction, accurate for
distances up to 25 units away for the third and up to
20 units away for the second one. Those results can
be explained as follows; the first direction is almost the
same as the direction of the gradient, thus the change on
the intensity values is significant, while on the remaining
directions the intensity change is small and even small
deviations from linearity result in bad distance estima-
tion. Especially the second direction has almost uniform

intensity, that’s why the results along this direction are
worse. Also note that the results are getting worse as the
distance of the texture from the eye is increased because
distance estimation is a hyperbolic function.

Let us now take a look at how the frequency spectrum
of the image affects the error in the distance estimation.
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Fig. 12 Distance as a function of E2/E1
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Fig. 13 Part of the pavement texture seen by a set of seven neigh-
boring ommatidia. The large and small circles point at the central
image points observed by the central and “converging” photore-
ceptors, respectively. The image is displayed after a Gaussian filter
of appropriate size has been applied. Hence, on the electronic ver-
sion of the document one can make out that the image is getting
smoother as the distance increases, because the Gaussian filter is
also getting larger
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If the image is “flat”, meaning that the intensity differ-
ences (E1, E2) are small, a small error in the intensity
estimates can lead to a large error in the estimate of the
ratio E2/E1, resulting in a large error in distance esti-
mation. Thus, the intensity function should not contain
only low frequencies. The “rose” texture is an example
of a texture containing dominant low frequencies, and
the distance estimation results are not very good for that
pattern.

As the images should not be too flat, it is also true
that the images should not contain dominant high fre-
quencies. Let the image signal s(x) be a one-dimensional
sinusoid of frequency ω i.e., s(x) = sin(ωx), and let
this signal be observed by a central and two peripheral
antidiammetric ommatidia, which are at distance W (in
our model W = 2�φo 	 0.066 units, with �φo being
the interommatidial angle). Ideally, the signal should be
monotonically increasing. On average, this is the case
when the distance between the peripheral photorecep-
tors is 1/8 of the period of the signal. This imposes the
following constraint on the highest frequency ωmax of
the signal s(x).

ωmaxW ≤ π

4
⇒ ωmax ≤ π

4W
= π

8�φo
. (15)

The signal observed by a photoreceptor is filtered by a
Gaussian kernel whose cutoff frequency ωcutoff is about

ωcutoff = 1
2(�ρ/2)

= 1
�ρ

. (16)

With �φo and �ρ close in value, the cutoff frequency
is about twice as large as the maximum tolerable fre-
quency. Thus, in general some high frequencies in the
intensity signal of the light field remain after the filter
is applied. Furthermore, since the truncated Gaussian
is not an ideal low-pass filter, there is a problem in the
case of very strong high frequencies, as we observed
for the random noise in the first experiment as well
as the mud texture. For natural images, however, on
average, lower frequencies are more dominant, with the
power spectrum falling approximately inverse propor-
tional to the square of the spatial frequency (Simoncelli
and Olshausen 2001). Thus, in most cases high frequen-
cies should not present a problem for the flies.

6 Conclusions

In this paper we presented a theory on how with the com-
pound eyes of dipteran flies distance can be estimated.
Experiments based on images of objects along with an
analysis indicate that distance estimation is possible with
good accuracy if the viewed objects are relatively close

to the eye. If such a mechanism is used by the fly, it thus
would be useful in walking conditions.

The idea underlying the theory is to exploit the differ-
ential structure of light. Another way of looking at the
approach is as a form of differential stereo. In regular
stereo with two parallel cameras, one has to match points
in the two images. The distance of the matching points
defines the image disparity. In our approach the image
disparity d is approximated linearly from the intensity
derivatives Lx between parallel rays and the intensity
derivatives Lu of converging rays; i.e., d = Lx/Lu. The
estimated distance, then, is inversely proportional to the
disparity; i.e., Z0 = 1/d = Lu/Lx.

We should point out that the analysis here relies on
the data of Pick [1977]. However, the method is also
possible (for small distance values, if, as it is often mod-
eled in other approaches, the neurally superimposed
rays were parallel and not converging (as in Pick’s data).
In such case the estimation of the derivatives becomes
a bit simpler as shown in Sect. 3.3 Eq. (8).

Another issue is whether this mechanism could aid in
motion estimation, which is most essential for insects. If
3D structure estimates are available, and even if they are
ordinal only, their knowledge could certainly facilitate
the process of segmentation (Brodský et al. 1999). Dis-
tance estimates theoretically could also be used to facil-
itate the estimation of ego-motion. The essential idea
is that the introduction of depth information makes the
estimation of 3D motion linear (Neumann et al. 2004).
However, for flying conditions the depth estimates by
our model are expected to be very erroneous. Thus, the
resulting ego-motion estimation should not be accurate
enough to be useful. Studies with bees also indicate,
that bees with similar eyes do not use depth estimates in
conjunction with motion in flying conditions. For exam-
ple, Srinivasan et al. [1989] has demonstrated that during
locomotion bees use directly the size of the flow. A mov-
ing wall caused bees to change their distance to the wall
(Srinivasan et al. 2000). The distance a bee flies seems to
be encoded in the amount of flow on the eye. Thus, bees
were fooled in their judgements when flying through a
tunnel.
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