1. Consider the following attacker $D(1^n)$ given access to an oracle g: query g to obtain $y_0 := g(0^n)$ and $y_1 := g(1^n)$. If $y_0 \oplus y_1 = G(0^n) \oplus G(1^n)$ then output 1; else output 0.

By inspection, we have $\Pr[D^{f_k}(1^n) = 1] = 1$, because for any key k it holds that $G(0^n) \oplus G(1^n) = G(0^n) \oplus G(1^n) \oplus k = G(0^n) \oplus G(1^n)$.

On the other hand, if g is a random function then y_0, y_1 are uniform and independent n-bit strings. So the probability that their XOR is any particular string (in this case, the fixed string $G(0^n) \oplus G(1^n)$) is 2^{-n}. I.e., $\Pr[D^{f}(1^n) = 1] = 2^{-n}$. Since $1 - 2^{-n}$ is not negligible and D is efficient, this shows that F is not a pseudorandom function.

2. Consider the following attacker A:

- Request encryption of the message 0^n; receive in return a ciphertext $\langle IV, c \rangle$.
- Let $m_0 = (IV + 1) \oplus IV$. Output $(m_0, m_1 = 0^n)$.
- Receive the challenge ciphertext $\langle IV + 1, c' \rangle$. If $c = c$ then output 0; else output 1.

Let k be the key (unknown to A) used by encryption. From step 1, A learns that $F_k(IV) = c$. Now, if m_0 is encrypted, then the ciphertext will be

$$\langle IV + 1, F_k((IV + 1) \oplus m_0) \rangle = \langle IV + 1, F_k(IV) \rangle = \langle IV + 1, c \rangle,$$

and so A outputs 0. On the other hand, if m_1 is encrypted then A always outputs 1. It follows that $\Pr[\text{PrivK}_{A,1}^{\text{cpa}}(n) = 1] = 1$, and so this scheme is not CPA-secure.

3. (a) Let $m_1, m_2 \in \{0,1\}^n$ be distinct. Then, the tag on the message m_1, m_2 is identical to the tag on m_2, m_1. Thus, an adversary A can ask for the tag t on m_1, m_2 and output the message m_2, m_1 together with t.

(b) Let $m_1, m'_1, m_2, m'_2 \in \{0,1\}^{n/2}$ with $m_1 \neq m'_1$ and $m_2 \neq m'_2$. The attacker obtains tag t_1 on the message m_1, m_2; tag t_2 on the message m_1, m'_2; and tag t_3 on the message m'_1, m_2. Then $t_1 \oplus t_2 \oplus t_3$ is a valid tag on m'_1, m'_2.

(c) Let $m_1 \in \{0,1\}^{n/2}$ be arbitrary. The attacker can set $r := \langle 1 \rangle \parallel m_1$ and output the forgery $\langle r, 0^n \rangle$ on the message m_1.

4. (a) Consider the following attack: Obtain tag t_1, t_2 on the message m_1, m_2, where $t_1 = F_k(m_1)$ and $t_2 = F_k(t_1 \oplus m_2)$. Next, output the message $t_1 \oplus m_2, t_2$ and the tag t_2, t_1. This is a valid forgery (unless $t_1 \oplus m_2 = m_1$ and $t_2 \oplus m_1 = m_2$, which occurs with only negligible probability), since $t_2 = F_k(t_1 \oplus m_2)$ and

$$t_1 = F_k(t_2 \oplus t_2 \oplus m_1) = F_k(m_1).$$

(b) Consider the following attack: obtain tag (t_0, t) on the one-block message m. Then output (m, t) as a valid tag for the message t_0.

Homework 4—Solutions