Homework 3—Solutions

1. We define a one-to-one function $\text{pad} : \bigcup_{i=0}^{\ell} \{0,1\}^\ell \rightarrow \{0,1\}^{\ell'}$ that maps strings of length at most ℓ to strings of length exactly $\ell' = \ell + O(\log \ell)$. Then encrypt m using key k by computing $\text{Enc}_k(\text{pad}(m))$, where Enc is any CPA-secure encryption scheme. Since pad is one-to-one, the receiver will be able to decrypt and recover m.

There are many ways to define pad, but here is one:

$$\text{pad}(m) = \text{len}(m || m || 0^{\ell - |m|}),$$

where $\text{len}(m)$ is the length of m written as an integer using exactly $\lfloor \log \ell \rfloor + 1$ bits. **Challenge**: Can you find a way to do this with $\ell' = \ell + 1$?

2. (a) G' is a pseudorandom generator, since it runs G on a uniform seed.

(b) G' is not necessarily a pseudorandom generator. To see this, let $H : \{0,1\}^n \rightarrow \{0,1\}^{4n}$ be a pseudorandom generator, and define $G(s) = H(s_1 \cdots s_{n/2})$. As in the previous part, G is a pseudorandom generator. But then

$$G'(s) = G(0^{|s|} || s) = H(0^{|s|}),$$

and clearly G' is not a pseudorandom generator.

Fundamentally, the problem here is that G' runs G on an input that is not uniformly distributed.

(c) G' is not necessarily a pseudorandom generator. To see this, let $H : \{0,1\}^n \rightarrow \{0,1\}^{2n}$ be a pseudorandom generator and define $G(s) = H(s_1 \cdots s_{n-1})$. As in the previous parts, G is a pseudorandom generator. But then if the last bit of s is 0 we have

$$G'(s) = G(s) || G(s + 1) = H(s_1 \cdots s_{n-1}) || H(s_1 \cdots s_{n-1})$$

(because when the last bit of s is 0 then s and $s + 1$ differ only in their final bit), and so with probability 1/2 the two halves of the output of G' are the same; this is clearly not a pseudorandom generator.

Fundamentally, the problem here is that G' runs G on two correlated (rather than independent) inputs.

3. Define keyed function $F : \{0,1\}^n \times \{0,1\}^{\log n} \rightarrow \{0,1\}$ as follows: $F_k(i)$ outputs the ith bit of k, where the input i is interpreted as an integer in the range $\{0,\ldots, n - 1\}$ and the bits of k are numbered starting at 0. Note that F is exactly implementing a lookup table based on the key k, and so F_k for uniform k is exactly a random function mapping $\log n$-bit inputs to 1-bit outputs. I.e., F is a random function, which is stronger than being pseudorandom.
4. F' is not a pseudorandom function. To see this, consider querying on the two inputs 0^{n-1} and $0^{n-2}1$. We have

$$F'_k(0^{n-1}) = F_k(0^n) || F_k(0^{n-1}1)$$

and

$$F'_k(0^{n-2}1) = F_k(0^{n-1}1) || F_k(0^{n-2}1^2);$$

note that the second half of $F'_k(0^{n-1})$ is equal to the first half of $F'_k(0^{n-2}1)$.

Formally, define the following attacker A given 1^n and access to some function g:

- Query $y_0 = g(0^{n-1})$ and $y_1 = g(0^{n-2}1)$.
- Output 1 if and only if the second half of y_0 is equal to the first half of y_1.

As shown above, we have $\Pr_{k \leftarrow \{0,1\}^n}[A_{F'k}(1^n) = 1] = 1$. But when g is a random function then y_0 and y_1 are independent, uniform strings of length $2n$, and so the probability that the second half of y_0 is equal to the first half of y_1 is exactly 2^{-n}. Thus, $\Pr_{f \leftarrow \mathsf{Func}}[A_{f}(1^n) = 1] = 2^{-n}$, and the difference

$$\left| \Pr_{k \leftarrow \{0,1\}^n}[A_{F'k}(1^n) = 1] - \Pr_{f \leftarrow \mathsf{Func}}[A_{f}(1^n) = 1] \right|$$

is not negligible.

5. (a) This is not even EAV-secure: given the ciphertext (r, c), an attacker can recover m by computing $m = G(r) \oplus c$. (Note in particular that encryption does not use the key!)

(b) Because F is a pseudorandom function, $F_k(0^n)$ is a pseudorandom value and this encryption scheme is analogous to the pseudo-OTP. So it is EAV-secure. But just like the pseudo-OTP, this scheme is deterministic and so cannot be CPA-secure.

(c) This scheme is similar to the scheme we covered in class, and even when multiple messages are encrypted all the inputs to F_k will be distinct with overwhelming probability. Thus, this scheme is CPA-secure (and hence also EAV-secure).