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Abstract

Existing work in fine-grained sentiment anal-
ysis focuses on sentences and phrases but ig-
nores the contribution of individual words and
their grammatical connections. This is because
of a lack of both (1) annotated data at the word
level and (2) algorithms that can leverage syn-
tactic information in a principled way. We ad-
dress the first need by annotating articles from
the information technology business press via
crowdsourcing to provide training and testing
data. To address the second need, we propose
a suffix-tree data structure to represent syntac-
tic relationships between opinion targets and
words in a sentence that are opinion-bearing.
We show that a factor graph derived from this
data structure acquires these relationships with
a small number of word-level features. We
demonstrate that our supervised model per-
forms better than baselines that ignore syntac-
tic features and constraints.

1 Introduction

The terms “sentiment analysis” and “opinion mining”
cover a wide body of research on and development of
systems that can automatically infer emotional states
from text (after Pang and Lee (2008) we use the two
names interchangeably). Sentiment analysis plays a
large role in business, politics, and is itself a vibrant
research area (Bollen et al., 2010).

Effective sentiment analysis for texts such as
newswire depends on the ability to extract who
(source) is saying what (target). Fine-grained sen-
timent analysis requires identifying the sources and

targets directly relevant to sentiment bearing expres-
sions (Ruppenhofer et al., 2008). For example, con-
sider the following sentence from a major informa-
tion technology (IT) business journal:

Lloyd Hession, chief security officer at BT
Radianz in New York, said that virtualiza-
tion also opens up a slew of potential net-
work access control issues.

There are three entities in the sentence that have the
capacity to express an opinion: Lloyd Hession, BT
Radianz, and New York. These are potential opinion
sources. There are also a number of mentioned con-
cepts that could serve as the topic of an opinion in
the sentence, or target. These include all the sources,
but also “virtualization”, “network access control”,
“network”, and so on.

The challenging task is to discriminate between
these mentions and choose the ones that are rele-
vant to the user. Furthermore, such a system must
also indicate the content of the opinion itself. This
means that we are actually searching for all triples
{source, target, opinion} in this sentence (Kim and
Hovy, 2006) and throughout each document in the
corpus. In this case, we want to identify that Lloyd
Hession is the source of an opinion, “slew of network
issues,” about a target, virtualization. Providing such
fine-grained annotations would enrich information
extraction, question answering, and corpus explo-
ration applications by letting users see who is saying
what with what opinion (Wilson et al., 2005; Stoy-
anov and Cardie, 2006).

We motivate the need for a grammatically-focused
approach to fine-grained opinion mining and situate it



within the context of existing work in Section 2. We
propose a supervised technique for learning opinion-
target relations from dependency graphs in a way that
preserves syntactic coherence and semantic compo-
sitionality. In addition to being theoretically sound
— a lacuna identified in many sentiment systems1

— such approaches improve downstream sentiment
tasks (Moilanen and Pulman, 2007).

There are multiple types of downstream tasks that
potentially require the retrieval of {source, target,
opinion} relations on a sentence-by-sentence basis.
An increasingly significant application area is in the
use of large corpora in social science. This area of
research requires the exploration and aggregation of
data about the relationships between discourses, orga-
nizations, and people. For example, the IT business
press data that we use in this work belongs to a larger
research program (Tsui et al., 2009; Sayeed et al.,
2010) of exploring industry opinion leadership. IT
business press text is one type of text in which many
entities and opinions can appear intermingled with
one another in a small amount of text.

Another application for fine-grained sentiment re-
lation retrieval of this type is paraphrasing, where
attribution of which opinion belongs to which entities
may be important for producing useful and accurate
output, since source and target identification errors
can change the entire meaning of an output text.

Unlike previous approaches that ignore syntax, we
use a sentence’s syntactic structure to build a proba-
bilistic model that encodes whether a word is opinion
bearing as a latent variable. We build a data structure
we call a “syntactic relatedness trie” (Section 3) that
serves as the skeleton for a graphical model over the
sentiment relevance of words (Section 4). This ap-
proach allows us to learn features that predict opinion
bearing constructions from grammatical structures.
Because of a dearth of resources for this fine-grained
task, we also develop new crowdsourcing techniques
for labeling word-level, syntactically informed sen-

1Alm (2011) recently argued that work on sentiment anal-
ysis needs to de-emphasize the goal of building systems that
are “high-performing” by traditional measures, because the field
risks sacrificing “opportunities that may lead to a more thorough
understanding of language uses and users” in relation to subjec-
tive phenomena. The work we present in this paper therefore
focuses on extracting meaningful features as an investment in
future work that directly improves retrieval performance.

timent (Section 5). We use inference techniques to
uncover grammatical patterns that connect opinion-
expressing words and target entities (Section 6) per-
forming better than using syntactically uninformed
methods.

2 Background and existing work

We call opinion mining “fine-grained” when it re-
trieves many different {source, target, opinion}
triples per document. This is particularly challenging
when there are multiple triples even within a sen-
tence. There is considerable work on identifying the
source of an opinion. However, it is much harder
to find obvious features that tell us whether “virtual-
ization” is the target of an opinion. The most recent
target identification techniques use machine learning
to determine the presence of a target from known
opinionated language (Jakob and Gurevych, 2010).

Even when targets are identified we must decide if
an opinion is expressed, since not all target mentions
will necessarily be accompanied by opinion expres-
sions. Returning to the first example sentence, we
could say that the negative opinion about virtualiza-
tion is expressed by the words “slew” and “issues”.

A system that could automatically make this dis-
covery must draw on grammatical relationships be-
tween targets and the opinion bearing words. Parsers
reveal these relationships, but the relationships are
often indirect. The variability of language prevents
a complete enumeration of all intervening items that
make the relationships indirect, but examples include
negation and intensifiers, which change opinion, and
sentiment-neutral words, which fill syntactic or stylis-
tic needs. In this paper, we cope with the variability
of expression by using supervised machine learning
to generalize across observations and learn which fea-
tures best enable us to identify opinionated language.

Existing work in this area often uses semantic
frames and role labeling (Kim and Hovy, 2006; Choi
et al., 2006), but resources typically used in these
tasks (e.g. FrameNet) are not exhaustive. More gen-
eral approaches (Ruppenhofer et al., 2008) describe
semantic and discourse contexts of opinion sources
and targets cannot recognize them.

When techniques do identify targets via syntax,
they often only use grammar as a feature in an oth-
erwise syntax-agnostic model. Some work of this



nature merely identifies targets without providing the
syntactic evidence necessary to find domain-relevant
opinionated language (Jakob and Gurevych, 2010),
relying on lists of opinion keywords. There is also
work (Qiu et al., 2011) that uses predefined heuristics
over dependency parses to identify both targets and
opinion keywords but does not acquire new syntactic
heuristics. Other work (Nakagawa et al., 2010) is sim-
ilar to ours in that it uses factor graph modeling over
a dependency parse formalism, but it assumes that
opinionated language is known a priori and focuses
on polarity classification, while our work tackles the
more fundamental problem of identifying the opin-
ionated language itself.

Little work has been done to perform target and
opinion-expression extraction jointly, especially in a
way that extracts features for downstream processing.
This dearth persists despite evidence that such infor-
mation improves sentiment analysis (Moilanen and
Pulman, 2007).

An advantage of our proposed approach is that we
can use dependency paths in order to capture situa-
tions where the relations are non-compositional or
semantically motivated. In Section 5, we describe a
data set that has the additional property that opinion
is expressed in ways that require external pragmatic
knowledge of the domain. An advantage of arbi-
trary, non-local dependencies is that we can treat this
knowledge as part of the model we learn via long-
distance chains, which can capture pragmatics.

3 Syntactic relatedness tries

We now describe how we build the syntactic related-
ness trie (SRT) that forms the scaffolding for the prob-
abilistic models needed to identify sentiment-bearing
words via syntactic constraints extracted from a de-
pendency parse (Kübler et al., 2009).

We use the Stanford Parser (de Marneffe and Man-
ning, 2008) to produce a dependency graph and con-
sider the resulting undirected graph structure over
words. We construct a trie for each possible target
word in a sentence (it is possible for a sentence to
induce multiple tries if the sentence contains multi-
ple potential targets). Each trie encodes paths from
the possible target word to other words, and each
path represents a sequence of words connected by
undirected edges in the parse.

3.1 Encoding Dependencies in an SRT

SRTs enable us to encode the connections between
a single linguistic object of interest—in this appli-
cation, a possible target word—and a set of related
objects. SRTs are data structures consisting of nodes
and edges.

This description is very similar to the definition
of a dependency parse. The key difference is that
while a token only appears once as a node in a de-
pendency parse, an SRT can contain multiple nodes
that originate from the same token. This encodes the
possible connections between an opinion target and
opinion-conveying words.

The object of interest is the opinion target, defined
as the SRT root node (e.g. in Figure 1 “policy” is a
known target, so it becomes the root of an SRT). Each
SRT edge corresponds to a grammatical relationship
between words and is labeled with that relationship.
We use the notation a

R−→ b to signify that node a has
the relationship (“role”) R with b. We say in this case
that node b is a descendent of node a with the role
R. The directed edges constitute a trie or suffix tree
that represents the fact that multiple paths may share
elements that all provide evidence for the relevance
of multiple leaves. 2

In the remainder of this section we describe the
necessary steps to create a training corpus for fine-
grained sentiment analysis. We provide an example
of how to create an SRT from a dependency parse and
then to attach latent variable assignments to an SRT
based on human annotations in a way that respects
syntactic constraints.

3.2 Using sentiment flow to label an SRT

Our goal is to discriminate between parts of the struc-
ture that are relevant to target-opinion word relations
and those that are not. We use the term sentiment
flow (shortened to “flow” when space is an issue)
for relevant sentiment-bearing words in the SRT and
inert for the remainder of the sentence. We use the
term “flow” because our invariant (section 3.3) con-
strains a sentiment flow in a SRT to be a contiguous
subgraph; this corresponds to linguistic intuitions
that, for example, in the sentence “Linux with Wine

2The SRT will be used to create an undirected graphical
model; the notion of directedness refers to the traversal of paths
used to construct the SRT.
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Figure 1: Dependency parse example. A dependency
parse (top) is used to generate a syntactic relatedness
trie for all possible targets of a sentiment-bearing
expression. For the target word “policy”, there are a
number of paths (colors are consistent in paths to be
added to the SRT and in the dependency parse) that
connect it to other words; once extracted, these paths
will be inserted into a target-specific SRT.

is very usable”, {“Linux”, “is”, “very”} could not
be part of a sentiment flow without also including
{“usable”}.

Now that we have the structure of the model, we
need training data: sentences where sentiment bear-
ing words have been labeled. We describe how to go
from sentiment-labeled words to valid flows using
this sentence from the MPQA:

The dominant role of the European climate
protection policy has benefits for our econ-
omy.

In this sentence, the target word “policy” is con-
nected to multiple sentiment-bearing words via paths
in the dependency parse (Figure 1). We can represent
these relationships using paths through the graph as
in Figure 2(a). (For clarity, we do not show some
paths.)

Suppose that an annotator decides that “protec-
tion” and “benefits” are directly expressing an opin-
ion about the policy, but “dominant” is ambiguous (it
has some negative connotations). The nodes “protec-
tion” and “benefits” are a flow, and the “dominant”
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Figure 2: Labeled SRTs rooted on the target word
“policy”; green-filled nodes represent words that are
part of a sentiment flow and nodes with a red outline
represent inert nodes. (a) Initial labels for SRT (e.g.
as provided by annotators) (b) propagating labels to
yield a valid sentiment flow (c) a change of “role” to
inert also renders its children inert (d) a change of
“dominant” to be part of a sentiment flow also causes
its parents to be part of a flow.

node is inert. However, there is considerable overlap
between the “dominant” path and the “benefits” path.
That is the motivation for combining them into a trie
structure and labeling them in such a way that the
path remains a flow until there is no path element that
leads to a flow leaf (Figure 2).

In other words, we want the path elements com-
mon to a flow path and an inert path to reinforce
sentiment flow. The transition from flow to inert is
learned by the classifier.

We enforce this requirement through the procedure
shown in Figure 2, which is equivalent to finding the
depth first search tree of the dependency graph and
applying the node-labeling scheme as above.

3.3 Invariant

Anything that follows a node with an inert label is
by definition not reachable from the root of the tree.



Consequently, any node that is part of a sentiment
flow that follows an inert node is not reachable along
a path and is actually inert itself. We specify this
directly as an invariant on the data structure:

Invariant: no node descending from a
node labeled inert can be labeled as a part
of a sentiment flow.

This specifies that flow labels spread out from the
root of the SRT. Our inference algorithm requires
that we be able to change the labels of nodes for
test data, thus we need to define invariant-respecting
operations for switching labels from flow to flow and
vice-versa. A flow label switched to inert will require
all the descendents of that particular node to switch
to inert as well as in figure 2(c). Similarly, an inert
label switched to flow will require all of the ancestors
of that node to switch to flow as in 2(d).

4 Encoding SRTs as a factor graph

In this section, we develop supervised machine learn-
ing tools to produce a labeled SRT from unlabeled,
held-out data in a single, unified model, without per-
mitting the sorts of inconsistencies that may be ad-
mitted by using a local classifier at each node.

4.1 Sampling labels
A factor graph (Kschischang et al., 1998) is a rep-
resentation of a joint probability distribution in the
form of a graph with two types of vertices: vari-
able vertices and factor vertices. Given a set of vari-
ables Z = {z1 . . . zn}, we connect them via factors
F = {f1 . . . fm}. Factors are functions that repre-
sent relationships, i.e. probabilistic dependencies,
among the variables; the product of all factors gives
the complete joint distribution p. Each factor fi can
take as input some corresponding subset of variables
Yi from Z. We can then write the relationship as
follows:

p(Z) ∝ ∏m
k=1 fk(Yk)

Our goal is to discover the values for the variables
that best explain a dataset. While there are many
approaches for inference in statistical models, we
turn to MCMC methods (Neal, 1993) to discover the
underlying structure of the model. More specifically,
we seek a posterior distribution over latent variables

parent

node

child1 child2 child3

h

g

f

Figure 3: Graphical model of SRT factors

that partition words in a sentence into flow and in-
ert groups; we estimate this posterior using Gibbs
sampling (Finkel et al., 2005).

The sampler requires an initial state that respects
the invariant. Our initial setting is produced by iterat-
ing through all labels in the SRT forest and randomly
setting them as either flow or inert with uniform
probability.

A Gibbs sampler samples new variable assign-
ments from the conditional distribution, treating the
variable assignments for all other variables fixed.
However, the assignment of a single node is highly
coupled with its neighbors, so a block sampler is used
to propose changes to groups nodes that respect the
flow labeling of the overall assignments. This was
implemented by changing the proposal distribution
used by the FACTORIE framework (McCallum et al.,
2009).

We can thus represent a node and its contribution
to the overall score using the graph in Figure 3. This
graph contains the given node, its parent, and a vari-
able number of children. The factors that go into the
labeling decision for each node are thus constrained
to a small, computationally tractable space around
the given node. This graph contains three factors:

• g represents a function over features of the given
node itself, or “node features.”
• f represents a function over a bigram of features

taken from the parent node and the given node,
or “parent-node” features.
• h represents a function over a combination fea-

tures on the node and features of all its children,
or “node-child” features.

We provide further details about these factors in the
next section.



In addition to the latent value associated with each
word, we associate each node with features derived
from the dependency parse: the word from the sen-
tence itself, the part-of-speech (POS) tag assigned
by the Stanford parser, and the label of the incoming
dependency edge. We treat the edge labels from the
original dependency parse as a feature of the node.

We can represent the set of possible observed lin-
guistic feature classes as the set of features Φ. Fig-
ure 3 induces a scoring function with contributions
of each node to the score(label|node) =
∏

φ∈Φ

(
f(parentφ, nodeφ|label)g(nodeφ|label)

h(nodeφ, child1φ, . . . , childnφ|label)
)
.

After assignments for the latent variables are sampled,
the weights for the factors (which when combined
create individual factors f that define the joint) must
be learned. This is accomplished via the sample-rank
algorithm (Wick et al., 2009).

5 Data source

Our goal is to identify opinion-bearing words and tar-
gets using supervised machine learning techniques.
Sentiment corpora with sub-sentential annotations,
such as the Multi-Perspective Question-Answering
(MPQA) corpus (Wilson and Wiebe, 2005) and the
J. D. Power and Associates (JDPA) blog post cor-
pus (Kessler et al., 2010), exist, but most of these
annotations are at a phrase level. Within a phrase,
however, some words may contribute more than oth-
ers to the statement of an opinion. We developed our
own annotations to discover such distinctions3. We
describe these briefly here; more information about
the development of the data source can be found in
Sayeed et al. (2011).

5.1 Information technology business press
Our work is part of a larger collaboration with so-
cial scientists to study the diffusion of information
technology (IT) innovations through society by iden-
tifying opinion leaders and IT-relevant opinionated
language Rogers (2003). Thus, we focus on a col-
lection of articles from the IT professional maga-
zine, Information Week, from the years 1991 to 2008.

3To download the corpus, visit http://www.umiacs.
umd.edu/˜asayeed/naacl12data/.

This consists of 33K articles including news bulletins
and opinion columns. Our IT concept target list (59
terms) comes from our application. Thus, we con-
struct a trie for each appearance of any of these possi-
ble target terms. We consider this list of target terms
to be complete, which allows us to focus on discover-
ing opinion-bearing text associated with these targets.

5.2 Crowdsourced annotation process
Our process for obtaining gold standard data involves
multiple levels of human annotation including on
crowdsourcing platforms Hsueh et al. (2009).

There are 75K sentences with IT concept mentions,
only a minority of which express relevant opinions.
Hired undergraduate students searched a random se-
lection of these sentences and found 219 that contain
these opinions. We used cosine-similarity to rank the
remaining sentences against the 219.

We then needed to identify which of the words
contained an opinion. We excluded all words that
were common function words (e.g.,“the”, “in”) but
left negations. We engineered tasks so that only
a randomly-selected five or six words appear high-
lighted for classification in order to limit annotator
boredom. We called this group a “highlight group”.
The virtualization example would look like this:

Lloyd Hession, chief security officer at BT
Radianz in New York, said that virtual-
ization also opens up a slew of potential
network access control issues.

In the virtualization example, the worker would see
that virtualization is highlighted as the IT concept
target. Other words are highlighted as candidates that
the worker must classify as being opinion-relevant to
“virtualization”. Each highlight group corresponds to
a syntactic relatedness trie (Section 3).

A task was presented to a worker in the form of
a highlight group and some list boxes that represent
classes for the highlighted words: “positive”, “nega-
tive”, “not opinion-relevant”, and “ambiguous”. The
worker was required to drag each highlighted can-
didate word to exactly one of the boxes. As we are
not doing opinion polarity classification, the “posi-
tive” and “negative” boxes were intended as a form
of misdirection intended to avoid having the worker
consider what an opinion is; we treated this input as
a single “opinion-relevant” category.



Three or more users annotated each highlight
group, and an aggregation scheme was applied af-
terwards: “ambiguous” answers were rolled into “not
opinion-relevant” and ties were dropped. Our qual-
ity control process involved filtering out workers
who performed poorly on a small subset of gold-
standard answers We annotated 30 evaluation units to
determine that our process retrieved opinion-relevant
words at 85% precision and 74% recall.

Annotators labeled 700 highlight groups for the
results in this paper. The total cost of this exercise
was approximately 250 USD, which includes the fees
charged by Amazon and CrowdFlower. These last
highlight groups were converted to SRTs and divided
into training and testing groups, 465 and 196 SRTs
respectively, with a small number lost to fatal errors
in the Stanford parser.

6 Experiments and discussion

During the training phase, we evaluate the quality
of a candidate labeling based on label accuracy. We
need to identify both flow nodes and inert nodes in
order to distinguish between relevant and irrelevant
subcomponents. We thus also employ precision and
recall as performance metrics.

An example of how this works can be seen by com-
paring figure 2(b) to figure 2(d), viewing the former
as the gold standard and the latter as a hypothetical
system output. If we run the evaluation over that
single SRT and treat flow as the positive class, we
find that 3 true positives, 1 false positive, 2 false neg-
atives, and no true negatives. There are 6 labels in
total. That yields 0.50 accuracy, 0.75 precision, 0.60
recall, and 0.67 F-measure.

We run every experiment (training a model and
testing on held-out data) 10 times and take the mean
average and range of all measures. F-measure is
calculated for each run and averaged post hoc.

6.1 Experiments

Our baseline system is the initial setting of the labels
for the sampler: uniform random assignment of flow
labels, respecting the invariant. This leads to a large
class imbalance in favor of inert as any switch to
inert converts all nodes downstream from the root to
convert to inert, while a switch to flow causes only
one ancestor branch to convert to flow.

Our next systems involve combinations of our SRT
factors with the observed linguistic features. All our
experiments include the factor g that pertains only to
the features of the node. Then we add factor f—the
parent-node “bigram” features—and finally factor h,
the variable-length node-child features. We also ex-
periment with including and excluding combinations
of POS, role, and word features. We also explored
models that only made local decisions, ignoring the
consistency constraints over sentiment flows. Al-
though such models cannot be used in techniques
such as Nakagawa et al.’s polarity classifier, they
function as a baseline and inform whether syntactic
constraints help performance.

We ran the inferencer for 200 iterations to train a
model with a particular factor-feature combination.
We use the learned model to predict the labels on
the held-out testing data by running the inference
algorithm (sampling labels only) for 50 iterations.

6.2 Discussion
We present a sampling of possible feature-factor com-
binations in table 1 in order to show trends in the
performance of the system.

Unsurprisingly, the invariant-respecting baseline
had very high precision but low recall. Simply includ-
ing the node-only g factor with all features increases
the recall while hurting precision. On removing word
features, recall increases without changing precision.
This suggests that some words in some SRTs are as-
sociated with flow labels in the training data, but not
as much in the testing data.

Including parent-node f features with the g fea-
tures yields higher precision and lower recall, sug-
gesting that parent-node word features support preci-
sion. Including all features on all factors (f , g, and h)
preserves most of the precision but improves recall.
Excluding h features increases recall slightly more
than it hurts precision. Excluding both word features
for all factors and role h features hurts all measures.

The accuracy measure, however, does show over-
all improvement with the inclusion of more feature-
factor combinations. In particular, the node-child h
factor does appear to have an effect on the perfor-
mance. The presence of some combinations of child
word, POS tags, and roles appear to provide some
indication of the flow labeling of some of the nodes.
The best models in terms of accuracy include all or



Experiment Features Invariant? Precision Recall F Accuracy

Baseline N/A Yes 0.78 ± 0.05 0.06 ± 0.01 0.11 ± 0.02 0.51 ± 0.01

No 0.50 ± 0.00 0.49 ± 0.00 0.50 ± 0.00 0.50 ± 0.00

Node only
All Yes 0.63 ± 0.10 0.34 ± 0.10 0.42 ± 0.07 0.54 ± 0.03

No 0.51 ± 0.00 0.88 ± 0.03 0.65 ± 0.01 0.51 ± 0.01

All but word Yes 0.63 ± 0.16 0.40 ± 0.22 0.42 ± 0.19 0.53 ± 0.03

No 0.57 ± 0.04 0.56 ± 0.17 0.55 ± 0.07 0.55 ± 0.03

Parent, node
Parent: all but word Yes 0.71 ± 0.06 0.21 ± 0.04 0.31 ± 0.05 0.55 ± 0.01Node: all

All Yes 0.84 ± 0.07 0.11 ± 0.04 0.19 ± 0.06 0.53 ± 0.01

Full graph

Parent: all but word
Yes 0.59 ± 0.06 0.39 ± 0.11 0.46 ± 0.07 0.54 ± 0.03Node: all but word

Children: POS only
Parent: all

Yes 0.67 ± 0.05 0.39 ± 0.08 0.47 ± 0.06 0.59 ± 0.02Node: all
Children: all but word

All Yes 0.70 ± 0.05 0.35 ± 0.08 0.46 ± 0.07 0.59 ± 0.02

No 0.70 ± 0.03 0.20 ± 0.05 0.36 ± 0.06 0.56 ± 0.01

Table 1: Performance using different feature combinations, including some without enforcing the invariant.
Mean averages and standard deviation for 10 runs.

almost all of the features.
Our non-invariant-respecting baseline unsurpris-

ingly was nearly 50% on all measures. Including the
node-only features dramatically increases recall, less
if we exclude word features. The word features ap-
pear to have an effect on recall just as in the invariant-
respecting case with node-only features. With all
features, precision is dramatically improved, but with
a large cost to recall. However, it underperforms
the equivalent invariant-respecting model in recall,
F-measure, and accuracy.

Though these invariant-violating models are un-
constrained in the way they label the graph, our
invariant-respecting models still outperform them.
A coherent path contains more information than an
incoherent one; it is important to find negating and
intensifying elements in context. Our SRT invariant
allows us to achieve better performance and will be
more useful to downstream tasks.

Finally, it appears that using more factors and lin-
guistic features promotes stability in performance
and decreases sensitivity to the initial setting.

6.3 Manual inspection
One pattern that prominently stood out in the testing
data with the full-graph model was the misclassifica-
tion of flow labels as inert in the vicinity of Stanford
dependency labels such as conj and. These kinds
of labels have high “fertility”; the labels immediately
following them in the SRT could be a variety of types,
creating potential data sparsity issues.

This problem could be resolved by making some
features transparent to the learner. For example, if
node q has an incoming conj and dependency edge
label, then q’s parent could also be directly connected
to q’s children, as a conjunction should be linguisti-
cally transparent to the status of the children in the
sentiment flow.

There are many fewer incidents of inert labels be-
ing classified as flow. There are paths through an
SRT where a flow candidate word is the ancestor of
an inert candidate word from the set of crowdsourced
candidates. The model sometimes appears to “over-
shoot” the flow candidate. Considering that recall is
already fairly low, attempts to address this problem
risks making the model too conservative. One poten-
tial solution is to prune or separate paths that contain
multiple flow candidates.

6.3.1 Paths found
We examined the labeling on the held-out testing

data of the best-performing model of the full graph
system with all linguistic features. For example, con-
sider the following highlight group:

But Microsoft’s informal approach may not be

enough as the number of blogs at the company

grows, especially since the line between “personal”
Weblogs and those done as part of the job can be

hard to distinguish.

In this case, the Turkers decided that “distinguish”
expressed a negative opinion about blogs, in the sense



that something that was difficult to distinguish was
a problem: the modifier “hard” is what makes it
negative. The system found an entirely flow path that
connected these attributes into a single unit:

Blog:flow prepof−−−−→ number:flow nsubj−−−→
grows:flow ccomp−−−−→ hard:flow xcomp−−−−→
distinguish:flow

In this path, “blog” and “distinguish” are both con-
nected to one another by “hard”, giving “distinguish”
its negative spin. There are two non-local dependen-
cies in this example: xcomp, ccomp. Very often,
more than one unique path connects the concept to
the opinion candidate word.

7 Conclusions and future work

In this work, we have applied machine learning to
produce a robust modeling of syntactic structure for
an information extraction application. A solution to
the problem of modeling these structures requires the
development of new techniques that model complex
linguistic relationships in an application-dependent
way. We have shown that we can mine these relation-
ships without being overcome by the data-sparsity
issues that typically stymie learning over complex
linguistic structure.

The limitations on these techniques ultimately find
their root in the difficulty in modeling complex syn-
tactic structures that simultaneously exclude irrel-
evant portions of the structure while maintaining
connected relations. Our technique uses a structure-
labelling scheme that enforces connectedness. En-
forcing connected structure is not only necessary to
produce useful results but also to improve accuracy.

Further performance gains might be possible by en-
riching the feature set. For example, the POS tagset
used by the Stanford parser contains multiple verb
tags that represent different English tenses and num-
bers. For the purpose of sentiment relations, it is
possible that the differences between verb tags are
too small to matter and are causing data sparsity is-
sues. Thus, we could additional features that “back
off” to general verb tags.
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