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Introduction

The dictionary of German idioms (H. Schemann 1993) contains more than
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32,000 entries and is thus the largest printed collection of German idioms. The
notion of idioms is used in a very broad sense by the author; Schemann
considers all expressions as idioms where a word is constrained by a larger
context.1 A context can be either linguistic (syntagmatic) or related to the
pragmatic use of an entry. Particular emphasis is put on the presentation of the
syntagmatic contexts for all entries. Hence, an entry is not a linear multi-word
expression but rather a set of different syntagmatic contexts around the target
word. The selections range from completely frozen expressions to multi-word
expressions where all components are substitutable. The complexity of form
varies from two-word expressions (see Example 1 below) to complex PP-VP
expressions (see Example 2).

In this paper we do not intend to evaluate the linguistic pros and cons of
this dictionary. Rather, our goal is to explore the usefulness of this paper
dictionary for natural language processing (NLP). Previous work in the field of
knowledge extraction and the creation of machine readable dictionaries
(MRDs) has shown the difficulties of making use of paper dictionaries for NLP
purposes (e.g. B. Boguraev (1989) and J. Klavans (1996)). Even though obvious-
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ly paper dictionaries are intended for use by humans and not for NLP, idiom
dictionaries contain interesting information for NLP, which can be extracted by
automatic means.

The following examples illustrate the variety of entry structures found in
Schemann’s dictionary.
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Ex 1 einen zischen
one drink
to knock back a drink

Ex 2 ein absolutes / das absolute Gehör haben
an absolute / the absolute ear have
to have perfect pitch

Ex 3 (voll) auf jdn. / … abfahren
(fully) on sb. / … go off
to really fancy somebody

These entries demonstrate the lexicographic shorthand used by Schemann: / to
indicate a mutually exclusive choice between elements to the left and right of
the symbol, ( ) to indicate an optional phrase that may be omitted, […] to
designate an arbitrary clause, and placeholders such as jdn. to designate flexible
components that admit substitution, in this case an accusative noun phrase.
This variety of entry structures means that Schemann’s dictionary is not
immediately usable for automatic processing.

Therefore, some simple preprocessing steps are applied in order to trans-
form this format into a more suitable machine-readable format. Entries with
optional elements are rendered simultaneously as multiple phrases: a phrase
with the optional element and a phrase without. Likewise, […] can be thought
of as an unconstrained substitution. Hence, it is possible to remove the token
altogether without loss of significant information.

Somewhat more difficult is the disambiguation of the lexical elements
within the entries. The word einen may be interpreted as a determiner, a verb,
or a cardinal number. Preprocessing can readily identify such placeholders,
whose strict usage within Schemann limits their ambiguity. Significantly more
difficult, however, is the resolution of the scope of the / operator. It is not clear
in Example 2 whether the resolution should be [ein absolutes]/[das absolute]
Gehör haben or ein [absolutes/das] absolute Gehör haben.

These examples illustrate that multi-word entries of a paper dictionary
cannot be extracted as a simple string if one intends to exploit them for NLP
purposes. Given the 32,000 entries and an average length of 4.3 tokens for each
entry, manual association of each token to its part-of-speech tag (POS-tag)
would not be feasible. On the other hand, parsing the entries of idiom dictio-
naries is not equivalent to the parsing of naturally occurring text, since the
entries follow a formalized structure that is quite different from that of ordinary
language. The tokens are generally lemmatized, and the verb is placed at the end
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of the entry. Given this formal structure, the idea of using a Part-of-Speech
tagger such as the Brill Tagger (E. Brill (1994)) for these entries seems quite
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promising. Parameter files of other taggers are not suitable for the task, but an
appropriate way forward may be to encode a certain number of entries by hand,
qualify them as a training corpus, and then train an appropriate tagger on these
rules in order to obtain appropriate parameter files.

In the remaining sections the following questions are addressed:

– To what extent in terms of completeness and correctness is it possible to
associate dictionary entries with recurrent POS sequences?

– How does the size of the training set influence the results?
– How are different kinds of German multi-word expressions statistically

distributed in a dictionary of idiomatic German?

1. Method

As explained above, machine learning seems to be an appropriate approach for
the task at hand. Hence, a training set was encoded on the basis of a very simple
tagset consisting of 10 tags (see below). Each dictionary entry was then pro-
cessed, creating a sequence of simpler strings such that all optional elements are
separated into subcases and all relative clauses and unneeded information are
removed. The Brill Tagger then generates a POS sequence corresponding to
each of the entries. If these sequences in turn correspond to a construction class
(see below), the entry is assigned to that construction class.

1.1 Resources

The following resources were used:

– a list of 32,000 dictionary entries (H. Schemann 1993);
– a small tagset: Adj, Adv, Conj, Det, N, NA, Prep, Pron, Ptk, V;
– a training set: approximately 6,000 dictionary entries, tagged by hand;
– a list of 230 different POS sequences that were identified in the training set.

1.2 Association with construction classes

Even after the multi-word entries in the dictionary have been normalized to a
large extent, numerous cases still cannot be processed straightforwardly. The
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expression after the right arrow illustrate the way Schemann’s entries are
preprocessed.

Ex 4 steif und fest einbilden, daß …
stiff and fast imagine, that …
to have it stuck into one’s head that …

Æ steif und fest einbilden

Ex 5 das / (etw.) ist ein dicker Hund
that / (sth.) is a fat dog
that’s outrageous

Æ das ist ein dicker Hund

Ex 6 Mit jdm. Tacheles reden
With sb. Tacheles (yidd.) speak
To talk straight with somebody

Æ mit NA Tacheles reden

Ex 7 Von A bis Z Unsinn / erlogen / erfunden … sein
From A to Z nonsense  lied  invented  be
Sth. is a pack of lies from A to Z

Æ von A bis Z Unsinn sein Æ von A bis Z erlogen sein Æ von A bis Z
erfunden sein

In Examples 4, 5, and 7, subordinate clauses, placeholders for noun phrases,
and the unconstrained substitution […] were deleted. Only when the place-
holders stand for a prepositional phrase were they preserved and replaced by the
tag NA, as in Example 6. In example (7), the mutually exclusive choices / makes
it necessary to decompose the initial Schemann entry into more than one entry.

Hereinafter, entries resulting from preprocessing are called elementary
entries. The POS sequence associated with an elementary entry is called an
elementary POS sequence. As stated above, the training set contained 230
different POS sequences, henceforth called construction classes.

After preprocessing, the way entries are associated with construction classes
has to be characterized. We call an association of a dictionary entry with a
construction class successful iff:

i. there exists an isomorphism between the construction class of the training
set and the computed (elementary) POS sequence, or

ii. a complex entry can be decomposed into several elementary entries and
more than 50% of the computed POS sequences are isomorphic to a single
elementary construction class.
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There are two failure modes for this process. Either the computed POS se-
quence cannot be associated with any construction class or a complex entry can
be decomposed in more than one elementary entry, but their corresponding
elementary POS sequences or at least 50% of them do not belong to a single
construction class (cf. examples below, in particular Example 9). The latter
failure mode is quite conservative and the conditions could be weakened.

The following examples illustrate the association of a dictionary entry with
a construction class:

Ex 8 blinder Passager
blind passenger
stowaway

Ex 9 das/(die Hoffnung) kann ich mir/kann Peter sich/… abschminken
that/(the hope) can I me/can Peter himself/… forget about
I/Peter/… can forget the idea/my/his/… hopes/… (of doing sth.)

Ex 10 so richtig / anständig / … einen abrocken (gehen)
so really / decently / … one rock up (to go)
to really rock (as in Rock and Roll)

successful association (condition i) Examples 3, 4, 5, 6, and 8 are success cases:
they can all be successfully associated with a single construction class:

– Example 1: Æ det.V�2

– Example 4: Æ adj conj adj V
– Example 5: Æ det V adj N V
– Example 6: Æ prep NA N V
– Example 8: Æ adj N

successful association (condition i and ii) Example 7 is decomposed into the
following three normalized entries. The sequence “prep N prep N V V” belongs
to the construction classes in the training set, therefore condition i above is met.
Furthermore, two out of three are in the same construction class (condition ii).

Ex 7.1 von A bis Z Unsinn sein
Æ prep N prep N N V

Ex 7.2 von A bis Z erlogen sein
Æ prep N prep N V V

Ex 7.3 von A bis Z erfunden sein
Æ prep N prep N V V
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Association failures Example 9 is decomposed into the following four different
elementary entries.

Ex 9.1 das kann ich mir abschminken
Æ det V Pron Pron V

Ex 9.2 das kann ich mir Peter sich abschminken
Æ det V Pron Pron N Pron V

Ex 9.3 die Hoffnung kann ich mir abschminken
Æ det N V Pron Pron V

Ex 9.4 die Hoffnung kann ich mir Peter sich abschminken
Æ det N V Pron Pron N Pron V

Apart from the fact that the scope of the second (/) operator is underspecified,
thus yielding wrong elementary entries, it is also a failure case according to
condition ii since all the elementary POS sequences are different. Cases like
Example 9 are the main motivation to introduce the second condition since it
helps to sort out incorrect preprocessing results. In particular, decompositions
such as 9.2 and 9.4 are generated by the preprocessor but, as any speaker of
German knows, they are ungrammatical.

Example 10 is decomposed into the following four different elementary
entries:

Ex 10.1 so richtig einen abrocken
Æ adv adv det V

Ex 10.2 so richtig einen abrocken gehen
Æ adv adv det V V

Ex 10.3 so anständig einen abrocken
Æ adv adv det V

Ex 10.4 so anständig einen abrocken gehen
Æ adv adv det V V

Examples 10.1 and 10.3 are in the construction class “adv adv det V” whereas
10.2 and 10.4 are in the construction class “adv adv det V V”. Again, this
example violates condition ii since there is no majority of POS sequences for a
single construction class. As stated above, it would have been possible to weaken
condition ii, but even better than that seems the possibility to define the POS
sequences in a different way. Indeed, if we defined VP := V | V.V all these decom-
positions would be in the same construction class (see below, experiment 2).
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2. Experiment 1

In order to measure the impact the POS tagger has on the quality of the results,
we conducted the experiment described below with a simple lookup in the
Morphy lexicon (W. Lezius 1996), a fairly large German lexicon containing

<LINK "gey-r7">

approximately 350,000 full forms. After conducting the preprocessing steps
described above, we could associate only 35% of all Schemann entries success-
fully according to the above mentioned conditions. 65% of all the cases were
failure cases, i.e. either the computed POS sequences were not found in the
training set (condition i above) or the computed POS sequences were too
heterogeneous (thus violating condition ii above).

Then, we conducted the experiment with the Brill Tagger, which was
trained on the basis of a training set of 6,000 manually tagged multi-word
entries totalling 25,800 tokens. As a result, a tagger of 91 context rules, 96
lexical rules, and a lexicon of 5,341 different entries was generated. The
following figure shows the accuracy of the trained tagger as a function of the
size of the training set. With a training set of 1,000 entries we obtain an
accuracy of 94%, which increases to 97.8% with a training set of 6,000 entries
(J. Boyd-Graber 2002).
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The first run of the model assignment program assigned 55% of the
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Figure 1.�Tagger accuracy as a function of corpus size.

Schemann entries to POS-sequence models, which is better than mere lexicon
lookup, but was deemed to be insufficient for use within the project. A rapid
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inspection of the remaining unassigned sequences revealed the following
assignable causes:

1. The entry is too complex. Most of these cases are due to the fact that the
scope of the slash (/) is ambiguous: e.g. Example 7’s scope is one word,
whereas Example 2’s is two words.

2. The computed POS sequences do not correspond to any of the construction
classes identified in the training set.

3. Transcription errors due to typewriting or incorrect segmentation of the
entries.

3. Extension of the method

3.1 Correction and disambiguation of the slash

In addition to the manual correction of some entries because of transcription
errors (see Figure 1 above) the scope of the slash (/) was disambiguated manually.
This task required native knowledge of German but almost no linguistic knowl-
edge. It took about 2 days to annotate the ambiguous cases using brackets.

3.2 Extension of the models

Experiment 1 showed that the 6,000 entries of the training set evidently did not
contain the complete list of POS sequences of 32,000 multi-word entries in the
dictionary. In a second experiment we wanted to verify if an a priori definition
of construction classes would lead to a higher recall. In particular, the idea was
to draw up a list of all plausible construction classes. Two remarks are necessary
before describing the language of construction classes in more detail. First, even
though the basis for this description is the dictionary of idiomatic German (H.
Schemann 1993), the major part of this description should hold for other
languages as well. Evidence for this can be found in C. Tschichold (1998), who
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describes a subset of the construction classes defined below in her description
of English multi-word lexemes. Second, it should be kept in mind that phrase
notations such as NP or AP or VP below do not correspond to real syntactic
categories since they operate only on POS sequences, not on dependency trees.

In the following, the language of these plausible construction classes, called
K, is described. Let T be the set of POS tags, T := {Adj, Adv, Conj, Det, N, Pron,
Ptk, Rel, V}. The set K of all plausible construction classes is defined inductively
as the union of the following POS sequences: K := K1 » K2… » K7.
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3.3 Overview

ID Construction class Description

K0

K1

K1¢
K2

K3

K4

K5

K6

K7

Prep.N.Prep etc.
NP:=(N|Det.N|…);PP:=..
P:=(NP|PP|AdjP)
Pn:=P.(P)+
P.V
Conj.P := Conj.Pn|Konj.P
AdvPn

AdvP.KonjP.Pn

K1,2,4…6.VP

idiom specific sequences
atomic phrases
atomic phrases
atomic combinations
atoms and verbs
conjunction phrases
adverbial phrases
combinations with K4,5

complex verb combinations

3.4 Detailed description of the construction classes

1. K0 idiom specific sequences (not iterating):
a. PP0:=(Det|ε).(Prep|ε).(Adj|ε).N.Prep
b. AP0 := Adj.Prep
c. Pron.Det.V
d. Prep.Conj.Prep.Pron
e. Prep.N.Det
f. Det.N.Prep.V
g. Det.N.Prep.(Pron|V)
h. Conj.Conj
i. Det.N.Det.N.Prep
j. Prep.Adj.N.Prep.V
k. Det.N.(Vinf|Rel)

2. K1: atomic phrases: AdvP, AP, NP und PP
a. AP:=(Adj|ε).Adj » Ptk.Adj
b. NP:=(Det|ε).(Adj|ε).(Adj|ε).N » Pron
c. PP:=(Prep|ε).Prep.(Det|ε).((Adv).Adj|ε).N » Prep.Adj » Ptk.Prep.N
d. Adv P : = ( Pre p | ε ) . ( Adv ) . ( Pre p | Adv | ε ) » Ad v. Pre p . Ad v »
Prep.Pron.(Adv|Prep)

3. K2: simple combinations of atomic phrases
a. P2:=(AP|NP|PP).AP|NP|PP)
b. P3:=(AP|NP|PP).(AP|NP|PP).(AP|NP|PP)

4. K3: simple combinations of atoms and verbs:
a. PV:=(AP|NP|PP).V
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5. K4: combinations of phrases with conjunctions
a. ConjP:=(Conj|ε).Conj.(AP|NP|PP)
b. PConjP:=(AP|NP|PP|PP0|ε).Conj.(AP|NP|PP)
c. ConjPConjP:=Conj.(AP|NP|PP).Conj.(AP|NP|PP)
d. ConjPP:=Conj.(AP|NP|PP).(AP|NP|PP)
e. PConjPP:=(AP|NP|PP|ε).Conj.(AP|NP|PP).(AP|NP|PP)
f. PPConjP:=(AP|NP|PP|ε).(AP|NP|PP).Conj.(AP|NP|PP)

6. K5: combinations of phrases with adverbs
a. AdvPP:=AdvP.(AP|NP|PP) » (AP|NP|PP).AdvP
b. PAdvPP:=(AP|NP|PP).AdvP
c. AdvPPP:=AdvP.(AP|NP|PP).(AP|NP|PP)
d. AdvPP3:=AdvP.(AP|NP|PP).(AP|NP|PP).(AP|NP|PP)

7. K6: combinations of phrases, conjunctions and adverbs
a. AdvPConjP:=AdvP.ConjP
b. AdvPPConjP:=AdvP.PConjP
c. AdvPPConjP:=AdvP.Conj.AdvP

8. K7: complex verb phrase combinations, i.e. K1,2,4,5,6 with
VP:=(V|ε).(V|ε).(V|ε).V » (V|ε).(V|ε).Conj.V.(Conj.V|ε)

a. K7,2 — combinations of phrases with VP
i. PV:=(AP|NP|PP0|PP).V.VP
ii. P2V:=(Pron)?.(AP|NP|PP).(AP0|AP|NP|PP).VP
iii. P3V:=(AP|NP|PP).(AP|NP|PP).(AP|NP|PP).VP
iv. PVP:=(Pron|ε).(AP|NP|PP).VP.(AP|NP|PP)
v. PVP2:=(Pron|ε).(AP|NP|PP).VP.(AP|NP|PP).(AP|NP|PP)
vi. P2VP:=(Pron|ε).(AP|NP|PP).(AP|NP|PP).VP.(AP|NP|PP)

b. K7,4: combinations of conjunctive phrases with VP
i. ConjPV:=(Pron|ε).ConjP.VP
ii. PConjPV:=(Pron|ε).PConjP.VP
iii. ConjPPV:=Conj.(AP|NP|PP).(AP|NP|PP).VP
iv. ConjPConjPV:=Conj.(AP|NP|PP).Conj.(AP|NP|PP).VP
v. PConjPPV:=(AP|NP|PP|ε).Conj.(AP|NP|PP).(AP|NP|PP).VP
vi. ConjPPPV:=Conj.(AP|NP|PP).(AP|NP|PP).(AP|NP|PP).VP
vii. PPConjPV:=(AP|NP|PP).(AP|NP|PP).ConjP.VP

c. K7,5: combinations of adverb phrases with VP
i. AdvPPV:=AdvP.(AP|NP|PP|ε).VP » (AP|NP|PP|ε).AdvP.VP
ii. AdvPP2V:=AdvP.(AP|NP|PP|ε).(AP|NP|PP).VP » (AP|NP|PP).
AdvP.(AP|NP|PP).VP
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iii. AdvPP3V:=AdvP.(AP|NP|PP).(AP|NP|PP).(AP|NP|PP).VP
iv. P2AdvPV:=(AP|NP|PP|ε).(AP|NP|PP).AdvP.(AP|NP|PP).VP

d. K7,6: combinations of conjunctive and adverb phrases with VP VP
i. AdvPConjVP:=AdvP.Conj.VP
ii. AdvPConjPVP:=AdvP.ConjP.VP
iii. AdvPConjPPVP:=AdvP.ConjPP.VP
iv. AdvPPConjPPVP:=AdvP.PConjPP.VP

4. Experiment 2

Experiment 2 was conducted in the same way as experiment 1 except for the
changes described in Sections 3.2–3.4.

As a result of the revised model assignment program, the recall rose to 86%
(26,703 out of 32,000), which corresponds to an improved recall of more than
30% with respect to experiment 1. We estimate that 15% is due to the slash
corrections, the new construction classes accounting for the other 15%.

An estimation of the statistical distribution of German multi-word expres-
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Figure 2.�Association with construction classes

sions in the dictionary of idiomatic German is shown in Fig. 3.
Figure 3 shows that the overwhelming majority of multi-word expressions

in the dictionary are verb expressions, i.e. they contain a verb as the head.
About one half of the verb units are simple combinations of atoms and verbs
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(class K3), the remainder consists of complex combinations of phrases and verb

Figure 3.�Distribution of construction classes

phrases, i.e. multi-word units that contain either two verbs or a non-atomic
phrase. Comparatively small but not negligible is the number of multi-word
expressions with obligatory adverbial or conjunctive phrases. The same holds
true for idiom-specific patterns.

We could not associate 14% of the entries with a construction pattern. A
manual examination of 873 of these entries (i.e. approximately 1/6 of the
remaining 5,300 cases) yields the following classification:

1. Failures where the majority of the cases do not correspond to one construc-
tion class (268 cases), e.g.

{in eins}/{Leib und Seele} verschmelzen Æ prep det V | N Conj N V

2. Incompleteness of the grammar of construction classes (277 cases). We did
not list POS sequences corresponding to full sentences (first example) or to
a sentence with an NP that is too complex (second example).

ich glaub’, mich knutscht ein Elch!
j. den Ausdruck von Götz von Berlichingen an den Kopf werfen.

3. remaining Ambiguities of the slash (/) (132 cases)
4. remaining transcription errors (52 cases)
5. clitics (52 cases)

für die Katz’ reden
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6. problems arising from the Brill-Tagger’s lexicon (49 cases)

… und damit basta!
il dolce far niente3

7. other (17 cases): These are cases that deviate from the normal form of the
dictionary, such as entries with discontinuous particle verbs, where the verb
does not stand in the final position: jm. geht ein Kronleuchter auf (so. begins
to see daylight).

5. Discussion

It has been shown that the multi-word expressions of Schemann’s dictionary of
idiomatic German can be tagged using minimal resources with 97.5% accuracy
on the basis of a training set of 6,000 entries. In order to obtain reasonable
results a minimum of 2,000 hand-tagged multi-words entries or approximately
9,000 tokens seems necessary. With this training set, an accuracy rate of 96%
can be obtained for the POS-tagger. In the same way, the categorization rate is
81% for the training set of 2,000 entries and rises to 86% with the full training
set of 6,000 entries.

Of course the regularities of the normalized patterns of multi-word units in
the dictionary contributes to this success. It is remarkable that this approach did
not have to rely on any language-specific linguistic resources except for the
training corpus. Also, the recall of the association of the computed POS
sequences with predefined construction classes is satisfying: 86%4 is a good
recall rate for further processing (see below).

Compared to manual tagging we believe that this method provides a
considerable gain in time. Given an average of 25 encoded entries per hour, it
took about 80 hours for the manual tagging part. In order to tag all the entries
of the dictionary of German idioms (32,000 entries), it would have taken more
than 1,280 hours. Our method required training the Brill tagger (60 hours),
correction of the wrong results (470 hours), plus the initial time of the manual
tagging of the training set (80 hours). This totals 610 hours, which amounts to
a gain of time of about 50%.

Before looking at possible applications of these results, we mention two
limitations of the approach. Indeed, the reduced tag set and the absence of
syntactic analysis result in some loss of quality.

An example of the drawbacks of a small tag set is the missing distinction
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between indefinite pronouns (PIDAT) and reflexive pronouns (REFLPRON)
tag names according to the STTS tag set (A. Schiller 1993).

<LINK "gey-r9">

Ex 11 Sich ein paar Tränen abquetschen
Itself a few tears squeeze
To squeeze out a few tears

Here, paar: PIDAT and sich: REFLPRON should be distinguished. Otherwise
the entry in example 11 would be mapped to the sequence ‘pron.det.pron.N.V’
which does not correspond to any meaningful construction class. On the other
hand, a fairly simple extension of the tag set might correct this erroneous
sequence: NPnew := NPold » Det.PIDAT.N.

Complex sentence like expressions such as the expressions mentioned
below would require syntax analysis and are thus too complex for a POS based
approach:

ich glaub’, mich knutscht ein Elch!
j. den Ausdruck von Götz von Berlichingen an den Kopf werfen.

Conclusion

The results of this approach can be applied in three ways.
The association of an idioms dictionary entry with its POS sequence is a

good basis for a program that recognizes idioms in unrestricted texts. To
implement this, one would have to generate a local grammar or finite state
transducer from the association results, i.e. the POS/token sequence of each
dictionary entry, and match them it with the corresponding text portion (which
we is supposed to be previously POS tagged and lemmatized). Examples for
such a finite state filter, supposed to extract those sequences of the corpus that
correspond to the longest match of a multi-word expression, can be found in
Karttunen (1996) or in Hanneforth (2002). A realization for the specific
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problem of multi-word expressions is given by Senellart (1998).
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Another possibility would be to use the association of multi-word entries
with their POS sequences as a pre-classification for further manual linguistic
encoding. Rather than describing the multi-word entries in alphabetic order, it
is thus possible to proceed with the encoding according to their POS sequence.
It seems clear that the encoding of multi-word expressions ordered by POS
sequences rather than in alphabetic order is less error prone and faster. More-
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over, ordering by POS sequence helps to organize encoding projects: the
encoding of simple patterns like adjÆN or prepÆdetÆN can be done by
novices, whereas more complex patterns, such as those containing verbs or
predicative complements are left to more experienced linguists.

Finally, this approach could be extended to other print dictionaries contain-
ing multi-word expressions. Since our approach requires a minimum basis of
about 2,000 entries as a training set, the dictionary would have to contain
substantially more entries than this training set for the method to become
efficient. Due to the minimal linguistic requirements, the major adaptation of
the approach would reside in the description of the entry format of different
dictionaries. Hence, we believe that this approach could be useful for print
dictionaries in languages other than German. In particular, this approach could
be beneficial for examining and pre-classifying print dictionaries in languages
that have historically been underdeveloped with respect to NLP or for dictio-
naries that have not been exploited yet for the production of machine-readable
dictionaries.

Notes

*�Work supported by the Wolfgang Paul Preis from the Alexander-von-Humboldt Founda-
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tion to Christiane Fellbaum. We are also grateful to Patrick Hanks for comments on an
earlier draft of this paper.

1.  “Der Begriff der ‘Idiomatik’ wurde bewußt weit gefaßt: als ‘idiomatisch’ gelten alle
Einheiten, die kontextgebunden sind.” (Schemann 1993:XII)

2.  In this example the tagger disambiguates the entry. The other possible sequence V.V with
‘einen’ as the infinitive ‘to unite’ would be meaningless.

3.  POS sequence of four Italian words

4.  This estimate was obtained through a random sampling of assigned collocations. These
random samples were manually assigned to a collocation pattern; the population proportion
was estimated through the binomial distribution as 88% ± 4%.
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Summary

This work demonstrates the assignment of multi-word expressions in print dictionaries to
POS classes with minimal linguistic resources. In this application, 32,000 entries from the
Wörterbuch der deutschen Idiomatik (H. Schemann 1993) were classified using an inductive
description of POS sequences in conjunction with a Brill Tagger trained on manually tagged
idiomatic entries. This process assigned categories to 86% of entries with 88% accuracy. This
classification supplies a meaningful preprocessing step for further applications: the resulting
POS-sequences for all idiomatic entries might be used for the automatic recognition of
multi-word lexemes in unrestricted text.
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