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Abstract
Keyword mnemonics are memorable explana-
tions that link new terms to simpler keywords.
Prior work generates mnemonics for students,
but they do not train models using mnemon-
ics students prefer and aid learning. We build
SMART, a mnemonic generator trained on feed-
back from real students learning new terms. To
train SMART, we first fine-tune LLaMA-2 on
a curated set of user-written mnemonics. We
then use LLM alignment to enhance SMART:
we deploy mnemonics generated by SMART in
a flashcard app to find preferences on mnemon-
ics students favor. We gather 2684 preferences
from 45 students across two types: expressed
(inferred from ratings) and observed (inferred
from student learning), yielding three key find-
ings. First, expressed and observed preferences
disagree; what students think is helpful does
not always capture what is truly helpful. Sec-
ond, Bayesian models can synthesize comple-
mentary data from multiple preference types
into a single effectiveness signal. SMART is
tuned via Direct Preference Optimization on
this signal, which resolves ties and missing la-
bels in the typical method of pairwise compar-
isons, augmenting data for LLM output quality
gains. Third, mnemonic experts assess SMART
as matching GPT-4 at much lower deployment
costs, showing the utility of capturing diverse
student feedback to align LLMs in education.1

1 Mnemonics Aid Vocabulary Learning

Keyword mnemonics promote efficient and engag-
ing vocabulary (vocab) learning (Benge and Rob-
bins, 2009). These tools help students learn a new
term’s meaning (e.g. Benevolent) by relating it to a
simpler keyword (e.g. Benevolent sounds like ben-
efit), and explaining how the keyword and term are
linked (e.g. A boss giving employee benefits is kind,
which is the meaning of benevolent) (Pressley et al.,
1982). Students use mnemonics to prepare for ex-
ams like the GRE (Fairbanks, 1977) which involve

1https://github.com/nbalepur/Mnemonic

mastering hundreds of terms (Khan, 2009). De-
spite their utility, writing mnemonics is tedious, re-
quiring vocabulary expertise and creativity to make
memorable keyword links (Siriganjanavong, 2013).

To ease these burdens, prior work automatically
generates keyword mnemonics (Savva et al., 2014).
However, most works design keyword extractors
(Anonthanasap et al., 2015), omitting the explana-
tions linking keywords to terms that enable effec-
tive mnemonic use (Raugh and Atkinson, 1975).
Large Language Models (LLMs) are apt for writing
explanations, a difficult task that tests if LLMs can
combine vocabulary (Huang et al., 2022a), phonol-
ogy (Suvarna et al., 2024), commonsense (Davis,
2023), and creativity (Tian et al., 2024) to help stu-
dents learn (§6.3). While promising, existing works
only prompt LLMs (Lee and Lan, 2023) and lack
training on student feedback to guide LLMs toward
mnemonics students prefer and benefit learning.

In pursuit of student-guided mnemonics, we pro-
pose SMART, which employs Student Mnemonic
Alignment to generate keyword mnemonics that aid
the Recall of Terms. (Figure 1). To train SMART,
we first get data from MnemonicDictionary (Mem-
liapp, 2007), a site where users submit mnemonics
that they find helpful. We collect a high-quality sub-
set of submitted mnemonics to fine-tune LLaMA-
2 70B (Figure 1, left) as our initial model (§2). To
enhance SMART, we draw from LLM alignment,
which improves LLMs via tuning to preference la-
bels that capture which of two LLM outputs users
favor (Casper et al., 2023). We gather preferences
by sampling mnemonics from our initial model and
deploying them to students in a flashcard app (§3).

There are many ways to collect preferences, and
Bansal et al. (2024) show that pairwise rankings
and Likert ratings yield conflicting labels on which
LLM output is favored. To study preference agree-
ment in education (Figure 1, mid), we also gather
pairwise and Likert annotations, which we define
as expressed preferences: those inferred from user
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Figure 1: SMART overview. We fine-tune LLaMA-2 70B for the initial SMART model (§2). We then collect three
preference types: pairwise, rating, and learning (§3). Finally, a Bayesian model synthesizes mnemonic effectiveness
from all three preferences (§5.1) and we use this signal to align SMART via Direct Preference Optimization (§5.2).

ratings. Expressed preferences measure what users
think are more helpful, but to see if this agrees with
what truly helps users, we introduce observed pref-
erences: those inferred from observable goals (e.g.
learning) as users interact with outputs. We collect
observed preferences via the mean time users need
to learn a term while studying with its mnemonic,
a proxy for mnemonic short-term learning efficacy.

Over three months, 45 students gave 2684 pref-
erences on mnemonic pairs. To decide how to align
SMART, we study the relation of preference types.
Expressed and observed preferences disagree (§4),
so what students think helps them learn differs from
what truly helps them learn. These preference types
represent equally valuable goals (§5): an effective
and helpful mnemonic should be non-harmful and
liked by users (expressed), but also aid learning (ob-
served). Thus, we design a Bayesian model (Gel-
man and Hill, 2006) that learns mnemonic effective-
ness via feedback from all preference types (§5.1).
We compare mnemonics by effectiveness to elect a
winning mnemonic in the pair (Figure 1, right) and
tune SMART with Direct Preference Optimization
(Rafailov et al., 2024, DPO) on this signal (§5.2).

We assess SMART through several experiments.
Fine-tuning and DPO enhance SMART, so aligning
LLMs to student preferences improves educational
text (§6.1). Further, combining all preferences via
Bayesian modeling can resolve ties or missing la-
bels in the typical method of pairwise comparisons,
augmenting DPO data for mnemonic quality gains
(§6.2). Multiple preferences can be gathered in one
app, sometimes with no extra annotations (§3.2.2).
So if resources allow, we advise collecting multiple
preferences to study the relation of complementary
alignment objectives, which can then be combined

for data augmentation to improve LLM outputs.
Lastly, two mnemonic experts assess mnemon-

ics (§6.3) from SMART, GPT-4, and a freelance
creative writer from Upwork, finding: 1) SMART

matches the SOTA LLM GPT-4, showing the utility
of student feedback; and 2) Our writer’s keywords
are much simpler and their explanations are more
imageable compared to GPT-4 and SMART, moti-
vating mnemonic generation as a difficult task and
giving insights into feedback types (simplicity, im-
ageability) that can also be collected to better align
LLMs for downstream tasks. Our contributions are:
1) We design SMART, an LLM mnemonic genera-
tor aligned by feedback from real-world students.
2) We analyze expressed and observed preferences,
finding that the LLM outputs students think help
them learn is not what actually helps them learn.
3) We align SMART with multiple preferences via
Bayesian modeling, which can break preference
ties for DPO output quality gains and results in a
more efficient keyword mnemonic generator that
matches the state-of-the-art LLM GPT-4.
4) We release the first fine-tuning and preference
datasets to aid research in mnemonic generation.

2 An Initial SMART Mnemonic Model

Given a vocabulary (vocab) term v (e.g. Benevo-
lent), we desire a keyword mnemonic m students
can use to remember the meaning of v. For optimal
benefits (McDaniel and Pressley, 1984), m should
link to a similarly sounding and simpler keyword k
(e.g. Benevolent sounds like benefit), and then ex-
plain how k and v are linked (e.g. A boss who gives
their employees benefits is kind—or benevolent).

We now train an initial SMART model to generate
keyword mnemonics. We collect a high-quality



dataset of user-written mnemonics (§2.1, §2.2) and
fine-tune SMART on this mnemonic dataset (§2.3).

2.1 Data Collection
A dataset with vocab terms and mnemonics does
not exist, so we curate new datasets to facilitate
mnemonic research. We use vocab words from the
Graduate Records Examination (GRE), a graduate
admissions exam that students prepare for by learn-
ing hundreds of vocab terms (Nayak et al., 2017).
Mnemonics have been used to help students learn
GRE vocabulary (Fairbanks, 1977; Pi et al., 2021).

We base our dataset on 2380 public English GRE
terms V from seven tutoring sites (Kotchian, 2019).
We find a mnemonic for each term from Mnemon-
icDictionary (Memliapp, 2007), a site where users
submit keyword mnemonics for vocab terms. Users
can also vote on mnemonics, which we later use to
find high-quality mnemonics (§2.2). With permis-
sion from the owners, we collect 13955 candidate
MnemonicDictionary mnemonics for our dataset.

2.2 Identifying High-Quality Mnemonics
The user-submitted mnemonics collected from §2.1
are noisy, but a subset of high-quality data would
better train SMART for mnemonic generation (Xia
et al., 2024). MnemonicDictionary users upvote or
downvote mnemonics, so upvote ratio could find
high-quality data, but this metric does not consider
all upvotes given (Powell et al., 2017). Thus, fol-
lowing Hoffart et al. (2019), we build a Bayesian
model to learn the probability qi of mnemonic mi

being high-quality, based on the upvote νu,i and
downvote νd,i counts on mi. We assume mnemon-
ics with higher qi have more upvotes, so we model
νu,i as a Binomial distribution with probability qi:

qi ∼ Beta(α = 2, β = 8), (1)

νu,i ∼ Binomial(νu,i + νd,i, qi), (2)

which has prior α = 2, β = 8, as our brief manual
assessment found that ∼20% of the mnemonics are
high-quality. We estimate qi via No U-Turn Sam-
pling (Hoffman et al., 2014, NUTS). Pairs (vi, mi)
with the 1000-highest qi values form the fine-tuning
dataset Dft for SMART (details in Appendix A).

2.3 Model Fine-Tuning
The dataset Dft has term/mnemonic pairs (v,m),
so we can use Dft to train an initial seq2seq SMART

model p0(m | v) to create m from v. Upon inspec-
tion, we find some quality issues in the mnemonics,

so we use GPT-4 to clean grammar errors in m via a
0-shot prompt, and discard any m with offensive or
overly culturally-specific text (see Appendix A.1).
We end up with 889 pairs for fine-tuning SMART.

Each (v,m) ∈ Dft forms prompt P = “Term:
v\nMnemonic:” and output text m. Our initial
model p0(m | v) fine-tunes LLaMA-2 70B (Tou-
vron et al., 2023) to minimize the cross-entropy
loss LCE of predicting tokens mj ∈ m given P:

LCE =

|m|∑︂

j=1

log p(mj |m1, ...,mj−1,P). (3)

We use QLoRA (Dettmers et al., 2023) to minimize
LCE . All parameters are listed in Appendix B.1.

3 Collecting Mnemonic Preferences

Only fine-tuning does not explicitly guide SMART

toward mnemonics that users prefer and help them
learn—our overall goal. Thus, we use alignment
(Ziegler et al., 2019): tuning LLMs to preference
labels capturing which outputs users favor. To align
SMART, we need a preference dataset Dpref with
entries of a term v, mnemonic pair (mA,mB) for
v created by the initial model p0(m | v), and prefer-
ence label y ∈ {A,B,tie} noting the mnemonic
in the pair users favor. To build Dpref , we create
mnemonic pairs (§3.1), define our preference labels
(§3.2), and describe our user study details (§3.3).

3.1 Generating Mnemonic Pairs

For Dpref , we first need mnemonic pairs (mA,mB)
created by model p0(m | v) for many terms v. In
preference datasets, researchers sample candidate
LLM responses to match the abilities of the target
LLM (Bai et al., 2022), so the mnemonics should
have high probability in our model p0(m | v). Fur-
ther, to ensure the mnemonics in the pair are not too
similar, which would often result in preference ties,
we seek a diverse pair of mnemonics; this gives the
user distinct choices, yielding clearer preferences.

We combine these two objectives through best-
of-n sampling (Nakano et al., 2021), which sam-
ples n LLM outputs and picks the one with the best
score from a reward model. We define a reward
πpair(mA,mB, v) that returns the sum of mA and
mB sequence probabilities from p0(m | v), minus
the ROUGE-1 (Lin, 2004) of mA and mB , assess-
ing mnemonic diversity (Shaib et al., 2024). The
reward favors mnemonics with high sequence prob-
ability and low word overlap. To create mnemonic
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Figure 2: Screenshot from our web-based flashcard app
after a user is presented a GRE vocabulary flashcard.

pairs, we sample 1000 terms Vpref ⊂ V not used
in Dtrain. For each term v ∈ Vpref , we sample
five mnemonics M = {m}5 ∼ p0(m | v) with 0.3
temperature. We take (mA,mB) ∈ M×M with
the best πpair(mA,mB, v) score as the pair for v.

3.2 Preference Label Collection
While preferences are often elicited through crowd-
worker sites, we decide to collect preferences from
students who can learn vocab using our mnemonics.
Flashcard software can aid mnemonic use (Tuite
et al., 2012), so we host our user annotation schema
within a flashcard app to gather student preferences
y ∈ {A,B,tie} for the mnemonic pairs in §3.1.

Flashcards have two sides and while studying,
users read the front of the card and answer what is
on the back. In our app, users study flashcards fv
with a term v as the front of the card and type its
definition on the back (Figure 2). In one session,
users study a set of flashcards with 5 to 50 terms the
user has not yet studied, and continue studying until
they correctly type each term’s definition. We use
TF-IDF (Sparck Jones, 1972) with a cutoff of 0.15
to check if the user’s typed definition matches the
ground-truth definition, which the user can override
if they disagree with the metric’s prediction. If a
user answers fv correctly, it is removed from the
pool of cards left to study. If answered incorrectly,
they see a mnemonic from the pair (§3.1) for v to
aid learning (Figure 3), and the card remains in the
set of cards to study. Thus, for each card fv, we
can count how many turns n ∈ Z+ the user needed
to answer fv correctly. We use the KAR3L (Shu
et al., 2024) model and flashcard learning interface
to select the set of new flashcards to show users.

Researchers often use one method to collect pref-
erences. But diverse methods, like pairwise com-
parisons and Likert ratings, can yield conflicts on
which outputs are favored (Ethayarajh and Jurafsky,
2022; Bansal et al., 2024), and may also give com-
plementary signals for LLM output quality (§5). To

KAR³L-generated Mnemonic Device

Compliant sounds like “compliment”. When someone compliments 

you, they are agreeing with you, which is similar to being compliant.

Give Feedback (Optional)

Figure 3: Screenshot of UI to collect Likert ratings.

SKIP ( ENTER ) EQUAL (SHIFT-ENTER)

Mnemonic B ( ] )

Compliant sounds like “compliment”. When
someone compliments you, they are
agreeing with you, which is similar to being
compliant.

Mnemonic A ( [ )

Compliant sounds like “complain”. If you
complain, you are likely to follow the rules.
Hence, compliant means willing to follow
rules or requests.

KAR³L-generated Mnemonic Devices

Which mnemonic do you think would help you learn better?

Figure 4: Screenshot of UI for pairwise comparisons.

see how diverse schema impact preferences in edu-
cation, we collect three different preference labels
grouped into two types: expressed and observed.

3.2.1 Expressed Preferences
We define expressed preferences as those inferred
from explicit user ratings—the most common pref-
erence type (Casper et al., 2023). We collect two
expressed preferences: Likert ratings (Harpe, 2015)
and pairwise comparisons (Bozóki et al., 2013).

For Likert ratings, if a user sees a mnemonic mX

after answering card fv incorrectly, they rate mX

on a 5-Likert scale (Figure 3). We call this prefer-
ence label yrate and set yrate = A if the average
Likert rating of mA is higher than mB across users
(same for B and tie). For each fv, users see only
one of mA or mB , so their rating cannot be biased
by having already seen the other in the pair.

For pairwise preferences, if fv is answered cor-
rectly, the user picks the mnemonic in (mA,mB)
they think would help them learn best (Figure 4).
Users can pick one mnemonic or mark them equal.
We call this preference ypair and set it to the most
voted option. Order is shuffled for position biases.

3.2.2 Observed Preferences
Expressed preferences measure the outputs users
think are more helpful, but they do not capture what
is truly more helpful for user goals (e.g. learning).
Such preferences are undefined, so we propose ob-
served preferences—those inferred from observed
outcomes of user interactions with model outputs.



Preference Pairs Raw Agreement Sample Size

(ypair, yrate) 0.675 80
(yrate, ylearn) 0.507 73
(ypair, ylearn) 0.407 59

Table 1: Raw agreement of preference types. Expressed
preferences ypair and yrate have some disagreement,
but agreement between expressed and observed prefer-
ences (yrate vs ylearn and ypair vs ylearn) is even lower.

As keyword mnemonics can improve short-term
recall (Wang et al., 1992), we base observed pref-
erences on the mean turns tX users studying with
mX need to correctly answer its flashcard fv, as
calculated in §3.2. This measure forms a proxy for
short-term learning. For a given pair (mA,mB), if
tA < tB , we call this preference label ylearn and
set ylearn = A, as mA helps users learn the defini-
tion of v quicker than mB (same for B and tie).
ylearn is collected automatically as users study.

3.3 User Study Details
We deploy all mnemonics from Dpref and have 47
English-speaking students from exam preparation
forums, Google ads, and university courses study in
our app. To filter noisy annotators, we add random
quality checks in pairwise comparisons, where one
mnemonic is clearly low-quality. If any user picks
the low-quality mnemonic in the pairwise compari-
son, their preferences are omitted for analysis and
model training. All users, including the two users
who failed our quality checks, are awarded $50. In
three months, 45 students gave us 2684 preferences
for 752 mnemonic pairs and 472 unique pairs (Ta-
ble 5, details in Appendix A.2). We omit pairs with
two or fewer labels so the mean labels per pair is
3.57, following the method of using three or more
preferences to curb noise (Bai et al., 2022; Ji et al.,
2024). Users are referred to just by numerical ID.

4 Preference Analysis

We study the relation of our preference types (§3.2)
and uncover that students cannot fully predict what
aids learning (§4.1, §4.2). Thus, we conclude that a
mnemonic’s overall helpfulness cannot be captured
by just one preference type, inspiring the design of
our final model that combines all preferences (§5).

4.1 Are Preference Types Equivalent?
To see if our preference labels capture equivalent
information, we compute the agreement of prefer-
ences (e.g. ypair vs yrate) for the same mnemonics.
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Figure 5: Correlation between user mnemonic ratings
and turns needed for the same user to recall the term
when studying with said mnemonic (jittered). Users can-
not predict which mnemonics will best help them learn.

We exclude labels denoting a tie, focusing instead
on labels that show a clear preference towards one
mnemonic. Table 1 shows that the expressed pref-
erences ypair and yrate have moderate agreement
(0.675), aligning with Bansal et al. (2024), who
also uncover disagreement in pairwise and rating
preferences. But notably, the agreement between
expressed and observed preferences is much lower
(0.507 and 0.407), so asking students which out-
puts they think are more helpful does not always
capture what is truly more helpful for learning.

4.2 Can Users Predict their Learning?
To study preference type disagreement at the stu-
dent level, we see if a user’s rating of a mnemonic
predicts the total turns needed for the user to learn
the vocab term linked to that mnemonic. If users
can predict this well, we would see a strong nega-
tive correlation, with lower ratings indicating more
turns needed, but we find little (r = −0.06) corre-
lation (Figure 5). Prior work shows that students
struggle to identify the study strategies that best aid
learning (McCabe, 2011; Yan et al., 2016), and we
uncover that students struggle to do the same for
study items, further showcasing that expressed pref-
erences cannot fully capture learning outcomes.

5 Training a SMART-er Mnemonic Model

Our goal of collecting student preference labels for
mnemonic pairs is to identify more helpful or effec-
tive mnemonics, using this signal to guide SMART’s
outputs. But as preference types disagree (§4), how
should we identify more effective mnemonics?

Pairwise comparisons are typically used for this
purpose, but they do not always match our goal of
aiding learning (§4.1). Further, when pairwise pref-
erences are missing or have a tie, we could draw
from other preferences to break these ties and iden-



tify the better mnemonic, instead of discarding the
pair for training (§6.2). Conversely, using observed
preferences to select more effective mnemonics is
promising as it matches our learning goal, but also
using expressed preferences could help us avoid
bizarre or offensive (Kroll and Tu, 1988) mnemon-
ics that may still aid learning (see Appendix D.1).

Given the multi-faceted nature of mnemonic ef-
fectiveness, we develop a Bayesian model to learn
effectiveness from all preferences and tune SMART

via Direct Preference Optimization (Rafailov et al.,
2024) on this learned effectiveness signal (§5.2).

5.1 Learning Mnemonic Effectiveness
For mnemonic pairs (mA,mB) ∈ Dpref , we seek
to find the more effective mnemonic. We intuit that
mnemonic effectiveness is a latent value that can be
modeled via feedback from all three of our prefer-
ences. Bayesian models are well-suited for this task
as they capture annotator noise in feedback more
effectively than aggregation (Wang et al., 2023).

Thus, we design a Hierarchical Bayesian model
(Gelman and Hill, 2006) to estimate mnemonic
effectiveness. We seek to learn IP(θA > θB), the
probability mnemonic mA is more effective than
mnemonic mB . To do so, we model mnemonics
mA,i and mB,i by latent effectiveness parameters
θA,i and θB,i, which are assigned uniform priors:

θA,i, θB,i ∼ Beta(1, 1). (4)

We assume θA,i and θB,i influence observed feed-
back in our three preferences: pairwise ypair; rating
yrate; and learning ylearn, which we outline below.

For pairwise preferences, let Ci = {c1, ..., cn}
be the pairwise ratings of (mA,i,mB,i), where
ci ∈ {A,B,tie}. If θA,i > θB,i, we assume Ci
has more A preferences. To model Ci from θA,i and
θB,i, we compute the sigmoid (σ) of a linear trans-
form of θA,i as the probability ppairA,i = IP(A ∈ Ci):

αpair, βpair ∼ Normal(0, 1), (5)

ppairA,i = σ(αpair · θA,i + βpair), (6)

and same for ppairB,i . We then model Ci as a Bradley-
Terry model with ties (Davidson, 1970), where
IP(tie ∈ Ci) depends on a uniform latent value τ :

τ ∼ Beta(1, 1), (7)

ppairi =
[ppairA,i ; p

pair
B,i ; τ ]

ppairA,i + ppairB,i + τ
, (8)

Ci ∼ Multinomial(n, ppairi ). (9)

For rating preferences, let RA,i = {r1, ..., r5} be
cumulative counts of Likert ratings for mA,i, where
mA,i has rj votes less than or equal to rating j.
We assume mA,i with higher effectiveness θA,i has
higher ratings. We model RA,i as a multinomial
distribution, parameterized by a linear transforma-
tion of θA,i to a 5-length probability distribution:

αrate, βrate ∼ Normal(0, 1)5, (10)

prateA,i = σ(αrate · θA,i + βrate), (11)

RA,i ∼ Multinomial(ΣRA,i, p
rate
A,i ), (12)

and do the same for RB,i.
For learning preferences, TA,i = {t1, ..., tm} is

the distribution of turns users need to recall the term
with mA,i, where tj ∈ Z+. We assume mA,i with
higher effectiveness θA,i yields fewer tj needed.
Every turn count tj is the tries until a success, so
we model each tj as a Geometric distribution pa-
rameterized by a linear transformation of θA,i:

αlearn, βlearn ∼ Normal(0, 1), (13)

plearnA,i = σ(αlearn · θA,i + βlearn), (14)

tj ∼ Geometric(plearnA,i ), (15)

and same for TB,i. We learn all variables via NUTS
(Hoffman et al., 2014) for 1000 epochs. Parameters
converge across five chains (Appendix B.4), mean-
ing our model consistently estimates effectiveness.

5.2 Aligning SMART with Student Preferences
We now use the learned effectiveness of mnemon-
ics (mA,mB) in the preference dataset Dpref to
align SMART. Among many alignment methods,
we adopt Direct Preference Optimization (Rafailov
et al., 2024, DPO), which tunes LLMs to prefer-
ences without requiring explicit reward modeling
or reinforcement learning steps. Alternatives like
Proximal Policy Optimization (Schulman et al.,
2017) need extensive parameter tuning and are thus
harder to reproduce (Huang et al., 2022b).

DPO requires dataset entries with a prompt x
and winning/losing outputs yw/yl, where yw/yl are
“good”/“bad” outputs for x. We set x to the term v
in Dpref with its mnemonics (mA,mB) as outputs.
The mnemonic with higher effectiveness (θA vs θB
from §5.1) is yw, and the other is yl. With this data,
we update our initial model p0(m | v) (π0 below) to
align a better SMART model pdpo(m | v) (π below)
with DPO, which minimizes the loss Ldpo:

Ldpo = −E
x,yw,yl
∼Dpref

[︃
lnσ

(︃
β ln

π(yw|x)
π0(yw|x)

− β ln
π(yl|x)
π0(yl|x)

)︃]︃
.

(16)



SMART minimizes Ldpo using QLoRA (Dettmers
et al., 2023). Appendix B.1 lists all parameters.

6 How Smart Are SMART’s Mnemonics?

We now assess SMART’s mnemonics for 500 terms
Vtest ⊂ V not used in Dtrain or Dpref . SMART

is aligned using a combination of three preference
metrics: pairwise comparisons, Likert ratings, and
learning. Due to space and data limits, we mainly
evaluate via the most popular of the three metrics:
pairwise comparisons (Casper et al., 2023). Thus,
our evaluation reveals how using multiple prefer-
ence labels (MPLS) affects pairwise output quality.
We acknowledge that an evaluation across all pref-
erence metrics would be insightful (§9) and hope
future works extend this direction with our datasets.

Given the costs of human pairwise evaluations,
we adopt a common practice having GPT-4 judge
which of two model-created mnemonics is higher
quality (Chiang et al., 2023; Liu et al., 2023). GPT-
4 has 80% agreement with users (Appendix B.3)
on 200 held-out mnemonic pairs, near the 81% hu-
man agreement in MT-bench (Zheng et al., 2024),
so GPT-4 agrees with user pairwise mnemonic rat-
ings. To curb position bias (Wang et al., 2024), we
compare mnemonics in both orders, only marking
that one model wins if GPT-4 picks the model’s
mnemonic in both orders, otherwise marking a tie.

We first use GPT-4 to compare mnemonic qual-
ity of SMART ablations (§6.1, §6.2). We then have
mnemonic experts evaluate SMART’s mnemonics
to inform future work (§6.3). We also present ex-
amples of SMART’s mnemonics in Appendix D.4.

6.1 Ablation Study

We ablate SMART (Figure 1) to verify that both
fine-tuning and DPO improve mnemonic quality.
Our fine-tuned model p0(m | v) generates higher-
quality mnemonics versus the few-shot LLaMA
model pfs(m | v) prompted using the ten Dft ex-
amples with the highest latent quality (§2.2), and
same for pdpo(m | v) versus p0(m | v) (Table 2).
Both of the steps improve pairwise mnemonic qual-
ity, confirming DPO can align LLMs with student
preferences to enhance LLM outputs in education.

6.2 DPO with Multiple Preference Labels

We investigate the effectiveness of training with
DPO using MPLs for pairwise mnemonic quality
through two research questions, outlined below:

Model A/B Pair A Wins Tie B Wins

p0(m|v), pfs(m|v) 0.76* 0.13 0.11
pdpo(m|v), p0(m|v) 0.29* 0.53 0.18

Table 2: GPT judgement of our ablations. Significantly
better models (Binomial, p < 0.005) are bold with *.
Our fine-tuning and DPO steps both improve SMART.

Model A/B Pair A Wins Tie B Wins

pbayes(m|v), ppair(m|v) 0.19 0.60 0.21
pdpo(m|v), ppair(m|v) 0.28* 0.54 0.18

Table 3: GPT judgement of DPO models. Significantly
better models (Binomial, p < 0.005) are bold with *.
Multiple preferences can break ties in singular prefer-
ences for mnemonic quality gains (bottom row).

Q1—Do MPLs harm pairwise metrics? One
concern of optimizing on MPLs with DPO is that
the model will produce lower-quality mnemonics
compared to a model using pairwise labels, as
the latter optimizes just on the evaluation metric.
To test this, we first select a subset of preference
data Dpair ⊂ Dpref

2 with the pairwise preference
ypair. We then train two DPO models on Dpair

when ypair ̸= tie: pbayes(m | v), training on the
Bayesian label ybayes from §5.1, and ppair(m | v),
training on ypair. Despite having 20% disagree-
ment in ypair and ybayes on the winning mnemonic,
the two models are judged to generate mnemonics
with equal quality on Vtest (Table 3, top). Thus,
DPO training with MPLs does not always degrade
LLM output quality on singular preference metrics.

Q2—Can MPLs augment data? If we train DPO
with just ypair, we must discard preference data
when ypair = tie or no ypair exists. While
we could collect more ypair labels with another
user study, we investigate whether ybayes can di-
rectly resolve the missing or tied ypair labels using
the other preferences to elect winning mnemonics,
augmenting our training data without collecting
any more pairwise comparison data. We compare
ppair(m | v), which trains on 348 ypair labels, to
our full model pdpo(m | v), which trains on 117
extra pairs when ybayes breaks a tie in ypair and
twelve extra pairs without ypair labels. pdpo(m | v)
has significantly better (p < 0.005) mnemonics
than ppair(m | v) (Table 3, bottom), meaning that
MPLs can effectively augment DPO training data
over pairwise preferences for output quality gains.

2To have enough label disagreement, Dpref in this analysis
also adds mnemonics with two labels (see Appendix A.3).



Takeaway: Since optimizing on ybayes matches
ypair in non-ties and improves output quality by
resolving ties and missing ypair labels, we advise
collecting MPLs if resources allow. This is feasible
as MPLs can be collected in a single app, which is
often cheaper than another user study to break ties,
especially as some labels (e.g. ylearn) can be gath-
ered without explicit annotations. Such efforts can
help researchers study complementary alignment
objectives (§4) and even boost LLM output quality.

6.3 Qualitative Evaluation
For a detailed evaluation, we have two mnemonic
researchers assess our mnemonics, split into key-
word and explanation quality. For keyword quality,
we ask two yes/no questions: 1) Does the keyword
sound like the term? (Phonetic Similarity); 2) Is
the keyword simpler3 than the term? (Simplicity).
For explanation quality, we rate mnemonic expla-
nations out of five on: 1) Clarity: Ease of under-
standing; 2) Strength: The obviousness of the ex-
planation’s association of the keyword and the term
(Hall et al., 1981); 3) Imageability: The ability to
evoke mental imagery (Campos et al., 2011). We ar-
gue clarity and strength are most important for ex-
planation quality, ensuring students can understand
and create strong memory links from terms to key-
words. We use imageability as it can affect memory
(Groninger, 1971), but an imageable explanation is
still unmemorable if it is unclear or low strength.4

We assess mnemonic keyword and explanation
quality for 50 Vtest terms created by a professional
writer from Upwork, 10-shot GPT-4, and SMART,
pdpo(m | v). We also compare SMART’s keyword
quality to Transphoner (Savva et al., 2014), a SOTA
mnemonic keyword extractor. Transphoner is hard
to reproduce, so we use 50 terms and Transphoner
outputs released by the authors for this comparison.

Keyword Quality: SMART has slightly better key-
words than Transphoner (higher simplicity, equal
PS), meaning LLMs are strong alternatives for key-
word extractors (Figure 6, left). SMART also pro-
duces much simpler keywords than GPT-4, but with
lower PS (Figure 6, middle). Suvarna et al. (2024)
reveals a large gap (37% accuracy) when prompting
LLaMA-2 13B and GPT-4 for rhyme generation
which also assesses PS; our gap is just 8%, so fine-
tuning and human feedback can help LLMs address

3A keyword is simpler if a user not knowing the term could
likely know the keyword (torpor is not simpler than torpid).

4For example, Ben Franklin for benevolent in Figure 1.
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Figure 6: Expert qualitative evaluation of mnemon-
ics. SMART matches GPT-4 at much lower deployment
costs, but our human writer largely surpasses all models,
especially in keyword simplicity and imageability.

phonetic weaknesses. Lastly, our human writer sur-
passes both models in keyword quality, with large
simplicity gaps. Thus, systems that simplify text
with LLMs (summarizers, topic models) may bene-
fit from explicit feedback on word simplicity.

Explanation Quality: SMART matches GPT-4’s
explanations (lower clarity, but higher strength),
meaning student feedback lets smaller LLMs like
SMART compete with large SOTA LLMs (Figure 6,
right). Our writer again has the best explanations,
especially in imageability over SMART, as SMART

is not explicitly guided toward imageable outputs.
Imageability does not entail memorability, but it
may be useful for memorability tasks (story-telling,
advertising) to use imageability feedback, as even
GPT-4 shows a clear weakness in imageability.

Takeaway: Training LLMs with student feedback
results in mnemonics with keyword quality match-
ing SOTA extractive methods while also generat-
ing explanations. It also allows SMART, a smaller
LLM, to compete with GPT-4. This is a significant
feat, as SMART can provide students with mnemon-
ics as effective as GPT-4 at much lower deployment
costs—an attractive feature for educators looking to
implement LLM educational tools. Further, since
GPT-4 is stronger than LLaMA, using student feed-
back with GPT-4 could yield even better mnemon-
ics. Lastly, our expert writes better mnemonics than
LLMs, specifically in keyword simplicity and im-
ageability. This motivates mnemonic generation as
a challenging task and gives insights into feedback
that could be used to guide LLMs in similar tasks.

7 Related Work

Below, we review relevant literature on mnemonic
generation (§7.1) and human preferences (§7.2).



7.1 Mnemonic Generation

Mnemonics help users learn information, such as
passwords (Yang et al., 2016; Song et al., 2019),
vocabulary (Dundes, 1961; Levin et al., 1992), and
medical facts (Ajayi et al., 2019; Leeds et al., 2020).
There are many mnemonic types, including song
(Hayes, 2009; Werner, 2018), acronym (McCabe
et al., 2013; Li et al., 2021), and keywords (Campos
et al., 2004, 2011). We study keyword mnemonics,
which link complex terms to simpler keywords.

The effort of manually writing mnemonics has
led to mnemonic generation research. Early works
use phonetic similarity and multi-score ranking to
find keywords (Savva et al., 2014; Anonthanasap
and Leelanupab, 2015; Anonthanasap et al., 2015),
but these methods do not explain how the keyword
is linked to the fact. Recent works prompt LLMs
to generate mnemonic explanations (Lee and Lan,
2023; Wong and Wolf, 2024), but we are the first to
collect fine-tuning and preference data to generate
mnemonics guided by real-world student feedback.

Prior education work has found that students can-
not predict which study strategies, such as blocked
versus interleaved practicing, will best help them
learn (McCabe, 2011; Yan et al., 2016). We dis-
cover that students struggle to do the same for indi-
vidual study items (§4.2), such as mnemonics.

7.2 Human Preferences

Recent work aligns LLMs with preference data cap-
turing what humans prefer (Stiennon et al., 2020).
Alignment methods include reinforcement learning
with reward models (Christiano et al., 2017; Ziegler
et al., 2019), selecting high-quality data (Sanh et al.,
2022; Zhou et al., 2024), and augmenting LM loss
with rewards (Yuan et al., 2023; Rafailov et al.,
2024). Preferences have been used for sentiment
generation (Maas et al., 2011), summaries (Völske
et al., 2017), and dialogue safety (Bai et al., 2022),
but we are the first to study them in mnemonics.

Our work also follows recent efforts to measure
issues in preferences, such as preference agree-
ment (Ethayarajh and Jurafsky, 2022; Bansal et al.,
2024) and annotator biases (Peng et al., 2022; Wan
et al., 2023). In contrast, we distinguish between
expressed and observed preferences and show ex-
pressed preferences do not capture what truly helps
users. We are also similar to works that collect pref-
erences across varied demographics (Kirk et al.,
2024) and use reinforcement learning regulariza-
tion to align models to diverse preferences (Xue

et al., 2023), but we are the first to collect diverse
preferences in an education setting and combine
them via Bayesian modeling (Yang et al., 2024).

In social science, several works find that a hu-
man’s stated preferences, elicited from survey re-
sponses, do not always agree with revealed pref-
erences, the human’s actual behavior (Urama and
Hodge, 2006; Hoderlein and Stoye, 2014; De Corte
et al., 2021). We show that the same applies in edu-
cation, as pairwise comparisons and Likert ratings
for perceived learning efficacy (expressed prefer-
ences) have low agreement (§4.1) with what truly
helps users learn (observed preferences). Mozannar
et al. (2024) find a similar trend in coding, where
programmer preferences do not correlate with their
actual productivity. As a result, we hope our work
will lead researchers to reevaluate how we should
measure helpfulness in preference data collection
to design models that truly help users downstream.

8 Conclusion

We design SMART, the first keyword mnemonic
generator guided by student feedback. SMART is
trained on new fine-tuning and preference datasets,
both of which are released. While curating data, we
reveal low agreement in expressed preferences and
our introduced observed preferences, showing that
students cannot predict their learning. Combining
expressed and observed preferences via DPO and
Bayesian modeling yields a smaller, more efficient
mnemonic model matching GPT-4. However, our
human writer surpasses both models, especially in
keyword simplicity and explanation quality, moti-
vating mnemonic generation as a challenging task.
To further challenge LLMs, researchers could ex-
plore personalizing mnemonics for students, adapt-
ing SMART to different domains, languages, and
modalities, or optimizing on other learning signals
(e.g. long-term learning) via student feedback.

While expressed preferences are currently used
for alignment, they do not measure what truly helps
users. Thus, there is a need for more work in captur-
ing observed preferences and user goals. Ensuring
LLMs pursue such goals safely requires alignment
methods to steer LLMs toward both expressed and
observed preferences, and we design a method to
combine them; our method also resolves ties and
missing labels to augment datasets. We hope our
study of the disagreements and benefits of diverse
mnemonic preferences will motivate future work
in safely aligning LLM outputs to true user needs.



9 Limitations

One limitation is that our fine-tuning and prefer-
ence datasets are relatively small. Despite this, our
datasets both improve the quality of mnemonics
from SMART (§6.1), following the recent paradigm
of LIMA (Zhou et al., 2024) which suggests that
small, high-quality datasets can be used to align
and improve LLMs. Further, regardless of size, our
preference dataset results in an insightful analysis
of the relation between expressed and observed
preferences (§4). If more students study vocab in
our app, we will update and release both of our
mnemonic datasets accordingly, resulting in larger
datasets to facilitate mnemonic research.

GPT-4 as a judge can result in biases. We used
GPT-4 due to the high cost of human annotations,
which has also become a standard practice (Chi-
ang et al., 2023; Liu et al., 2023; Touvron et al.,
2023; Chiang and Lee, 2023; Dettmers et al., 2023).
While using GPT-4, we adopt best practices for ro-
bust evaluation: 1) only evaluating on SMART to
avoid self-recognition (Panickssery et al., 2024); 2)
using DSPy to limit the sensitivity of prompt per-
turbations (Khattab et al., 2024); 3) ensuring GPT-
4 has high agreement with humans on held-out
mnemonic comparisons (Zheng et al., 2024); and
4) running inference on both orders of mnemonic
pairs to curb position bias (Wang et al., 2024).

Lastly, our final model for SMART optimizes
on a combination of multiple preference labels:
pairwise comparisons, Likert ratings, and learning.
While training and evaluating DPO models on all
three objectives independently would be insightful,
we are limited by our data. Thus, we focus on the
most popular of the three—pairwise preferences—
and our evaluation reveals how optimizing with
multiple preference labels can impact metrics based
on just one preference label. We encourage future
work to use our preference data to explore how op-
timizing on multiple preferences impacts metrics
based on each type of preference. To further mo-
tivate works in this direction, we have mnemonic
experts evaluate SMART’s mnemonics to inform
which types of feedback (e.g. keyword simplicity,
explanation imageability) could be collected and
trained with to improve mnemonics (§6.3).

10 Ethical Considerations

While optimizing directly on observed preferences
for downstream applications is promising, we ad-
vise researchers to take caution for deploying such

models in a way that impacts users. Even our rela-
tively harmless objective of optimizing on learning
can result in bizarre mnemonics that perpetuate
harms (Appendix D.1), and we imagine that in
other domains, these consequences could be more
severe. For example, training an LLM in the news
domain optimized on user clicks can result in mis-
information (Milano et al., 2020), while optimizing
directly on time spent looking at an advertisement
can yield harmful, addictive content.

We took precautions to avoid these harms, such
as filtering out offensive mnemonics before fine-
tuning (§2.3), and our protocols were approved
by an Institutional Review Board to mitigate any
risks during our user study. Thus, while we advo-
cate for research in observed preferences for LLM
alignment, we also urge researchers to consider
the consequences of optimizing on these objectives
before deployment in user-facing applications.
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A Dataset Details

A.1 Cleaning Noisy Mnemonics
Warning: This subsection contains an example
of an offensive mnemonic.

We use Bayesian modeling to obtain a high-
quality subset of student-submitted mnemonics on
MnemonicDictionary for fine-tuning (§2.2), but we
still find grammar mistakes in the mnemonics, and
some of the mnemonics can be considered offen-
sive or too culturally specific. To fix the grammar
issues, we ask GPT-4 (web interface) to “Fix the
spelling and grammar mistakes in these mnemon-
ics [paste 50 mnemonic devices]”. This converts
mnemonics like “when two gender’s male & fe-
male end up together .. they produce or give rise
to a CHILD..” to the more structured form “When
two genders, male and female, come together, they
produce or give rise to a child.”

We also manually remove the 111 mnemonics
we thought could be harmful to users or less un-
derstood due to being too specific to being related
to a certain culture. For example, we consider
the mnemonic: Spurn sounds like ’s + porn.’ The
mnemonic implies disdainful rejection of inappro-
priate content. offensive, while the mnemonic:
Glower can be associated with Gulshan Grover,
imagining him glaring angrily at the hero is too
culturally specific. In future works on mnemonic
generation, it could be interesting to personalize the
generated mnemonics through aspects like culture.

A.2 Dft and Dpref Dataset Details
In Tables 4 and 6, we provide descriptions of the
columns in Dft and Dpref , respectively. For Dpref ,
we filter out terms and mnemonics with less than
two annotations, resulting in the summary statis-
tics described in §3.3, and summarized in Table 5.
Along with the filtered subset, we will release the
entire dataset of human preferences. We will also
continue to release data if users study vocabulary
with mnemonics in our app. The list of 500 vocab
terms Vtest used for testing will also be released.

Finally, in Table 7, we quantify the noise of an-
notator ratings in Dpref . We use average entropy
and variance as each instance in our dataset can be
annotated by a different number of annotators, and
there is no guarantee that the same annotator will
be rating each of the mnemonics. We find that the
average variance and entropy of our annotations
are significantly lower than random chance.

Our datasets are based on publicly available

GRE vocab words and mnemonics from Mnemon-
icDictionary, and both were used as intended by
the original authors. None of our datasets contain
personal information, as users are referred to just
by ID. All collected mnemonics are in English.

A.3 Experiment Dataset Splits
When conducting the analysis of human prefer-
ences and training most DPO models, we filter all
mnemonic pairs with less than two human prefer-
ence annotations to form Dpref . For the pairwise
preferences, this means that we filtered mnemonics
where the sum of votes for A and B was less than
or equal to two. However, for the comparison be-
tween pbayes(m|v) and ppair(m|v) in §6.2, we also
use mnemonic pairs with exactly two votes. We did
this because otherwise, the Bayesian label ybayes
and pairwise label ypair had very high agreement
in which mnemonic in the pair was winning, so we
would not be able to meaningfully study the differ-
ences between optimizing on just pairwise or mul-
tiple preferences. Essentially, our filtering strategy
removed the annotator noise in the pairwise pref-
erences, so the clear pairwise preference towards
one mnemonic caused ybayes to nearly always be
in agreement with ypair. However, by adding back
noisy annotations, we were able to better study the
differences between ybayes and ypair, as these two
labels ended up with 20% disagreement.

B Model and Experiment Details

B.1 Training Setup
All of our models are trained for a maximum of 24
hours using eight NVIDIA RTX:A5000 GPUs. In
practice, we find that both fine-tuning and Direct
Preference Optimization (DPO) converge in around
6 hours. Parameters were manually selected. Fine-
tuning and DPO were both implemented using the
trl library5 using a 90/10 train/evaluation split
on their respective datasets. Both fine-tuning and
DPO use QLoRA with LLaMA-2 (70B) with 8-bit
quantization, α = 32, a dropout of 0.05, a bias
of 0, and update the default attention query and
value projection layers. We use 5 training epochs
for fine-tuning. We perform DPO with a training
batch size of 1, a beta value of 0.1, a maximum
prompt length of 16 tokens, a maximum output
length of 64 tokens, and use the accuracy of the
reward model as the metric for the best model. We
use 5 training epochs for each DPO model (Table 3)

5https://huggingface.co/docs/trl



All unspecified hyperparameters are the default
values. All evaluations are from a single run.

B.2 Decoding Strategy

We implement greedy decoding (no sampling)
when generating mnemonics in §6. For an input
vocabulary word v, we generate its mnemonic with
the prompt: ### Term:v\n### Mnemonic:
v sounds like to ensure the mnemonic fol-
lows the two-step process of: 1) linking v to a sim-
pler keyword k; and 2) generating an explanation
that rationalizes how v and k are connected.

B.3 GPT-4 Classifier Implementation

Our classifier to judge the quality of mnemonics
is implemented with DSPy6 (Khattab et al., 2024)
and based on gpt-4-turbo-2024-04-09. To
train and evaluate this classifier, we select 250 pairs
of mnemonics for the same vocabulary term from
MnemonicDictionary with the highest difference
in our latent quality scores (§2.2), indicating a set
of mnemonics with clear human preferences. We
use 25 random training examples and 25 random
validation examples to optimize this prompt with
DSPy and after optimization, we run inference with
the classifier on a held-out set of the 200 remaining
examples. The prompt is optimized using bootstrap
few-shot with random search with a maximum of
3 bootstrapped demos, a maximum of 3 labeled de-
mos, and 10 candidate programs. As features, the
classifier uses the two mnemonics to choose from,
the vocab term, and a sample sentence contain-
ing the vocabulary word from WordsAPI.7 This
choice of inputs was selected by assessing valida-
tion set accuracy while adding different vocabu-
lary features, including the definition of the word,
synonyms, antonyms, and part-of-speech informa-
tion. The instruction given in the DSPy signature
is: Given a vocabulary term, a sentence using the
term, and two candidate mnemonics (Mnemonic A
and Mnemonic B), classify whether Mnemonic A or
Mnemonic B is a better mnemonic device. Output
just the letter of the better mnemonic ("A" or "B").
Our classifier prompt will be released.

B.4 Bayesian Model Evaluation

In this section, we evaluate the quality of our Hi-
erarchical Bayesian model. Since our goal was to
estimate the latent effectiveness of mnemonics, we

6https://dspy-docs.vercel.app/
7https://www.wordsapi.com/

first assess the convergence of our learned parame-
ters across chains. All learned parameters have an r̂
under 1.01 and an effective sample size over 1000,
indicating strong convergence. Further, our final
Bayesian preference label (which mnemonic has
a higher effectiveness score) across chains has a
Krippendorff’s α over 0.75, indicating strong agree-
ment and convergence. Finally, in Figure 9, we
display the log-likelihood values for our observed
data across iterations, finding that they converge.

While convergence is more important to assess
the quality of a Bayesian model that learns latent
values, we also assess the generalizability of our
model. We first train our model on 80% of our data
and run inference on the remaining 20% for evalu-
ation. In Figure 10, we compare the log-likelihood
of predicting the observed data on the training and
evaluation splits. For 3/5 of our observed data
types, we find a non-significant difference between
the log-likelihoods (2-sample t-test). The only sig-
nificant difference is in the data associated with the
learning preferences ylearn, further suggesting that
modeling observed preferences is a challenging and
interesting direction for future research.

B.5 Obtaining Bayesian Preference Labels

To get the final latent overall mnemonic effective-
ness values for training the DPO model pdpo(m|v),
we average the latent variables over all five chains
post-burn-in. For the ablation study where we com-
pare optimizing on ypair versus ybayes, we similarly
obtain the final latent mnemonic effectiveness val-
ues by averaging the latent variables over all five
chains post-burn-in, but this time we just use a ran-
dom sample of the epochs (i.e. thinning). By taking
a sample of each chain instead of using the entire
chains, we introduce more variability and disagree-
ment in the labels, allowing us to more meaning-
fully study the difference between optimizing on
pairwise preferences versus all preference labels.

C User Study Details

C.1 Annotator Instructions

During our user studies, we ensure to provide am-
ple instructions to annotators. On the home page
of our flashcard learning app, users can view our
Institutional Review Board documents, which de-
tail the purpose of the user study and how user data
will be collected and used. Further, we provide
users instructions to help them rate the quality of
mnemonic devices (Figure 7), which can be viewed



at any time throughout the user study. All annota-
tors are English speakers. Users were aware that
they were participants in a research study and as
participation was voluntary, compensation is fair.

C.2 Qualitative Evaluation Details

In our qualitative evaluation, we compare our full
model trained with DPO on Bayesian labels versus
10-shot GPT-4 (gpt-4-turbo-2024-04-09),
where examples were chosen according to the high-
est latent quality scores in Dtrain (§2.2). We also
compare against expert human-written mnemonics
to serve as an upper bound on mnemonic quality.
These mnemonics were written by a professional
copyeditor and creative writer with a Bachelor of
Science degree that we hired on Upwork. As part
of the interview, we asked the writer to produce
two sample mnemonics to ensure the mnemonics
would be high quality, and the annotator was paid
a high rate of $3 per mnemonic (around $60/hr),
which is fair for the participant demographic.

Our annotators who rated the keyword and ex-
planation quality of these mnemonics are both re-
searchers in memory and mnemonic research (one
post-doc and one assistant professor). The instruc-
tions given to these annotators are shown in Fig-
ure 8. Annotators were paid at a rate of $50/hr,
which is fair for the participant demographic. Our
annotators showcase moderate agreement, high-
lighting the subjective nature of mnemonic gener-
ation (Table 8). Numerical tabular versions of the
results from Figure 6 are in Tables 9 and 10.

C.3 Learning Time Distribution

We provide the distribution of learning time, mea-
sured in turns needed to recall the definition of
the vocabulary term, for the winning and losing
mnemonics in the pair. As expected, the winning
mnemonics have a significantly lower (p = 0.05)
average number of turns needed until the defini-
tion is recalled, showing a clear gap in short-term
learning efficacy between mnemonics in our pairs.

D Detailed Analysis and Results

D.1 Offensive Mnemonics can Aid Learning

Warning: This subsection contains an example
of an offensive mnemonic.

In §5, we describe our rationale for using both
expressed and observed preferences; while ob-
served preferences often reflect our downstream
goal, expressed preferences ensure that this goal is

achieved in a safe manner. For example, if we were
to optimize mnemonics just on learning, which is
our downstream goal, we may produce bizarre or
offensive mnemonics, since these mnemonics have
been shown to help students learn (Wollen and Mar-
gres, 1987). However, expressed preferences are
a more reliable method to detect these offensive
mnemonics, and is thus likely why the majority of
LLM alignment methods for dialogue safety rely
on expressed preferences as training data.

To illustrate this point, we present the following
mnemonic generated by the initial SMART model
during the user study, which was flagged as one
of two offensive mnemonics: Obtuse sounds like
"abuse". If you abuse someone, they may not un-
derstand the situation, just like an obtuse person
who is slow to understand. As noted by our annota-
tor, this mnemonic: “may be insensitive to people
who have felt abuse in their lives and feel as if
the mnemonic is calling them slow”. Through ex-
pressed preferences, this mnemonic received a Lik-
ert rating of 1 and received 0 votes in the pairwise
comparison. However, with observed preferences,
the student studying with this mnemonic learned
the term in just one iteration. Thus, while observed
preferences would suggest that this mnemonic is
highly effective for learning, the expressed prefer-
ences show that this mnemonic may be offensive
or harmful to users, motivating our use of all pref-
erence labels for enhancing mnemonic generation.

D.2 Are Bayesian Tie-Breaks Good?

We previously found that using multiple prefer-
ence labels to break ties within singular preference
labels, improving LLM output quality with DPO
(§6.2). To ensure that these ties are better than ran-
dom tie breaks, we use our GPT-4 classifier to com-
pare the winning and losing mnemonics from our
Bayesian labels (i.e. mnemonics with higher and
lower effectiveness) where the majority vote in the
pairwise setting is Tie. On the set of ties, GPT-4
states that our “winning” mnemonics is better 40%
of the time, tied with the losing mnemonic 31% of
the time, and is worse 29% of the time. Thus, even
though humans marked these LLM outputs as tied,
we were able to draw from other preference labels
to identify a winning mnemonic, and GPT-4 also
tends to agree that this mnemonic is higher quality.

For context, when students mark a mnemonic
as “winning” from pairwise comparisons (i.e. non-
tie), GPT-4 states this mnemonic is higher-quality



than the alternative in 51% of cases, tied in 22% of
cases, and is lower-quality in 26% of cases.

D.3 DPO Models versus Fine-Tuning
In Table 12, we use GPT-4 to judge the mnemonics
produced by each of the DPO configurations used
in §6.2 versus the SMART model just using fine-
tuning p0(m|v). We find that DPO improves the
mnemonic quality of each of these models.

D.4 Mnemonic Examples
In Table 13, we provide examples of high-quality
keyword mnemonic devices generated by our final
SMART model. We also show some examples of
low-quality mnemonics from our model and high-
light areas for improvement in Table 14.



Column Description Num Unique

term Vocabulary term 822
mnemonic Mnemonic for the vocabulary term 889

Table 4: Descriptions of columns in Dtrain.

Pithy sounds like "pity." When you pity 
someone, you give them a short, 

meaningful message. Pithy means brief 
and meaningful.

Pithy sounds like "pith"...

Pithy sounds like "short"...

Pithy sounds like "witty." Thus, pithy 
means clever or smart

Pithy sounds like "pity." People are often 
pitied when they mess up. Pithy means 

brief and meaningful.

Pithy sounds like "pity." A person who is 
pitied is often pitied and pitied people 

are given short messages

Pithy sounds like "pit." Pits can be short. 
Pithy means brief.

Incorrect Definition Unclear Circular Keyword

Keyword Doesn’t “Sound Like” Term

Poor Keyword Explanation
Low Memorability (Subjective)

Good Mnemonic ● Good keyword link
● Clear explanation
● Easy to understand
● Memorable
● Correct definition

Examples of Good and Bad Mnemonics

Figure 7: Instructions given to students to help them rate the quality of mnemonic devices for expressed preferences.

Figure 8: Instructions to expert educators when rating the keyword and explanation quality of mnemonic devices.



Figure 9: Log likelihood convergence of observed data in our Bayesian model.



Preference Type # Annotations # Pairs Average Annotations / Pair

Pairwise (ypair) 1693 460 3.68
Rating (yrate) 389 121 3.21
Learning (ylearn) 602 170 3.54

Table 5: Summary statistics of preference annotations.

Column Description Num Unique

term Vocabulary term 472
mnemonic_A Mnemonic A for the vocabulary term 472
mnemonic_B Mnemonic B for the vocabulary term 472
pairwise_A_votes Number of users who picked Mnemonic A in the pairwise comparison 11
pairwise_B_votes Number of users who picked Mnemonic B in the pairwise comparison 9
pairwise_tie_votes Number of users who picked “tie” in the pairwise comparison 5
A_likert_ratings List of Likert ratings from 1-5 denoting the quality of Mnemonic A 5
B_likert_ratings List of Likert ratings from 1-5 denoting the quality of Mnemonic B 5
A_learn_iterations List of turns from 1 to ∞ the student needed to learn the term with Mnemonic A 7
B_learn_iterations List of turns from 1 to ∞ the student needed to learn the term with Mnemonic B 8

Table 6: Descriptions of columns in Dpref .

Feedback Metric Used Preference Agreement Random Agreement

Comparison Average Entropy 0.802 1.222
Rating Average Variance 0.778 1.331

Learning Average Variance 0.323 2.179

Table 7: Quantifying annotation noise in Dpref .

Model Qualitative Comparison Cohen’s κ

SMART vs Transphoner (PS) 0.381
SMART vs Transphoner (Simplicity) 0.526

SMART vs GPT-4 vs Human (PS) 0.497
SMART vs GPT-4 vs Human (Simplicity) 0.538

SMART vs GPT-4 vs Human (Clarity) 0.428
SMART vs GPT-4 vs Human (Strength) 0.356

SMART vs GPT-4 vs Human (Imageability) 0.681

Table 8: Agreement of our annotators across all qualitative evaluations (model comparisons and aspects). We
measure agreement through Cohen κ, using quadratic weighting for the Likert scale ratings.

Keyword Quality

Model Phonetic Similarity Simplicity

SMART 0.87 0.75
Transphoner 0.87 0.73

Table 9: Numerical tabular version of qualitative evaluation of SMART versus Transphoner from Table 6.



Keyword Quality Explanation Quality

Model Phonetic Similarity Simplicity Clarity Strength Imageability

SMART 0.86 0.67 3.10 2.86 1.91
GPT-4 0.94 0.58 3.17 2.74 2.52
Human 0.96 0.91 3.64 2.99 3.38

Table 10: Numerical tabular version of qualitative evaluation of SMART versus GPT-4 versus Humans from Table 6.

Percentile Winning Mnemonic Turns Losing Mnemonic Turns

0 1.00 1.25
25 1.00 1.60
50 1.00 2.00
75 1.50 2.00
100 3.00 7.00

Average 1.24 2.13

Table 11: Distribution of learning time (Turns) for winning and losing mnemonics.
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Figure 10: Comparison of Bayesian model log likelihood of observed data on training versus validation set.

Model A/B Pair A Wins Tie B Wins

ppair(m|v) (Table 3, top), p0(m|v) 0.26 0.54 0.20
pbayes(m|v) (Table 3, top), p0(m|v) 0.22 0.58 0.20

ppair(m|v) (Table 3, bottom), p0(m|v) 0.24 0.58 0.18
pdpo(m|v) (Table 3, bottom), p0(m|v) 0.29 0.53 0.18

Table 12: GPT judgement of DPO models versus fine-tuning. The better model is in bold.



Term Generated Keyword Mnemonic

Lionized Lionized sounds like "lion-eyes," envisioning a lion being admired for its eyes.
Lionized means to be admired or treated like a celebrity.

Empiricism
Empiricism sounds like "emperor";
an emperor may rely on experience rather than theory to rule.
Empiricism is based on experience rather than theory.

Dwindling
Dwindling sounds like "wind" + "lingering";
when the wind lingers, it gradually decreases in strength.
This relates to dwindling, which means decreasing in size, amount, or strength.

Glowered Glowered sounds like "glow" + "red".
Imagine a red glowing face, which could represent anger or a glowered expression.

Static
Static sounds like "stick", which is stationary or unmoving.
Static electricity is also stationary, as it does not move.
Both relate to the concept of being stationary or unmoving.

Sanctimony
Sanctimony sounds like "saint" + "money";
saints are supposed to be holy, but some may be hypocritical and greedy for money.
This hypocrisy and false piety is sanctimony.

Goosebumps Goosebumps sounds like "ghost bumps," which can happen when you see a ghost.
Goosebumps are bumps on the skin caused by fear or cold.

Resurgence
Resurgence sounds like "re-surgery";
after a surgery, one may experience a resurgence of pain.
Resurgence refers to a renewed increase or rise..

Moot
Moot sounds like "mute";
when something is mute, it’s debatable whether it’s on or off.
Similarly, a moot point is debatable.

Subordinate Subordinate sounds like "sub-order", implying a lower rank or position.
Subordinates are lower in rank or position, and are subject to the authority of others.

Upbraided
Upbraided sounds like "up" + "braid".
Imagine a teacher scolding a student for not braiding her hair properly.
This scolding or reprimanding is upbraiding.

Despoiled Despoiled sounds like "despite spoiled."
Imagine someone spoiling your plans despite your efforts, leaving you feeling despoiled.

Caterwauling Caterwauling sounds like "cat + war + yelling," imagining a cat yelling during war.
Caterwauling refers to loud, unpleasant noise.

Escalate Escalate sounds like "escalator," which goes up, representing an increase or rise.
Escalate means to increase or rise in intensity or severity.

Compromise

Compromise sounds like "com + promise".
When you make a promise, you may have to compromise on something to keep it.
For example, you may have to compromise on your sleep to keep a promise
to meet someone early in the morning.

Deftness
Deftness sounds like "leftness," which can be associated with left-handed people
who are often known for their dexterity or deftness.
This can help remember the meaning of deftness as skillful or adroit.

Haptic Haptic sounds like "happy tic", which can be associated with a happy tickle, relating to touch.
Haptic refers to the sense of touch.

Parenthetical Parenthetical sounds like "parenthesis," which is used to add extra information in a sentence.
Parenthetical means providing additional information in a sentence.

Fillip
Fillip sounds like "fill up";
when you fill up a glass, it gives a sudden push to the liquid, similar to a fillip.
A fillip is a sudden push or stimulus.

Kowtow Kowtow sounds like "cow tow"—imagine a cow towing a car, symbolizing submission or obeisance.
Kowtow means to show respect or submission by bowing or kneeling.

Table 13: Examples of 20 high-quality keyword mnemonics generated by our final model pdpo(m|v).



Term Generated Keyword Mnemonic

Affiliated
Affiliated sounds like "affiliation,"
which is a connection or association with a group or organization.
Being affiliated means being connected or associated with something.

Evinced
Evinced sounds like "evidence";
evidence is proof, which is what evinced means.
Evidence is also a synonym of evinced

Complicit
Complicit sounds like "compliant" + "licit" (licit means legal).
If someone is compliant with legal actions, they are involved in them.
Complicit means involved in a wrongdoing.

Quintessential Quintessential sounds like "quint" (five) + "essential".
Five essentials are required to make a perfect dish, representing the quintessential.

Peons Peons sounds like "pions" (pions are subatomic particles).
Pions are subatomic particles, so peons are subordinate workers.

Table 14: Examples of low-quality keyword mnemonics generated by our final model pdpo(m|v). Prominent issues
and areas for improvement are highlighted in red.


