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Abstract
Topic models are a popular tool for understand-
ing text collections, but their evaluation has
been a point of contention. Automated evalua-
tion metrics such as coherence are often used,
however, their validity has been questioned for
neural topic models (NTMs) and can overlook
a model’s benefits in real-world applications.
To this end, we conduct the first evaluation of
neural, supervised and classical topic models
in an interactive task-based setting. We com-
bine topic models with a classifier and test their
ability to help humans conduct content analy-
sis and document annotation. From simulated,
real user and expert pilot studies, the Contex-
tual Neural Topic Model does the best on clus-
ter evaluation metrics and human evaluations;
however, LDA is competitive with two other
NTMs under our simulated experiment and user
study results, contrary to what coherence scores
suggest. We show that current automated met-
rics do not provide a complete picture of topic
modeling capabilities, but the right choice of
NTMs can be better than classical models on
practical tasks.

1 Introduction

Establishing a label set to organize a collection of
documents is a fundamental task in many fields
such as social science, and, linguistics, education.
For example, in the social sciences, grounded the-
ory emphasizes structural coding as a framework
for discovering similarities and differences in large-
scale experimental data and assigning meaning
to it (Glaser and Strauss, 2017; Lindstedt, 2019;
Krommyda et al., 2021). Such a process is dif-
ficult and time-consuming, partly because it re-
quires a global understanding of the entire dataset,
and local knowledge to accurately label individual
documents. We emphasize that this strictly more
general than document classification: classification
presumes a priori a label set; while we will use clas-
sifiers in our method, we first need a user’s help to
determine the label set and the training data.

Topic modeling (Boyd-Graber et al., 2017) has
emerged as a popular tool to help with the cod-
ing process to discover the label set (Section 2.4).
These models treat documents as admixtures of
latent topics, each represented by a distribution
over words. The most popular topic model, Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) has
over 40,000 citations with numerous extensions
and variants (Churchill and Singh, 2022).

Previously, Active Learning with Topic
Overviews (Poursabzi-Sangdeh et al., 2016, ALTO)
demonstrated that combining LDA with an active
learning classifier could help people create label
sets more efficiently. After topic models provide a
global overview of the data, exposing the broad
themes of the corpus, active learning selects
documents that direct the annotator’s attention to
topically distinct examples to label. Together, these
two ingredients train a classifier to automatically
label the documents more efficiently.

However, a gap remains in the literature, given
recent advancements in topic modeling. Neural
topic models (NTM), which use continuous text
embeddings to capture contextual and semantic re-
lationships in high-dimensional data, have gained
prominence, besting classical probabilistic topic
models on automatic evaluation metrics such as co-
herence (Aletras and Stevenson, 2013). However,
automated evaluation metrics have been called
into question (Li et al., 2024); Hoyle et al. (2022)
show they do not necessarily correlate with human
ratings on topic model outputs and call for task-
centered evaluations, such as helping users analyze
content.

We aim to fill this gap, and evaluate the effec-
tiveness of neural, supervised, and classical topic
models to help social scientists with content anal-
ysis and label set creation. We do this by taking
the starting point of ALTO—classicial topic mod-
els applied to this problem—and probe “deeper” to
create Topic-Enabled Neural Organization and Rec-



ommendations (TENOR), an interactive tool that
supports various topic models with active learn-
ing to speed up the process of content analysis.1

We conduct synthetic experiment on LDA, super-
vise LDA and three NTMs with followup user study
and expert user study and show that the choice of
Contextualized Topic Model (Bianchi et al., 2021)
(CTM) helps users create higher quality label sets
than using classical LDA, as measured by both clus-
ter metrics (Section 4.3) and user ratings. However,
LDA is still competitive or better when compared
with two other popular NTMs. Thoughtfully using
topic models as part of a larger system with human
interactions gives a more comprehensive evalua-
tion and understanding of their real-world usage
(Section 4.5).

2 Background

Manually sorting thousands of documents to estab-
lish a label set to create is mentally challenging and
time-consuming. Baumer et al. (2017) compare
grounded theory with topic modeling: although the
two methods are from distinct fields, they produce
similar insights on large-scale data. Topic models
cluster documents and extract meaningful themes
and can help users induce labels.

For content analysis, machine learning and NLP

focus on developing NTMs (Hoyle et al., 2022), be-
cause they win nearly every automatic coherence
metric. However, most of the computational social
science community remains focused on older prob-
abilistic models (Abdelrazek et al., 2023). Thus,
we explore this open question: should we use clas-
sical or neural topic models for label induction and
content analysis?

One of the reasons that NTMs might be better
is that ALTO showed the benefits of active learn-
ing (Settles, 2012): start with a dataset with an
undefined label set; users add labels to the set by go-
ing through individual documents (guided by topic
overviews); once the users establish at least two
distinct labels for the label set, a classifier trained
on the labeled documents can point users to doc-
uments that are either challenging for the current
label set or that might require new labels. One of
the criticisms of NTMs is that they are too granular
and specific (Hoyle et al., 2022), but this may be a
boon for label induction: it can find candidates for
a new label.

In addition to ignoring neural models (which had
1https://github.com/zli12321/TENOR.git

not reached maturity when ALTO was proposed),
another lacuna of (Poursabzi-Sangdeh et al., 2016)
is that it ignores supervised topic models that can
combine classification with topics. Supervised
topic models (Mcauliffe and Blei, 2007) change
as labels are added and can adapt—for instance—
when a user associates two labels with a topic. Thus
we evaluate neural and classical topic models that
tasks humans with creating a label set and annotat-
ing a document collection, with the assistance of
topic models and a text classifier on the a dataset
of US congressional bills (Adler and Wilkerson,
2008).

We delve into specific topic models, active learn-
ing, and evaluation metrics for the rest of this sec-
tion.

2.1 Topic Models

Topic models identify latent themes within a cor-
pus, providing a snapshot of its overall narrative.
Given a set of documents and a specified topic
count K, these models divide documents into K
clusters. Each cluster represents a topic defined by
key terms, denoting its core theme (examples in
Appendix 3). Users can explore the corpus’s main
themes and label individual documents with the
topics and keywords.

Supervised Latent Dirichlet Allocation. sLDA

retains the generative process of LDA but also adds
a step to generate labels for each document given
its empirical distribution over topic assignments in
a document. For example, for movie comment re-
views, LDA generates general topics people discuss
movies that are unlikely to correlated with users’
star ratings. In contrast, sLDA can: an LDA topic
about romance films would split into “good” and
“bad” versions with sLDA. We use the classifier’s
predictions as surrogate response variables, and
update sLDA constantly as users label more docu-
ments. We expect sLDA’s topics to better reflect
user inputs by interacting with the classifier trained
with user input labels.2

Neural Topic Models Current popular neural
topic models include Contexualized topic mod-
els (Bianchi et al., 2021, CTM), BERTopic (Grooten-
dorst, 2022), and Embedded topic model (Dieng

2Suppose a user creates 15 unique labels for 80 documents,
we train the classifier on the 80 documents with the user input
labels. Then we use the classifier to make predictions for all
the documents and use the predictions as response variables
for sLDA



et al., 2020, ETM). Theses neural models take ad-
vantage of pre-trained word embeddings with rich
contextual information to enhance the quality of
discovered topics. CTM builds on pre-trained lan-
guage models like SBERT (Reimers and Gurevych,
2019) to generate sentence embeddings concate-
nated with Bag-of-Word (BoW) representations
and runs a variational autoencoder (VAE) on the rep-
resentation, while BERTopic uses UMAP (McInnes
et al., 2020) and HDBSCAN (McInnes et al., 2017)
create and refine topics from encoded word embed-
dings. ETM retains the same generative process as
LDA but the topics are learned from word embed-
dings that contain rich semantic meanings instead
of pure word distributions.

2.2 Active Learning

Active learning (Settles, 2012) guides users’ atten-
tion to examples that would be the most beneficial
to label for a classifier, using techniques such as un-
certainty sampling. By directing users to annotate
uncertain documents first, active learning is valu-
able in situations constrained by time or budget.

2.3 Preference Functions

During the initial stages of training, a classifier
must generalize to unseen data quickly. A rapid
improvement facilitates high-quality data analysis
and optimizes time and costs, especially for large
datasets (Muthukrishna et al., 2019). Mathemati-
cally, “preference functions” are the tool that allows
this early generalization in active learning gener-
ally and in TENOR specifically to get a good set of
labels with representative documents as quickly as
possible.

A preference function uses uncertainty and di-
versity sampling to pick the most beneficial docu-
ment and guide users’ local attention to that doc-
ument to label. According to the preference func-
tion, the classifier favors documents with the high-
est confusion scores that are most likely to be in
the boundaries between multiple labels, which are
documents that users are most likely to make new
labels–uncertainty and diversity. For our baseline
classifier, when it does not incorporate topic mod-
els, let L be the label set probability distribution
for document d, the preference function for d is :

Hd(L) = −
n∑︂

i=1

P (li) logP (li). (1)

Here, Hd represents the cross-entropy (Shannon,

1948) of the classifier. The “most beneficial” docu-
ment is the one whose label distribution (as defined
by a classifier) is most confused: more mathemat-
ically, has the highest entropy. If the user can re-
solve that confusion by providing a new or existing
label (or remove the document from the set), it will
most benefit the next iteration of the classifier.

We follow the insight of ALTO and interleave
topic models and active learning to make the pref-
erence function topic-dependent. This is important
for real-world scenarios where context-switching
can impede human labeling throughput (Raeburn,
2022). First, the most confusing topic by the classi-
fier is selected, and then, within this topic, the doc-
ument with the highest preference function score
(the most confusing document) is chosen.

Given K topics from topic models, each docu-
ment is characterized by a topic distribution vector
θd ≡ {θd1 , θd2 , . . . , θdK}. For a particular document,
its predominant topic is:

θdmax =
K

max
i=1

θdi . (2)

We also adopt hierarchical sampling for active
learning (Dasgupta and Hsu, 2008) and incorpo-
rates vector representation of topic models and
users’ label inputs to match their individual prefer-
ences (Zhang et al., 2019)

Ht
d(L) = Hd(L) · θdmax. (3)

With a clearly defined preference function, we
choose a topic k∗ first based on the following cri-
terion: Given K topics, let Dk denote the set of
all documents that are most prominently associated
with topic k. The classifier selects a topic k∗ such
that its documents’ median preference score, Ht

d,
is maximized. Formally, this is

k∗ = argmax
k∈{1,2,...,K}

median
{︁
Ht

d(L) : d ∈ Dk

}︁
.

(4)

2.4 Evaluation Metrics
Our objective is for users to establish new label sets
for a common dataset. This is a hard problem: in-
deed, Kleinberg (2002) proves that it is impossible
to satisfy multiple reasonable clustering properties
simultaneously. We thus, like ALTO we use tree of
reasonable metrics—described below—to compare
how far user-induced labels deviate from a gold
label set (in this case, the consensus labels of po-
litical scientists on the congressional bills dataset).



In addition to these standard cluster evaluation met-
rics, we also measure the coherence for each topic
of LDA, sLDA, NTMs (more detail in Appendix A).

Purity Purity evaluates how pure an induced clus-
ter is: in other words, what proportion of docu-
ments in a cluster are not commingled with docu-
ments with a different gold label (Zhao, 2005). As
we will see with many of these metrics, there is a
clear failure mode: the purity metric can be easily
manipulated by assigning a unique label to each
document. We mitigate this risk by not disclosing
these metrics to labelers and limiting the time users
have to create labels.

Adjusted Normalized Mutual Information
(ANMI) Normalized Mutual Information (Strehl
and Ghosh, 2003, NMI) assesses clustering qual-
ity by measuring the interdependence between true
and predicted labels. One can gain insights of the
true labels by understanding the predicted labels.
The ANMI (Amelio and Pizzuti, 2016), an enhance-
ment of NMI, corrects for the chance alignment of
clusters.

Adjusted Rand Index (ARI) The Rand Index
(RI)(Rand, 1971, RI) measures for any pair of doc-
uments the probability that their gold labels and
their assigned labels match. The Adjusted Rand
Index (ARI) (Sundqvist et al., 2022, ARI) refines
this measure by adjusting for chance, which can
yield negative values if the new labeling actively
contradicts the gold labeling.

Coherence Normalized pointwise mutual infor-
mation (NPMI) measures how semantically similar
the top words of a topic are, which was proposed
for classical topic models, but can also be used
for NTMs (Aletras and Stevenson, 2013).3 (Chang
et al., 2009) uses large-scale of user study to show
coherence creates a computational proxy that simu-
lates human judgments for classical topic models.
We use NPMI to evaluate the quality of topics gen-
erated by classical and neural topic models.

The clustering metrics evaluate the alignment,
quality, and information overlap between two clus-
ters. A higher value in these metrics indicates
greater similarity and alignment between the in-
duced labels and the gold labels. However, using
just one of them to measure user label quality has
limitations. If users assign every document a dif-

3NPMI and ANMI are over different evaluation metrics over
different probability spaces.

ferent label, they will reach a perfect purity score,
but that violates the task. ARI does not measure
the quality of individual clusters. For example,
two clusters might have high ARI, but both are
very poor quality. ANMI is sensitive to the number
of clusters, where a significant difference in the
number of clusters between the standard cluster
and classifier predictions can lead to a reasonable
ANMI score, but the clusters have a high mismatch.
By using all of them to complement each other,
we are more confident in comparing the quality of
classifier predictions.

3 Study Setup

3.1 Groups

For the simulated user study, we use the following
models in combination with active learning:

1. (NONE);
2. Latent Dirichlet Allocation–(LDA);
3. Supervised LDA–(sLDA);
4. Bertopic–(BERTopic);
5. Embedded Topic Model–(ETM);
6. Contextualized Topic Model–(CTM).

Our baseline (1) NONE gives users access to a
classifier with active learning, but no topic model
organization to help them first establish a “big pic-
ture”. The rest of the groups provides the users
topic overview and a classifier that has access to
topic model probability vectors and active learning.
More implementation details of our study groups
are in Appendix B.

3.2 Dataset

Our simulated experiment uses the 20news-
groups (Mitchell, 1999) and the Congressional bills
dataset. Both datasets have hierarchical labels; the
first level is a general category, such as Health or
Education for the Bills; and recreation (rec) or sci-
ence (sci) for 20newsgroups. Under each of the
first layer labels, there are more specific labels; for
example, under Health, there are Health Insurance,
Mental Health and Cognitive Capacities, Children
and Prenatal Care, etc.

Since we want to test our system theoretically
and in a user study setting, having datasets with
hierarchical labels enables us to use more specific
labels as user input labels and more general labels
as standard labels in simulated experiments. In
real-world settings, users are more likely to make



more specific labels that are more closely related
to the contents of individual documents.

3.3 Simulated Experiment

Before conducting a real-world user study, we run
simulated experiments on both datasets. We choose
K = 35 topics for all five topic models.4 Since
users are more likely to create more detailed labels
for each document, we use sub-labels as pseudo-
user labels, while using the more general labels as
our gold standard. We use logistic regression as
our classifier and unigram tf-idf as input features
for the classifier.5 We also concatenate topic proba-
bility distributions for all the documents with tf-idf
features, which encodes topic information to the
classifier for settings with topic models. We use
incremental leaning (Rosenblatt, 1958) to fit and
update the classifier after applying a synthetic label
to each document.6 The clustering quality is as-
sessed by the classifier’s predictions with the more
general labels using the three evaluation metrics.
We run the experiment for 400 documents since we
expect it to be the maximum for a participant to
label within an hour.

Coherence and simulated experiment results do
not have a direct relationship CTM does the
best on all cluster metrics on both datasets (Fig-
ure 1), while LDA and sLDA remain competitive
with other NTMs. Topic models with higher NPMI

in Table 1 do not necessarily have better simulated
experiment results shown in Figure 1. ETM does
the worst among all the groups—despite having
high coherence—and CTM does the best, where
LDA and sLDA are even better than BERTopic and
ETM on the 20newsgroup dataset.

While our synthetic data can serve as partial
proxy, relying solely on automated evaluation met-
rics does not capture how much the users find the
topic model helpful in helping them conduct con-
tent analysis. Thus, our next section investigates
this question and surveys users’ ratings on how
they find topic models useful.

4We choose K = 35 because it optimizes average coher-
ence for all topic models (details and hyperparameter selec-
tions are in Appendix C).

5Using sentence transformer features produces similar re-
sults but takes much longer to update.

6With two exceptions. . . we reinitialize the classifier: if
a new label class is introduced to the classifier; if SLDA is
updated with surrogate response variables, we rebuild the
features by concatenating tf-idf features with new topic infor-
mation.

Dataset LDA sLDA CTM ETM BERTopic
Bills 0.07 0.09 0.09 0.13 0.15

Newsgroup 0.06 0.05 -0.09 0.09 0.10

Table 1: On average, NTMs have higher NPMI coherence
than LDA, where BERTopic has the highest coherence,
followed by ETM. However, the NTMs with higher co-
herence are not better than CTM and LDA under a task-
based experiment (Figure 1).

4 User Study

We conduct a general user study and expert study
to compare topic models in the rest of the paper.
For the general user study, we compare settings
(1) NONE, (2) LDA, (3) sLDA, and (6) CTM since
CTM is the best-performing neural model in the
simulated experiment. We use the Bills dataset to
conduct a 60-user study with our interface, with
15 people in each group. Our Bills dataset’s topics
are accessible to lay annotators and allows us to
quantitatively understand users’ acclimation to the
dataset as they explore the corpus. We then run a
smaller, more qualitative followup expert study on
an expert dataset, where the experts are familiar
with the topics in the dataset with the best two
models from our user study results. The goal of the
expert study is to ensure that our user study results
can generalize to experts with deeper knowledge
of US federal policy.

4.1 User Study Interface

For the groups using topic models, users are shown
documents grouped by their top topic, with topic
keywords. The document selected by the active
learning preference function is highlighted and dis-
played both at the top of its topic and at the top of
the interface. When users click a document, they
are presented with its full text, label options, top
five topics, and top ten keywords per topic. Words
above a 0.05 threshold in the primary topic are
highlighted. In NONE group, users see unsorted
documents with the recommended one at the top.
Clicking a document shows its contents, without
topic keywords or highlights (detailed interface in
Appendix F).

4.2 Participant Recruitment

We sourced participants via Prolific, restricting our
selection to individuals from the US with an ap-
proval rate exceeding 95% with at least ten previ-
ous participations on Prolific. Participants were
randomly assigned to one of four groups, each ac-
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Figure 2: User study label cluster metrics plotted against
time. For each group, we take the median of each metric
for every minute passed. The user study results are
similar to the simulated experiment; CTM does the best
on all three clustering metrics.

commodating a maximum of fifteen participants.7

Participants first reviewed the task instructions and
completed a brief tutorial to familiarize themselves
with the process. Participants complete a follow-up
survey to receive a 20-dollar compensation after
the one-hour session.

7We use the same trained models from the simulated ex-
periment. We update sLDA in the backend once the previous
training is complete.

4.3 Cluster Quality Evaluation Metrics

We record the purity, ARI, and ANMI for every
minute passed during each session. For each group,
we plot the median of each metric for every minute
passed (Figure 2).

Topic model groups do better than NONE
Throughout the 60-minute study session, the clas-
sifier has a wide gap between groups with topic
models and NONE. Topic model groups have faster
early gains on all three metrics than NONE, con-
firming the results from Poursabzi-Sangdeh et al.
(2016).

CTM does the best on cluster metrics, followed
by LDA, sLDA, and NONE. In real-world user
applications, CTM is the best for classification. The
classifier with neural topic features, trained on user
input labels, can generalize unseen data better than
classical generative topic probability features. Al-
though CTM is the best, having the classifier have
access to topic model features is better for the clas-
sifier to generalize and predict unseen data than not.
We later manually evaluate the validity of the user
labels by random sampling (Appendix E), where
98.38% of the selected examples are qualified un-
der evaluations of two authors.

sLDA falters on compared to LDA and CTM
This is partly attributed to inaccuracies in the classi-
fier’s predictions. For instance, when a user labels
30 documents midway through the session, the clas-
sifier, in turn, predicts labels for the entire dataset.
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Figure 3: The first Plot shows NPMI Coherence for all topics on the Bills dataset, where sLDA(user) is trained on
user input labels, and sLDA is the initial model used for all sLDA users. The rest of the plots shows users’ rating
on different questions on a scale 1 to 7, which the higher is better. Although sLDA is worse than LDA and CTM on
clustering evaluations, most of the median of user ratings do not differ from CTM, and surpass LDA in some ratings.
For ratings 2 to 4, NONE groups users all rate 0 because they do not have access to those features

However, if the user only creates two label cate-
gories for the 30 documents, the lack of diversity
of response variables can generate document topic
probability as features that confuses the classifier.
Nonetheless, sLDA can align certain topics with
user intent labels, which means that sLDA might
be capable of generating topic keywords that are
semantically similar to user labels, thus improving
users’ overall experience. Subsequent survey anal-
yses will investigate whether sLDA supports this
hypothesis in user survey ratings.

Examining coherence, quality of document clus-
ters, and quality of topic keywords We go
through the topics with top two, middle two, and
bottom two coherence scores for the models we
use for user study (including sLDA trained on user
labels), and show the NPMI, topic keywords, and
a randomly selected passage from the topic in Ta-
bles 3 and 5.8 Although the coherence scores vary
for different topics, the top keywords are represen-
tative of the documents, but a low median coher-
ence score does not necessarily show lower median
user ratings (Figure 4). CTM has the highest top
coherence scores but the median coherence score
is lower than sLDA and LDA. However, CTM is still
better on clustering evaluations and user ratings.

8We load the saved sLDA model trained on user labels
predicted by the classifier at the end of the session, we call it
sLDA(user).

4.4 User Ratings

Our survey comprises five questions aimed at gaug-
ing user judgment and evaluating topic models,
using a scale ranging from 1 to 7.9

CTM and sLDA users rely more on topic mod-
els than LDA Figure 4, the second to sixth plot
show a summary of users’ ratings for question
1 to 5. The median of user ratings on CTM and
sLDA are similar for most of the questions except
for Topic-Keyword Coherence, which sLDA falls
short. Based on the median user ratings, users gen-
erally rely more on topic keywords and highlights
to create labels for documents if they are assigned
to the CTM or sLDA group. Users also rate the topic
keywords they use to label documents as more co-
herent for CTM and sLDA. Although the classifier in
sLDA falls short on the three cluster metrics among
the three topic models, users generally have better
overall experience with sLDA than LDA users.

Automatic coherence likes LDA topics, users do
not Although the top topics for CTM, sLDA and
sLDA(user) have higher coherence scores than LDA

(Figure 4), LDA’s coherence scores are quite tight in
9Confidence asks how confident the users feel about their

created labels. Highlight Reliance asks how much the users
rely on the highlight functionality to make labels. Topic-
Keywords Coherence asks whether users find the topic key-
words coherent while they explore topics and peruse keywords
to assist them in label creation. Topic-keyword Dependence
investigates the frequency at which users consult the most
related topic keywords while creating labels for documents.
Satisfaction assesses the users’ overall satisfaction with the
tool, exploring whether users find the tool likable and helpful.
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Figure 4: We run a followup pilot study with six social
science experts (three in each group) on their internal so-
cial science dataset (800 documents). They are familiar
with the topics in the dataset. Up to the 50th document
labeled, CTM still generalizes well for expert datasets
and expert users.

the boxplot and LDA has higher median coherence
than the other two models. sLDA(user) has diverse
coherence scores for its topics. However, when
looking at the median user rating of all the five
questions, LDA does not surpass CTM and sLDA:
there is not a strong and direct relationship between
coherence and human usability. This is a task-
specific confirmation of Hoyle et al. (2021).

Different topic models, different purposes We
run ANOVA (Fisher, 1935) and posthoc Turkey-
Kramer for pairwise comparison between ratings
of any two of the user groups. Users are less likely
to rely on the topic keywords generated by LDA to
label documents, compared to CTM and sLDA based
on significance results (Table 2) because LDA gen-
erates overly general topic keywords that are less
useful to label individual documents. For specific
tasks, such as label set establishment and tasks in-
volving understanding individual documents, CTM

is a better choice.

4.5 Expert Verification
The expert conditions were LDA and CTM, the two
winning conditions in our general user study. Six
experts all hold at least a graduate degree in com-
munity resilience related field that focuses on as-
sisting communities and stakeholders on issues re-
lated to anticipated hazards conditions and disas-
ter preparedness field.10 We use the same user

10https://www.nist.gov/community-resilience

Metric p-Value Significant Pair

Confidence 0.327 None
HighlightReliance 0.035 sLDA vs. LDA
topicCoherence 0.017 CTM vs. sLDA
topicReliance 0.034 CTM vs. LDA
satisfaction 0.002 NONE vs. Other 3

Table 2: Significance test results across subjective rat-
ings for three groups at a 0.05 significance level. There
is no significant difference in user ratings between NTM
and LDA except for Topic-Keyword Reliance. For rows
2-4, we exclude NONE to do testing. The third column
shows the group pairs that are statistically significant.
For example, the significant pair for satisfaction is be-
tween NONE and other three groups with topic models,
and it indicates a difference of user satisfaction rating
between NONE and other three groups under a 95% con-
fidence level, where the NONE users are less satisfied
with their experience from the sixth plot in Figure 4.

interface described in Section 4.1 with the given
expert dataset on 800 documents. The documents
are collected from local governments across the
United States providing structured ways to set
community-scale goals and developing plans for
recovery of community functions after natural or
human-caused hazards (U.S. Department of Com-
merce, 2020). Experts conduct analysis and assign
labels to this dataset so they can understand dif-
ferent categories of hazards and develop plans for
a community to prepare for anticipated hazards,
adapt to changing conditions, and withstand and
recover rapidly from disruptions. The dataset has
been previously labeled by multiple experts using
Cohen’s Kappa agreement (McHugh, 2012) over a
six-month period. CTM surpasses LDA on two out
of three clustering metrics and has similar ARI at
the 50th document (Figure 4).

Experts rely less on keywords but still like them
Since all the experts are quite familiar with the
topics in the dataset, one expert using LDA men-
tions that the topic keywords are not helpful but the
highlighted texts are more helpful for individual
document annotation. LDA produces topics that
are too general, so experts already prefer the more
specific keywords from CTM.

5 Related Work

Applications of topic models are important, as ex-
emplified by previous work by Fang et al (Fang
et al., 2023), which addresses the human-centric
applications of topic models. Bakharia et al. (2016)



shows that interactive topic models have gained
traction among social science researchers and data
analysts. Nevertheless, classical topic models
dominate most applications in social science re-
search (Boyd-Graber et al., 2017; Lin, 2009). De-
spite their theoretical advantages, this persistent
preference for classical models underscores the
need for comprehensive studies on the practical
utility of NTMs.

As one of the most popular topic models, LDA

has been widely applied and tested in diverse fields
from health (Paul and Dredze, 2011) to political
opinion analysis (Chen et al., 2010), social media
data analysis (Zhao et al., 2011), etc. Thus, LDA

has already proved itself as a useful tool for real
applications.

For supervised models, most work focuses on
sLDA’s power to predict response variables from
text (Xu and Eguchi, 2022). Few works have study
whether the induced topics align with user intents
such as labeling. Using sLDA interactively for doc-
ument recommendation and annotation is more in-
tuitive and straightforward than using unsupervised
classical LDA.

Beyond connecting a single response variable to
topic assignments, neural models offer even more
flexibility and have over a hundred variants, but
the evaluation of NTMs is mainly based on topic
coherence, topic diversity, and classification appli-
cations (Zhao et al., 2021). The major framework
of NTMs are mostly sequential NTMs, which lever-
ages the architecture power of Recurrent Neural
Network (RNN); NTMs with pre-trained language
models, such as BERT, that already learns the se-
mantic relationship and association of words from
a large corpus of texts. NTMs have the advantage of
producing higher automatic evaluation scores, and
classification abilities, along with other more exten-
sive applications that classical topic models cannot
do, which includes texts generation (Tang et al.,
2019; Wang et al., 2019), summarization (Zhao
et al., 2020; Wang et al., 2020).

However, with the new popularity of NTMs, to
the best of our knowledge, there are still few works
using NTMs for social science due to their com-
plex architecture and more computing resource de-
mands. Our work examines this gap to study the
trade-off between using neural, supervised, or clas-
sical topic models. While some recent studies have
compares NTM and LDA with human analysis of the
topic outputs, they still predominantly rely on auto-

matic evaluation metrics, with limited emphasis on
analyzing the quality of models from a human per-
spective or task-based utility of topic models (Doan
and Hoang, 2021). Papadia et al. (2023) concludes
that LDA is better than NTM in metrics on coher-
ence(Röder et al., 2015) and classification (Phan
et al., 2008). However, this conclusion is for non-
English datasets. Our research intends to bridge
this gap by conducting an English-language topic
model quality evaluation, incorporating human in-
teraction to help content analysis.

Our approach differs from previous studies,
which compares NTMs and classical models’ stabil-
ity and alignment with stationary, pre-determined
ground truth labels (Hoyle et al., 2021). In the for-
mer, LDA was better; in the latter, LDA was better
than many NTMs (Hoyle et al., 2022). However,
Hoyle et al. (2021)’s approaches only evaluate topic
models by analyzing human ratings on topic key-
words with labels without any task applications. In
contrast, for the tasks of content analysis and build-
ing a label set, the overly specific NTM keywords
are actually helpful for people to come up with la-
bels more easily than more general and dispersed
keywords. While the overall topics may not look
as “pretty” to a user, they are useful.

6 Conclusion

We provide an interactive task-based evaluation
of neural, supervised, and classical topic models,
using the task of content analysis and label set cre-
ation. Using CTM with an active learning classifier
helps both expert and non-expert annotators pro-
duce higher quality label sets more quickly, accord-
ing to cluster metrics and human ratings, validating
that the right choice of NTMs can be better than
LDA for content analysis. However, LDA is still
competitive with two other NTMs, contrary to what
coherence scores would suggest. We show that cur-
rent automated metrics do not provide a complete
picture of topic modeling capabilities, but the right
choice of NTMs can still be better than classical
models on practical tasks. With the popularity of
large language models (LLMs), future work can in-
clude exploring more effective ways to use TENOR

combined with LLMs for content analysis, where
experts have a set of pre-defined research question
and hypothesis, and use TENOR to actively select
documents to prompt an LLM to build up a label
set for the dataset quickly to answer their research
questions and verify their research hypothesis.



7 Limitations

We provide a human-in-the-loop framework to eval-
uate topic models, extending beyond automated
evaluation metrics. Yet, our experiment only fo-
cuses on a very narrow and specific task to evalu-
ate topic models. In addition, although our work
shows that the right choice of NTM can bee more
powerful than LDA for specific tasks, the debate
about evaluation of topic models is still present.
From a language perspective, our experiments are
based on English dataset only. Our conclusions
theoretically can be generalized to some other lan-
guages but need to be practically tested. It might
come to a different conclusion for languages with
completely different structures than English. Fur-
thermore, with the rise of LLMs that can complete
various tasks close to human level, the use of LLM

to help with the process of label set generation,
classification (Zhou et al., 2024), and content anal-
ysis is a more efficient and cost-effective approach
that can simulates our human study compared with
our human study in Section 4.5. A comparative
analysis of the quality of labels created by actual
human users and LLM would be valuable for the
social science and NLP community to confirm the
validity of using LLMs to simulate actual user stud-
ies to speed up their research process. We will
conduct further comparative analysis between hu-
man created labels and LLM created labels in our
future work.

8 Ethics

We received approval from the Institutional Review
Board before initiating the user study. All partic-
ipants are based in the United States. Users are
required to review an instruction and consent state-
ment before participation commitment. They have
the option to withdraw if they disagree with the
terms. Throughout the study, no personal infor-
mation that could reveal identities is collected. To
the best of our knowledge, our study presents no
known risks.
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10 Appendix

A Clustering Evaluation Metric Details

We list and show the calculation details of auto-
mated evaluation metrics discussed in Section 2.4
for easy of reproducing our work in this section.



Suppose the classifier is trained on existing docu-
ments with user input labels (5% of the documents),
and the classifier predicts labels for all the docu-
ments, and they are partitioned into clusters de-
noted as Ω = {ω1, ω2, . . . , ωK}. The official gold
clusters are denoted as C = {c1, c2, . . . , cJ}.

Purity It is calculated by assigning each cluster
to the class which is most frequent in the cluster,
and counting the correctly assigned points in that
cluster. The formula to calculate the purity between
the predicted and the gold clusters is:

Purity(Ω, C) =
1

N

∑︂

k

max
j

|ωk ∩ cj |. (5)

N is the total number of points, ωk is the kth
cluster, cj is the jth class. ωk ∩ cj is the number
of points in cluster ωk that belongs to class cj , and
maxj is maximum number of class cj intersection
with cluster ωk (Zhao, 2005).

Adjusted Normalized Mutual Information The
Adjusted Normalized Mutual Information (ANMI)
is an improved version of the Normalized Mutual
Information (NMI) metric used for comparing the
similarity between two clusterings that adjusts for
chance to make the score more robust and compa-
rable across different situations:

ANMI =
2× (MI − E[MI])

(H (C) +H (K))− 2× E[MI]
. (6)

The mutual information (MI) measures how
much information we know about the gold cluster-
ing by knowing about the predicted clustering. The
expected mutual information E[MI] is calculation
of what the MI would be if the predicted clusters
were completely at random, but still considering
the size of the clusters. H(K) measures the ran-
domness or disorder within the gold clustering and
H(C) measures the randomness or disorder within
the predicted clustering–entropy. A higher entropy
means higher randomness for the clusters (Amelio
and Pizzuti, 2016).

Adjusted Rand Index Rand Index (RI) com-
putes the similarity between two clustering by con-
sidering pairs that are assigned in the same or dif-
ferent clusters in the predicted and true cluster-
ing (Rand, 1971). The formula for RI is:

RI =
TP + TN

TP + TN + FP + FN
. (7)

TP is the number of pairs that are in the same set
in both the predicted and gold clusters, and TN is
the number of pairs that are in different sets in the
predicted and gold clusters. Otherwise, the pairs
are either FP or FN.

The Adjusted Rand Index (ARI) is the corrected-
for-chance version of the RI. It accounts for the
fact that the RI score will increase as the number of
clusters increases, even if the clustering is random:

RI =
RI − Expected RI

Max RI − Expected RI
. (8)

Expected RI is the expected value of the RI under
random labeling, respecting the marginal distribu-
tions of cluster sizes. Max RI is the highest possible
value that the RI could take, given the constraints of
the clustering problem. A Max RI of 1.0 indicates
two clusterings are identical, but when adjusting it
for chance, Max RI can be less than 1 depending
on the distribution of cluster sizes.

Normalized Pointwise Mutual Information
NPMI evaluates how semantically related the top
words in each topic are to the documents in that
topic, which in turn reflects the quality of the gen-
erated topics by a topic model:

NPMI(x, y) =
log P (x,y)

P (x)·P (y)

− logP (x, y)
. (9)

P(x, y) represents the probability of words x and y
co-occuring together in a set of documents, where
P(x) and P(u) are probabilities of observing words
x and y independently in the set of documents.

B Study Group Details

We provide more details of implementation about
our 6 study groups introduced in Section 3.1 with
two components– user experience and classifier
training.

B.1 User Interface Experience
The baseline group (1) NONE users only has access
to a list of documents in the initial page shown in
Figure 5. Active learning picks the most informa-
tive document and place it on top of the page so
users can quickly selects it. Groups (2)-(6) with
topic models have access to both active learning
and topic overview shown in Figure 6. Users can
explore the overall themes of the document sets
then start labeling documents. After a user selects
a document, topic model group users have access



to the most related topics for the document, key-
words, and highlighted keywords that are above
0.05 threshold for a selected topic shown in Fig-
ure 7. Group (1) NONE users do not have access
to the topic keywords and highlighted texts, but
still retain the active learning basic features- the
top three most relevant labels of the document pre-
dicted by the classifier. In all groups, users can
click submit & next button to automatically go to
the next document selected by active learning or
they can go back to the list of documents to select
other documents.

B.2 Classifier Training

(1) NONE group users has a logistic regression clas-
sifier trained with their labeled documents. The
classifier picks the next document based on the
preference function with only tf-idf as its input fea-
tures. For group (2)-(6), we first compute the topic
model probability features, where each document
has an associated vector that contains probabili-
ties it belongs to each topic. We encode the raw
text features using tf-idf first, and concatenate the
topic vector with each encoded document features
and train a classifier with user labeled documents.
Classifiers in Group (2)-(6) have additional fea-
tures generated by different topic models that can
help classification to generalize better to unseen
documents. Different topic models generate differ-
ent features that can have diverse performance in
downstream classification tasks.

C Simulated Experiment Details

Training Topic Models We preprocess the
dataset by tokenizing and filtering stopwords; we
use a tf-idf threshold of three to remove rare and
too-common words.

For LDA and sLDA, we use the Tomotopy li-
brary (Lee, 2022), which uses Gibbs sampling
to train classical topic models. To compare two
datasets fairly, we chose K = 35 topics for all five
topic models in our group, which optimized aver-
age coherence. For LDA and sLDA, we use the term
weight scheme ONE (Wilson and Chew, 2010).
sLDA takes more extra hyperparameters than LDA

does. For sLDA, we also use binary-type response
variables to indicate user input labels. Otherwise,
LDA and sLDA use the default hyperparameter val-
ues. sLDA initially does not take in any response
variables. We train LDA and sLDA with 2000 itera-
tions until a smaller change of log-likelihood and

NPMI coherence.
For CTM, we use SBERT

paraphrase-distilroberta-base-v2 to
fetch sentence embeddings for the dataset, then
concatenate them with BoW representation. We
used CombinedTM (Bianchi et al., 2021) with
a 768 contextual size, with K = 35 topics,
and trained it with 250 epochs. We also use
paraphrase-distilroberta-base-v2 to fetch
sentence ebmeddings to train Bertopic. For ETM,
we use Word2Vec (Mikolov et al., 2013) to encode
documents and train it with 250 epochs.

Classifier Initialization and Features Since
users are more likely to create more granular label
specifications for each document. We used sub-
labels as pseudo user-entered labels while using
the more general labels as our gold standard.

We use sklearn SGD as our classifier for active
learning document selection.11 We transform our
raw dataset using unigram tf-idf as input features
for the classifier. For LDA, sLDA, and CTM groups,
we also concatenate topic probability distributions
for all the documents with unigram tf-idf features
that also encode topic information to the classifier.
Since the classifier requires at least two classes to
be fitted, we pick random documents, and use sub-
labels as surrogate user input labels, and activate
the preference function until the classifier has at
least two class labels. We use incremental lean-
ing (Rosenblatt, 1958) to fit and update the classi-
fier, retaining originally learned parameters.12 The
classifier’s predictions with the more general labels
assess the clustering quality.

Simulated Experiment Upon analyzing the doc-
ument lengths in our dataset, we deduced that con-
sidering individual reading speed variances, a user
can feasibly label between 90 to 400 documents
within an hour. For our simulated user study, we
automatically run our algorithm for each group to
input labels for 400 documents, constantly updat-
ing the classifier for every document labeled, and
sLDA for every 50 documents labeled. Each group

11We use hyperparameters: loss=’log_loss’, penalty=’l2’,
tolerance=10e-3, random_state=42, learning_rate=’optimal’,
eta0=0.1, validation_fraction=0.2, and alpha=0.000005.

12There are two exceptions we reinitialize the classifier:
if a new label class is introduced to the classifier, we reini-
tialize the classifier and train it with labeled documents; if
sLDA is updated with surrogate response variables, we rebuild
the features by concatenating tf-idf features with new topic
probability distributions, and restart the classifier with new
features.



underwent 15 iterations of the experiment. For con-
sistency, we aggregated the results by taking the
median value for each document in each group.

Validity of Simulated Experiments Of all the
methods, CTM consistently does better on purity,
ARI, and ANMI, which underscores the right choice
of NTM can generate topic probability features that
do better on classification. Such features, rooted in
pre-trained embeddings, are perceived by compact
machine learning models as more intuitive than the
generative topic probabilities yielded by classical
models like LDA and sLDA. sLDA and ETM, on the
other side, is worse than LDA, where LDA remains
competitive against two other NTMs. The classifier
without topic information falls short behind the
classifier with topic information except for ETM.

Our simple simulated experiments serve as a re-
liable proxy, allowing us to expect similar trends
when actual human labeling is in play and to track
the evolution of classifier predictions as more docu-
ments are labeled over time. However, we acknowl-
edge that relying solely on simulated evaluation
metrics has limitations. The classifier does not con-
sider using topic keywords and topic overviews to
create labels. Other factors, including fatigue and
loss of attention, might also affect the quality of la-
bels created by real users. Such metrics also do not
capture the complete essence of user preferences,
especially concerning the keywords produced by
topic models, the highlighted keywords, or the spe-
cific documents recommended by the preference
function.

D Dataset Details

The Bills have over 400,000 bills spanning from
1947 to 2009, where each bill is meticulously la-
beled with primary and secondary topics, as de-
tailed in a comprehensive codebook.13 The latest
iteration of this dataset has seen its topics labeled
by adept human coders, who were trained using
the preceding dataset version. The inter-annotator
agreement was observed to be an impressive 95%
for primary topics and 75% for secondary ones.
Such extensive and refined labeling, carried out by
trained annotators over numerous years, assures the
dataset’s label quality. The 20newsgroup is a popu-
lar benchmark dataset that has 6 major labels and
20 sub-labels. We remove duplicate documents,

13https://comparativeagendas.s3.amazonaws.com/
codebookfiles/Codebook_PAP_2019.pdf.

documents that are shorter than 30 tokens, docu-
ments that contain sensitive topics, and documents
that the general public is not familiar with the Bills
and 20newsgroup dataset.

E User Label Evaluations

We do a sanity check on the 800 randomly selected
labeled documents, to ensure users are creating
meaningful labels. Within each group, we sort the
users based on the summation of purity, ARI, ANMI

at the end of the 61st minute in ascending order.
We take the middle 8 users and randomly pick 200
labeled documents from each group. We have two
annotators manually judge the user labels based on
the following two criteria: 1. Can the user label
be considered equivalent or a subfield of the gold
label (major label and sub label)? 2. Does the
user label reflect the contents of the passage? If
the annotator rates ‘yes’ for criteria 1, criteria 2
will be skipped. Otherwise, the annotator will need
to read the actual passage to judge the quality of
the user labels. Among 800 labeled documents,
we have 787 documents that satisfy at least one
of the two criteria, which ensures most users are
making meaningful labels and carefully conducting
the study.

F User Interface

Figure 6 and Figure 7 show a basic layout of CTM

used in our user study. The keywords and docu-
ment clusters will not be displayed to NONE group
users. Instead, a random list of documents are dis-
played to them in Figure 6 page. In Figure 7 page,
NONE users are not displayed with the Top Topic
Keywords and the highlighted texts.

G Topic Model Keywords

Table 3, 4, and 5 show the 2 topics with high-
est, median, and lowest NPMI coherence scores for
LDA, sLDA, CTM, and sLDA trained with user input
labels as response variables. The topic keywords
generated by LDA are more general and inclusive
while the topic keywords generated by CTM are
more specific and related to the top passages.



Figure 5: This is the overview (1) NONE group. Users are not presented with topic overview, but active learning
classifier picks the document based on the preference function and place it on top of the page.

Figure 6: Under topic model settings, users are displayed all topics, keywords, and documents in each topic. If active
learning picks a document, the topic and the document cluster containing that document will be displayed at the very
top of this page. The document is also displayed on the top of the document cluster. For example, the document
marked red is an example of a document picked by active learning. For the baseline, NONE group, topic keywords,
and document clusters are not displayed. All documents are displayed in one block, and the recommended document
is always on top of the page above other documents.



Figure 7: For a user-selected document, a user can either make a label for the document or skip the document.
The top 5 most relevant topics and top keywords for the selected document are displayed on the right side. The
highlight function helps users quickly find words that are above the 0.05 threshold for a chosen topic. Users could
also select a label from the dropdown box, which the labels are ranked by softmax probabilities of the classifier, and
the dropdown labels are what the users have created so far. For NONE, the highlights and topics will not be available
to the users.



Model NPMI Keywords Passage
LDA 0.39 exemption, income, dependent, in-

crease, taxpayer, tax, spouse, per-
sonal, additional, include

To provide that certain survivor benefits
received by a child under public retire-
ment systems shall not be taken into ac-
count in determining whether the child
is a dependent for income tax purposes.

LDA 0.24 tax, revenue, internal, code, income,
section, taxis, pay, credit, individual

To amend the Internal Revenue Code
of 1954 to include the sintering and
burning of clay, shale, and slate used
as lightweight aggregates as a treatment
process considered as mining.

sLDA 0.35 rescind, control, authority, budget,
president, special, impoundment,
propose, transmit, section

To rescind certain budget authority pro-
posed to be rescinded (R92-66) in
a special message transmitted to the
Congress by the President on March 20,
1992.

sLDA 0.22 tax, revenue, income, internal, code,
exemption, section, individual, taxis,
shall

To amend the Internal Revenue Code to
provide that gain or loss from the sale
or exchange of certain real estate shall
be treated as a capital gain or loss.

CTM 0.50 president, authority, propose, re-
scind, congress, special, impound-
ment, march, accordance, trasmit,
message

A bill to rescind certain budget authority
contained in the message of the Presi-
dent of January 27, 1978 (H. Doc. 95-
285), transmitted pursuant to the Im-
poundment Control Act of 1974.

CTM 0.38 exemption, include, taxpayer, per-
sonal, additional, increase, depen-
dent, spouse, income, old

To increase from $600 to $750 the per-
sonal income tax exemptions of a tax-
payer (including the exemption for a
spouse, the exemption for a dependent,
and the additional exemption for old age,
or blindness).

sLDA(user) 0.42 budget, rescind, control, president,
authority, impoundment, congress,
transmit, message, section

To amend part C of the Balanced Budget
and Emergency Deficit Control Act of
1985 to extend the discretionary spend-
ing limits and pay-as-you-go through
fiscal year 2009.

sLDA(user) 0.26 education, school, student, loan, pro-
gram, secondary, institution, elemen-
tary, educational, teacher

To amend the Higher Education Act of
1965 to expand the loan forgiveness and
loan cancellation programs for teachers,
to provide loan forgiveness and loan can-
cellation programs for nurses, and for
other purposes.

Table 3: Topic models automatically discover topics and themes in the Bills dataset. These topics give users a global
sense of probable stories and themes in a dataset. We show the top 2 topics for each topic model and their relevant
keywords and relevant passages. sLDA is the initial model without fitting with response variables, which is used
for all users in sLDA group. sLDA(user) uses a pre-saved model, which is derived from the median calculations
(median of summation of purity, ARI, ANMI among 15 users) across 15 users in sLDA. sLDA(user) generates top
topics with higher top coherence scores than other models. The keywords also appear more often and are more
related to passages.



Model NPMI Keywords Passage
LDA 0.13 water, wildlife, conservation, fish, es-

tablish, management, resource, na-
tional, development, coastal

To create a joint commission of the
United States and the State of Alaska
to make administrative determinations
of navigability of inland nontidal waters
in the State of Alaska for State selec-
tions.

LDA 0.12 food, drug, use, cosmetic, respect, hu-
man, child, information, intend, man-
ufacturer

A bill to amend Sections 403 and 405 of
the Federal Food, Drug, and Cosmetic
Act to require that foods intended for
human consumption be labeled to show
the amount of sodium and potassium
they contain.

sLDA 0.10 labor, section, employee, national, or-
ganization, fair, provision, relations,
right, railway

To amend the Railroad Retirement Act
of 1937 and the Social Security Act
to eliminate those provisions which re-
strict the right of a spouse or survivor
to receive benefits simultaneously under
both acts.

sLDA 0.07 highway, title, section, amend, na-
tional, code, fund, system, construc-
tion, stat

A bill to supplement the Federal Aid
Road Act, approved July 11, 1916, as
amended and supplemented, to autho-
rize appropriations for the construction
of greatly needed rural local roads, and
for other purposes.

CTM 0.07 contract, standards, work, wage, con-
tractor, cause, hour, fair, employer,
employee

A bill to provide for the creditability of
certain service in determining the order
of retention for competing employees in
a reduction in force affecting the Federal
Grain Inspection Service.

abrctm 0.06 revenue, internal, code, section, es-
tate, sale, admission, value, treat-
ment, relate

To amend section 112 (b) of the Internal
Revenue Code (relating to recognition
of gain in certain corporate liquidations)
so that it will apply to cases where the
transfer of all the property under the liq-
uidation occurs within 1 calendar month
in 1953.

sLDA(user) 0.03 program, establish, improve, devel-
opment, system, promote, assist, pro-
vide, national, encourage

A bill to improve existing tertiary eye
centers, to examine the delivery of eye
care to the general public, and to study
the feasibility of implementing a system
of tertiary eye care centers throughout
the United States.

sLDA(user) 0.02 state, fund, program, year, title, estab-
lish, assistance, construction, facility,
authorize

To amend the National Housing Act
to authorize the Secretary of Hous-
ing and Urban Development to insure
mortgages for the acquisition, construc-
tion. . .

Table 4: The table shows the 18th and 19th coherent topics discovered by different topic models. The bottom 2
topics for sLDA(user) only have a few passages associated with each of them.



Model NPMI Keywords Passage
LDA -0.10 person, foreign, prohibit, business,

engage, country, trade, domestic, en-
able, stock

To provide an exception from certain
group health plan requirements to allow
small businesses to use pre-tax dollars
to assist employees in the purchase of
policies in the individual health insur-
ance market, and for other purposes.

LDA -0.08 vessel, coast, guard, marine, specie,
merchant, port, law, academy, endan-
gered

To amend the Merchant Marine Act of
1936 and the Maritime Academy Act
of 1958 to enlarge the mission of the
U.S. Merchant Marine Academy and to
assist in enlarging the mission of the
State maritime academies.

sLDA -0.12 meat, product, inspection, state, con-
tinental, shelf, outer, poultry, import,
land

A bill to modify the method of deter-
mining quantitative limitations on the
importation of certain articles of meat
and meat products, to apply quantita-
tive limitations on the importation of
certain additional articles of meat, meat
products, and livestock, and for other
purposes.

sLDA -0.11 fla, know, value, historic, shall, na-
tional, site, use, fort, dam

A bill to provide that the reservior
formed by the lock and dam referred
to as the Millers Ferry lock and dam
on the Alabama River, Alabama, shall
hereafter be known as the William Bill
Dannelly Reservior.

CTM -0.29 locate, convey, transfer, territory,
memorial, historical, washington,
smithsonian, city, conveyance

To provide for the conveyance of cer-
tain excess real property of the United
States to the city of Mission, the city of
McAllen, and the city of Edinburg, all
situated in the State of Texas.

CTM -0.12 highway, aid, interstate, road, alaska,
system, fund, fla, commission, trans-
portation

To amend section 5 of the Department
of Transportation Act to authorize the
National Transportation Safety Board to
employ 5,000 investigators to carry out
its powers and duties under that act.

sLDA(user) -0.36 gas, purpose, greenhouse, wheat, red,
cheese, cheddar, operate, exist, stan-
dards

To provide that the rules of the Envi-
ronmental Protection Agency entitled
National Emission Standards for Haz-
ardous Air Pollutants for Reciprocating
Internal Combustion Engines. . .

sLDA(user) -0.31 gram, trans, drugs, deadline, inter-
vention, temple, manatees, plains,
ombudsman, leaseholder

To direct the Commissioner of Food and
Drugs to revise the Federal regulations
applicable to the declaration of the trans
fat content of a food on the label and
in the labeling of the food when such
content is less than 0.5 gram.

Table 5: The table shows the least two coherent topics discovered by different topic models. The bottom 2 topics for
sLDA(user) only have a few passages associated with each of them.


