
Yoshinari Fujinuma, Jordan Boyd-Graber, and Katharina Kann. How Does Multilingual Pretraining Af-
fect Cross-Lingual Transferability?. Association for Computational Linguistics, 2022, 9 pages.

@inproceedings{Fujinuma:Boyd-Graber:Kann-2022,
Author = {Yoshinari Fujinuma and Jordan Boyd-Graber and Katharina Kann},
Title = {How Does Multilingual Pretraining Affect Cross-Lingual Transferability?},
Booktitle = {Association for Computational Linguistics},
Year = {2022},
Location = {Dublin},
Url = {http://cs.umd.edu/~jbg//docs/2022_acl_multilingbert.pdf},
}

Links:

• Code [https://github.com/akkikiki/multilingual_zeroshot_analysis]

Downloaded from http://cs.umd.edu/~jbg/docs/2022_acl_multilingbert.pdf

Contact Jordan Boyd-Graber (jbg@boydgraber.org) for questions about this paper.

1

http://cs.umd.edu/~jbg//docs/2022_acl_multilingbert.pdf
http://cs.umd.edu/~jbg//docs/2022_acl_multilingbert.pdf
https://github.com/akkikiki/multilingual_zeroshot_analysis
https://github.com/akkikiki/multilingual_zeroshot_analysis
http://cs.umd.edu/~jbg/docs/2022_acl_multilingbert.pdf


Match the Script, Adapt if Multilingual: Analyzing the Effect of
Multilingual Pretraining on Cross-lingual Transferability

Yoshinari Fujinuma∗

AWS AI Labs
Amazon.com

fujinumay@gmail.com

Jordan Boyd-Graber
UMIACS, CS, LSC, iSchool

University of Maryland
jbg@umiacs.umd.edu

Katharina Kann
Computer Science

University of Colorado Boulder
katharina.kann@colorado.edu

Abstract
Pretrained multilingual models enable zero-
shot learning even for unseen languages, and
that performance can be further improved via
adaptation prior to finetuning. However, it
is unclear how the number of pretraining lan-
guages influences a model’s zero-shot learn-
ing for languages unseen during pretraining.
To fill this gap, we ask the following re-
search questions: (1) How does the number
of pretraining languages influence zero-shot
performance on unseen target languages? (2)
Does the answer to that question change with
model adaptation? (3) Do the findings for
our first question change if the languages used
for pretraining are all related? Our experi-
ments on pretraining with related languages
indicate that choosing a diverse set of lan-
guages is crucial. Without model adaptation,
surprisingly, increasing the number of pre-
training languages yields better results up to
adding related languages, after which perfor-
mance plateaus. In contrast, with model adap-
tation via continued pretraining, pretraining on
a larger number of languages often gives fur-
ther improvement, suggesting that model adap-
tation is crucial to exploit additional pretrain-
ing languages.1

1 Introduction

Pretrained multilingual language models (Devlin
et al., 2019; Conneau et al., 2020) are now a stan-
dard approach for cross-lingual transfer in natural
language processing (NLP). However, there are
multiple, potentially related issues on pretraining
multilingual models. Conneau et al. (2020) find the
“curse of multilinguality”: for a fixed model size,
zero-shot performance on target languages seen
during pretraining increases with additional pre-
training languages only until a certain point, after

∗This work was done while the first author was a student
at University of Colorado Boulder.

1All code used in this paper is available at https:
//github.com/akkikiki/multilingual_
zeroshot_analysis.

which performance decreases. Wang et al. (2020b)
also report “negative interference”, where monolin-
gual models achieve better results than multilingual
models, both on subsets of high- and low-resource
languages. However, those findings are limited to
target languages seen during pretraining.

Current multilingual models cover only a small
subset of the world’s languages. Furthermore, due
to data sparsity, monolingual pretrained models
are not likely to obtain good results for many low-
resource languages. In those cases, multilingual
models can zero-shot learn for unseen languages
with an above-chance performance, which can be
further improved via model adaptation with target-
language text (Wang et al., 2020a), even for limited
amounts (Ebrahimi and Kann, 2021). However, it
is poorly understood how the number of pretraining
languages influences performance in those cases.
Does the “curse of multilinguality” or “negative
interference” also impact performance on unseen
target languages? And, if we want a model to be
applicable to as many unseen languages as possible,
how many languages should it be trained on?

Specifically, we ask the following research ques-
tions: (1) How does pretraining on an increasing
number of languages impact zero-shot performance
on unseen target languages? (2) Does the effect of
the number of pretraining languages change with
model adaptation to target languages? (3) Does the
answer to the first research question change if the
pretraining languages are all related to each other?

We pretrain a variety of monolingual and mul-
tilingual models, which we then finetune on En-
glish and apply to three zero-shot cross-lingual
downstream tasks in unseen target languages: part-
of-speech (POS) tagging, named entity recogni-
tion (NER), and natural language inference (NLI).
Experimental results suggest that choosing a di-
verse set of pretraining languages is crucial for
effective transfer. Without model adaptation, in-
creasing the number of pretraining languages im-



proves accuracy on unrelated unseen target lan-
guages at first and plateaus thereafter. Last, with
model adaptation, additional pretraining languages
beyond English generally help.

We are aware of the intense computational
cost of pretraining and its environmental im-
pact (Strubell et al., 2019). Thus, our experiments
in Section 4 are on a relatively small scale with
a fixed computational budget for each model and
on relatively simple NLP tasks (POS tagging, NER,
and NLI), but validate our most central findings
in Section 5 on large publicly available pretrained
models.

2 Cross-lingual Transfer via Pretraining

Pretrained multilingual models are a straightfor-
ward cross-lingual transfer approach: a model pre-
trained on multiple languages is then fine-tuned
on target-task data in the source language. Subse-
quently, the model is applied to target-task data in
the target language. Most commonly, the target
language is part of the model’s pretraining data.
However, cross-lingual transfer is possible even if
this is not the case, though performance tends to be
lower. This paper extends prior work exploring the
cross-lingual transfer abilities of pretrained models
for seen target languages depending on the number
of pretraining languages to unseen target languages.
We now transfer via pretrained multilingual models
and introduce the models and methods vetted in
our experiments.

2.1 Background and Methods

Pretrained Language Models Contextual rep-
resentations such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) are not just use-
ful for monolingual representations. Multilingual
BERT (Devlin et al., 2019, mBERT), XLM (Lample
and Conneau, 2019), and XLM-RoBERTa (Con-
neau et al., 2020, XLM-R) have surprisingly high
cross-lingual transfer performance compared to the
previous best practice: static cross-lingual word
embeddings (Pires et al., 2019; Wu and Dredze,
2019). Multilingual models are also practical—
why have hundreds of separate models for each
language when you could do better with just one?
Furthermore, Wu and Dredze (2020) report that
models pretrained on 100+ languages are better
than bilingual or monolingual language models in
zero-shot cross-lingual transfer.

Model Adaptation to Unseen Languages
Adapting pretrained multilingual models such as
mBERT and XLM-R to unseen languages is one
way to use such models beyond the languages
covered during pretraining time. Several methods
for adapting pretrained multilingual language
models to unseen languages have been proposed,
including continuing masked language model
(MLM) training (Chau et al., 2020; Müller et al.,
2020), optionally adding Adapter modules (Pfeiffer
et al., 2020), or extending the vocabulary of the
pretrained models (Artetxe et al., 2020; Wang
et al., 2020a). However, such adaptation methods
assume the existence of sufficient monolingual
corpora in the target languages. Some spoken
languages, dialects, or extinct languages lack
monolingual corpora to conduct model adaptation,
which motivates us to look into languages unseen
during pretraining. We leave investigation on the
effect of target language-specific processing, e.g.,
transliteration into Latin scripts (Muller et al.,
2021), for future work.

2.2 Research Questions

A single pretrained model that can be applied to any
language, including those unseen during pretrain-
ing, is both more efficient and more practical than
pretraining one model per language. Moreover, it
is the only practical option for unknown target lan-
guages or for languages without enough resources
for pretraining. Thus, models that can be applied or
at least easily adapted to unseen languages are an
important research focus. This work addresses the
following research questions (RQ), using English
as the source language for finetuning.
RQ1: How does the number of pretraining lan-
guages influence zero-shot cross-lingual transfer
of simple NLP tasks on unseen target languages?

We first explore how many languages a model
should be pretrained on if the target language is
unknown at test time or has too limited monolin-
gual resources for model adaptation. On one hand,
we hypothesize that increasing the number of pre-
training languages will improve performance, as
the model sees a more diverse set of scripts and
linguistic phenomena. Also, the more pretraining
languages, the better chance of having a related
language to the target language. However, multi-
lingual training can cause interference: other lan-
guages could distract from English, the finetuning
source language, and thus, lower performance.



RQ2: How does the answer to RQ1 change with
model adaptation to the target language?

This question is concerned with settings in which
we have enough monolingual data to adapt a pre-
trained model to the target language. Like our
hypothesis for RQ1, we expect that having seen
more pretraining languages should make adapta-
tion to unseen target languages easier. However,
another possibility is that adapting the model makes
any languages other than the finetuning source lan-
guage unnecessary; performance stays the same or
decreases when adding more pretraining languages.
RQ3: Do the answers to RQ1 change if all pre-
training languages are related to each other?

We use a diverse set of pretraining languages
when exploring RQ1, since we expect that to be
maximally beneficial. However, the results might
change depending on the exact languages. Thus,
as a case study, we repeat all experiments using a
set of closely related languages. On the one hand,
we hypothesize that benefits due to adding more
pretraining languages (if any) will be smaller with
related languages, as we reduce the diversity of
linguistic phenomena in the pretraining data. How-
ever, on the other hand, if English is all we use dur-
ing fine-tuning, performance might increase with
related languages, as this will approximate training
on more English data more closely.

3 Experimental Setup

Pretraining Corpora All our models are pre-
trained on the CoNLL 2017 Wikipedia dump (Gin-
ter et al., 2017). To use equal amounts of data
for all pretraining languages, we downsample
all Wikipedia datasets to an equal number of se-
quences. We standardize to the smallest corpus,
Hindi. The resulting pretraining corpus size is
around 200MB per language.2 We hold out 1K
sequences with around 512 tokens per sequence
after preprocessing as a development set to track
the models’ performance during pretraining.

Corpora for Model Adaptation For model
adaptation (RQ2), we select unseen target lan-
guages contained in both XNLI (Conneau et al.,
2018b) and Universal Dependencies 2.5 (Nivre
et al., 2019): Farsi (FA), Hebrew (HE), French
(FR), Vietnamese (VI), Tamil (TA), and Bulgar-
ian (BG). Model adaptation is typically done for
low-resource languages not seen during pretraining

2Micheli et al. (2020) show that corpora of at least 100MB
are reasonable for pretraining.

Langs Tasks

Seen languages

English (EN) POS, NER, NLI
Russian (RU) POS, NER, NLI
Arabic (AR) POS, NER, NLI
Chinese (ZH) POS, NER, NLI
Hindi (HI) POS, NER, NLI
Spanish (ES) POS, NER, NLI
Greek (EL) POS, NER, NLI
Finnish (FI) POS, NER
Indonesian (ID) POS, NER
Turkish (TR) POS, NER, NLI
German (DE) POS, NER, NLI
Dutch (NL) POS, NER, NLI
Swedish (SV) -
Danish (DA) -

Unseen languages

Bulgarian (BG) POS, NER, NLI
French (FR) POS, NER, NLI
Urdu (UR) POS, NER, NLI
Africaans (AF) POS, NER
Estonian (ET) POS, NER
Basque (EU) POS, NER
Farsi (FA) POS, NER
Hebrew (HE) POS, NER
Hungarian (HU) POS, NER
Italian (IT) POS, NER
Japanese (JA) POS, NER
Korean (KO) POS, NER
Marathi (MR) POS, NER
Portuguese (PT) POS, NER
Vietnamese (VI) POS, NER
Tamil (TA) POS, NER
Telugu (TE) POS, NER
Swahili (SW) NLI
Thai (TH) NLI

Table 1: Languages used in our experiments.

because monolingual corpora are too small (Wang
et al., 2020a). Therefore, we use the Johns Hopkins
University Bible corpus by McCarthy et al. (2020)
following Ebrahimi and Kann (2021).3

Tasks We evaluate our pretrained models on the
following downstream tasks from the XTREME

dataset (Hu et al., 2020): POS tagging and NLI. For
the former, we select 29 languages from Universal
Dependencies v2.5 (Nivre et al., 2019). For the
latter, we use all fifteen languages in XNLI (Con-
neau et al., 2018b). We follow the default train,
validation, and test split in XTREME.

Models and Hyperparameters Following Con-
neau et al. (2020)’s XLM-R Base model, we train
transformers (Vaswani et al., 2017) with 12 lay-
ers, 768 units, 12 attention heads, and a maximum
of 512 tokens per sequence. To accommodate all

3In cases where multiple versions of the Bible are available
in the target language, we select the largest one.



Model Pretraining Languages

Div-2 EN, RU
Div-3 EN, RU, ZH
Div-4 EN, RU, ZH, AR
Div-5 EN, RU, ZH, AR, HI
Div-6 EN, RU, ZH, AR, HI, ES
Div-7 EN, RU, ZH, AR, HI, ES, EL
Div-8 EN, RU, ZH, AR, HI, ES, EL, FI
Div-9 EN, RU, ZH, AR, HI, ES, EL, FI, ID
Div-10 EN, RU, ZH, AR, HI, ES, EL, FI, ID, TR

Rel-2 EN, DE
Rel-3 EN, DE, SV
Rel-4 EN, DE, SV, NL
Rel-5 EN, DE, SV, NL, DA

Table 2: Pretraining languages used for the models
in our experiments: models are trained on a diverse
set (Div-X) and related pretraining languages (Rel-X),
with different numbers of pretraining languages.

languages and facilitate comparability between all
pretraining setups, we use XLM-R’s vocabulary and
the SentencePiece (Kudo and Richardson, 2018)
tokenizer by Conneau et al. (2020).

We use masked language modeling (MLM) as our
pretraining objective and, like Devlin et al. (2019),
mask 15% of the tokens. We pretrain all models
for 150K steps, using Adam W (Loshchilov and
Hutter, 2019) with a learning rate of 1× 10−4 and
a batch size of two on either NVIDIA RTX2080Ti
or GTX1080Ti 12GB, on which it approximately
took four days to train each model. When pretrain-
ing, we preprocess sentences together to generate
sequences of approximately 512 tokens. For contin-
ued pretraining, we use a learning rate of 2× 10−5

and train for forty epochs, otherwise following the
setup for pretraining. For finetuning, we use a learn-
ing rate of 2× 10−5 and train for an additional ten
epochs for both POS tagging and NER, and an ad-
ditional five epochs for NLI, following Hu et al.
(2020).

Languages Table 1 shows the languages used in
our experiments. English is part of the pretraining
data of all models. It is also the finetuning source
language for all tasks, following Hu et al. (2020).
We use two different sets of pretraining languages:
“Diverse (Div)” and “Related (Rel)” (Table 2). We
mainly focus on pretraining on up to five languages,
except for POS tagging where the trend is not clear
and we further experiment on up to ten.

For POS tagging and NER, we regard seventeen
of the twenty-nine languages available in XTREME

as unseen, while the remaining twelve languages
are pretraining languages for at least one model.
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Figure 1: POS tagging accuracy after pretraining on a
diverse set of up to 10 languages and finetuning on En-
glish. The accuracy improves until six languages on the
given target languages.

For NLI, six languages are seen and the rest are
unseen. The order in which we add pretraining
languages follows the size of their original CoNLL

2017 Wikipedia dumps, with larger sizes being
added first.

4 Results

We now present experimental results for each RQ.

4.1 Findings for RQ1
POS Tagging Figure 1 shows the POS tagging
accuracy averaged over the 17 languages unseen
during pretraining. On average, models pretrained
on multiple languages have higher accuracy on
unseen languages than the model pretrained exclu-
sively on English, showing that the model benefits
from a more diverse set of pretraining data. How-
ever, the average accuracy only increases up to six
languages. This indicates that our initial hypothesis
"the more languages the better" might not be true.

Figure 2 provides a more detailed picture, show-
ing the accuracy for different numbers of pretrain-
ing languages for all seen and unseen target lan-
guages. As expected, accuracy jumps when a lan-
guage itself is added as a pretraining language. Fur-
thermore, accuracy rises if a pretraining language
from the same language family as a target language
is added: for example, the accuracy of Marathi
goes up by 9.3% after adding Hindi during pre-
training, and the accuracy of Bulgarian increases
by 31.2% after adding Russian. This shows that
related languages are indeed beneficial for transfer
learning. Also, (partially) sharing the same script
with a pretraining language (e.g., ES and ET, AR

and FA) helps with zero-shot cross-lingual transfer
even for languages which are not from the same
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Figure 2: POS tagging accuracy using models pretrained on a diverse set of languages (EN, RU, ZH, AR, HI, ES,
EL, FI, ID, TR) grouped by families of target languages, with Indo-European (IE) languages further divided into
subgroups following XTREME. The colors represent the script type of the languages. The accuracy gain is larger
when a pretraining language from the same family or using the same script is added.

family. These results are consistent with the out-
come of Müller et al. (2020) and partially support
the hypothesis by Pires et al. (2019) that shared
scripts are effective on unseen languages.

But how important are the scripts compared to
other features? To quantify the importance of it,
we conduct a linear regression analysis on the POS

tagging result. Table 3 shows the linear regression
analysis results using typological features among
target and pretraining languages. For the script
and family features, we follow Xu et al. (2019)
and encoded them into binary values set to one if
a language with the same script or from the same
family is included as one of the pretraining lan-
guages. For syntax and phonology features, we de-
rive those vectors from the URIEL database using
lang2vec (Littell et al., 2017) following Lauscher
et al. (2020). We take the maximum cosine simi-
larity between the target language and any of the
pretraining languages. Table 3 further confirms
that having a pretraining language which shares
the same script contributes the most to positive
cross-lingual transfer.

We sadly cannot give a definitive optimal num-
ber of pretraining languages. One consistent find-

Features Coef. p-value CI

Script .061 < .001 [.050, .073]
Family .022 .004 [.007, .036]
Syntax .001 .905 [-.016, .018]
Phonology .021 < .001 [.009, .033]
# pretrain langs .011 .044 [.000, .022]

Table 3: Regression analysis on the POS tagging ac-
curacy with coefficients (Coef.), p-value, and 95% con-
fidence interval (CI). A large coefficient with a low p-
value indicates that the feature significantly contributes
to better cross-lingual transfer, which shows that the
same script is the most important feature.

ing is that, for the large majority of languages, us-
ing only English yields the worst results for unseen
languages. However, adding pretraining languages
does not necessarily improve accuracy (Figure 1).
This indicates that, while we want more than one
pretraining language, using a smaller number than
the 100 commonly used pretraining languages is
likely sufficient unless we expect them to be closely
related to one of the potential target languages.

NER Our NER results show a similar trend.
Therefore, we only report the average performance
in the main part of this paper (Figure 3), and full
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Figure 3: NER F1 score after pretraining on a diverse
set of up to 10 languages and finetuning on English.
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Figure 4: XNLI accuracy after pretraining on a diverse
set and finetuning on English.

details are available in Appendix A. For NER, trans-
fer to unseen languages is more limited, likely due
to the small subset of tokens which are labeled as
entities when compared to POS tags.

NLI Our NLI results in Figure 4 show a similar
trend: accuracy on unseen languages plateaus at a
relatively small number of pretraining languages.
Specifically, Div-4 has the highest accuracy for 8
target languages, while Div-5 is best only for two
target languages. Accuracy again increases with
related languages, such as an improvement of 3.7%
accuracy for Bulgarian after adding Russian as a
pretraining language. Full results are available in
Appendix B.

4.2 Findings for RQ2

POS Tagging Figure 5a shows the POS tagging
results for six languages after adaptation of the
pretrained models via continued pretraining. As
expected, accuracy is overall higher than in Fig-
ure 2. Importantly, there are accuracy gains in
Farsi when adding Turkish (+9.8%) and in He-
brew when adding Greek (+7.7%), which are not
observed before adapting models. We further in-
vestigate it in Section 5.
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(a) POS tagging accuracy.
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(b) NER F1 scores.

Figure 5: Results after continued training on the Bible
of each target language. The continued training gives
limited improvement on NER for most languages when
compared to POS tagging.

NER NER results in Figure 5b show similarities
between POS tagging (e.g., improvement on Bulgar-
ian after adding Russian). However, there is limited
improvement on Farsi after adding Arabic despite
partially shared scripts between the two languages.
This indicates that the effect of adding related pre-
training languages is partially task-dependent.

NLI For NLI, accuracy increases slightly after
adding a second pretraining language. Results for
two to five pretraining languages are similar for all
target languages and, for Greek and Turkish, still
similar to the English-only model. This indicates
that, similar to our findings for POS tagging, a few
pretraining languages could be sufficient for model
adaptation. Full results are available in Appendix B.
Finally, our NLI results are low overall. This is
likely due to the size of the pretraining corpus being
one of the top correlated features for NLI (Lauscher
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Figure 6: POS tagging accuracy using related pretraining languages (EN, DE, SV, NL, DA) grouped by families of
target languages, with Indo-European (IE) languages further divided into subgroups following the XTREME dataset.
A change in accuracy can mainly be observed for Germanic, Romance, and Uralic languages due to only using
pretraining languages from the Germanic language family.
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Figure 7: XNLI accuracy on 10 unseen languages after
pretraining on a set of related languages and finetuning
on English.

et al., 2020), unlike for POS tagging (Hu et al.,
2020).

4.3 Findings for RQ3

POS Tagging In contrast to RQ1, POS tagging
accuracy changes for most languages are limited
when increasing the number of pretraining lan-
guages (Figure 6). The unseen languages on which
we observe gains belong to the Germanic, Ro-
mance, and Uralic language families, which are
relatively (as compared to the other language fami-

lies) close to English. The accuracy on languages
from other language families changes by < 10%,
which is smaller than the change for a diverse set
of pretraining languages. This indicates that the
models pretrained on similar languages struggle to
transfer to unrelated languages.

NER F1 scores of EN, Rel-2, Rel-3, Rel-4, and
Rel-5 are .218, .219, .227, .236, and .237 respec-
tively. Compared to Div-X, pretraining on related
languages also improves up to adding five lan-
guages. However, these models bring a smaller
improvement, similar to POS tagging.

NLI Figure 7 shows a similar trend for NLI:
when adding related pretraining languages, accu-
racy on languages far from English either does not
change much or decreases. In fact, for nine out of
thirteen unseen target languages, Rel-5 is the worst.

5 More Pretraining Languages

Our main takeaways from the last section are:
(RQ1) without model adaptation, increasing the
number of pretraining languages does not improve
accuracy on unrelated unseen target languages;
(RQ2) model adaptation largely helps exploiting
models pretrained on more languages; and (RQ3)
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Figure 8: POS tagging accuracy of our models pretrained on a diverse set of languages, XLM-17, XLM-100, and
XLM-R after finetuning on English. The models before adaptation are roughly on par regardless of the number of
pretraining languages, and the models after adaptation are more affected by related pretraining languages.

when using more than one pretraining language,
diversity is important.

However, there are limitations in the experimen-
tal settings in Section 4. We assume the follow-
ing: (1) relatively small pretraining corpora; (2)
the target languages are included when building
the model’s vocabulary; (3) fixed computational
resources; and (4) only up to ten pretraining lan-
guages. We now explore if our findings for RQ1
and RQ2 hold without such limitations. For this, we
use two publicly available pretrained XLM models
(Lample and Conneau, 2019), which have been pre-
trained on full size Wikipedia in 17 (XLM-17) and
100 (XLM-100) languages, and XLM-R base model
trained on a larger Common Crawl corpus (Con-
neau et al., 2020) in 100 languages. We conduct a
case study on low-resource languages unseen for
all models, including unseen vocabularies: Maltese
(MT), Wolof (WO), Yoruba (YO), Erzya (MYV), and
Northern Sami (SME). All pretraining languages
used in Div-X are included in XLM-17 except for
Finnish, and all 17 pretraining languages for XLM-
17 are a subset of the pretraining languages for
XLM-100. We report the averages with standard
deviations from three random seeds.

5.1 Results

RQ1 For models without adaptation, accuracy
does not improve for increasing numbers of source
languages (Figure 8a). Indeed, the accuracy on
both XLM-17 and XLM-100 are on par even though
the former uses 17 pretraining languages and the
latter uses 100. One exception is Northern Sami
(Uralic language with Latin script) due to XLM-
17 not seeing any Uralic languages, but XLM-100

does during pretraining. When further comparing
Div-10 and XLM-17, increase in accuracy by ad-
ditional pretraining languages is limited. Erzya
remains constant from five to 100 languages (ex-
cept for XLM-R), even when increasing the pretrain-
ing corpus size from downsampled (Div-X) to full
Wikipedia (XLM-17 and XLM-100).

RQ2 For the models with adaptation (Figure 8b),
there is a significant gap between XLM-17 and XLM-
100. This confirms our findings in the last section:
more pretraining languages is beneficial if the pre-
trained models are adapted to the target languages.
Thus, a possible explanation is that one or more
of XLM-100’s pretraining languages is similar to
our target languages and such languages can only
be exploited through continued pretraining (e.g.,
Ukrainian included in XLM-100 but not in Div-X).
Therefore, having the model see more languages
during pretraining is better when the models can
be adapted to each target language.

6 Related Work

Static Cross-lingual Word Embeddings Static
cross-lingual word embeddings (Mikolov et al.,
2013; Conneau et al., 2018a) embed and align
words from multiple languages for downstream
NLP tasks (Lample et al., 2018; Gu et al., 2018),
including a massive one trained on 50+ lan-
guages (Ammar et al., 2016). Static cross-lingual
embedding methods can be classified into two
groups: supervised and unsupervised. Supervised
methods use bilingual lexica as the cross-lingual
supervision signal. On the other hand, pretrained
multilingual language models and unsupervised



cross-lingual embeddings are similar because they
do not use a bilingual lexicon. Lin et al. (2019)
explore the selection of transfer language using
both data-independent (e.g., typological) features,
and data-dependent features (e.g., lexical overlap).
Their work is on static supervised cross-lingual
word embeddings, whereas this paper explores pre-
trained language models.

Analysis of Pretrained Multilingual Models
on Seen Languages Starting from Pires et al.
(2019), analysis of the cross-lingual transferabil-
ity of pretrained multilingual language models has
been a topic of interest. Pires et al. (2019) hy-
pothesize that cross-lingual transfer occurs due
to shared tokens across languages, but Artetxe
et al. (2020) show that cross-lingual transfer can be
successful even among languages without shared
scripts. Other work investigates the relationship
between zero-shot cross-lingual learning and typo-
logical features (Lauscher et al., 2020), encoding
language-specific features (Libovický et al., 2020),
and mBERT’s multilinguality (Dufter and Schütze,
2020). However, the majority of analyses have
either been limited to large public models (e.g.,
mBERT, XLM-R), to up to two pretraining languages
(K et al., 2020; Wu and Dredze, 2020), or to target
languages seen during pretraining. One exception
is the concurrent work by de Vries et al. (2022)
on analyzing the choice of language for the task-
specific training data on unseen languages. Here,
we analyze the ability of models to benefit from an
increasing number of pretraining languages.

7 Conclusion

This paper explores the effect which pretraining
on different numbers of languages has on unseen
target languages after finetuning on English. We
find: (1) if not adapting the pretrained multilingual
language models to target languages, a set of di-
verse pretraining languages which covers the script
and family of unseen target languages (e.g., 17 lan-
guages used for XLM-17) is likely sufficient; and
(2) if adapting the pretrained multilingual language
model to target languages, then one should pretrain
on as many languages as possible up to at least 100.

Future directions include analyzing the effect of
multilingual pretraining from different perspectives
such as different pretraining tasks and architectures,
e.g., mT5 (Xue et al., 2021), and more complex
tasks beyond classification or sequence tagging.
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Figure 9: NER F1 score using related pretraining lan-
guages (EN, DE, SV, NL, DA)

Pretrain EL VI TR FR

EN .351 .367 .365 .395
Div-2 (+ru) .360 .411 .372 .436
Div-3 (+zh) .353 .386 .368 .403
Div-4 (+ar) .362 .395 .374 .438
Div-5 (+hi) .358 .389 .376 .418

Table 4: NLI accuracy after pretraining on a diverse
set of up to 5 languages, continued pretraining on the
target-language Bible, and finetuning on English.

A NER Results

We show additional experimental results on NER in
Figures 9 and 10.

B NLI Results

Tables 5 and 6 shows the results without model
adaptation, and Table 4 shows the full results with
model adaptation.

C Notes on the Experimental Setup for
Model Adaptation

Following are the additional notes on the setup of
the model adaptation:

• No vocabulary augmentation is conducted un-
like Wang et al. (2020a). We use XLM-R’s
vocabulary throughout all experiments in this
paper.

• The Bible is used instead of Wikipedia for the
continued pretraining or model adaptation to
minimize the corpus size and contents incon-
sistency across languages.
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Figure 10: NER F1 score on diverse pretraining languages (EN, RU, ZH, AR, HI, ES, EL, FI, ID, TR) grouped by
families of target languages, with Indo-European (IE) languages further divided into subgroups following XTREME.
The accuracy gain is significant for seen pretraining languages, and also the languages from the same family of the
pretraining languages when added.

Pretrain en ru zh ar hi bg de el es fr sw th tr ur vi

EN .731 .343 .340 .339 .345 .347 .375 .346 .404 .381 .366 .350 .358 .347 .354
Div-2 .725 .457 .336 .341 .342 .384 .373 .346 .421 .382 .364 .342 .354 .338 .352
Div-3 .738 .500 .485 .336 .338 .389 .374 .341 .412 .382 .354 .340 .345 .339 .345
Div-4 .718 .452 .467 .460 .350 .418 .398 .352 .439 .417 .379 .351 .369 .361 .361
Div-5 .717 .466 .484 .460 .462 .426 .382 .346 .443 .386 .370 .348 .356 .349 .349

Table 5: NLI accuracy on diverse pretraining languages over five seen (EN,RU,ZH,AR,HI) and 10 unseen languages.

Pretrain en de ru zh ar hi bg el es fr sw th tr ur vi

EN .731 .375 .343 .340 .339 .345 .347 .346 .404 .381 .366 .350 .358 .347 .354
Rel-2 .733 .536 .363 .350 .357 .361 .359 .367 .422 .384 .374 .360 .381 .363 .369
Rel-3 .721 .535 .351 .349 .350 .355 .350 .352 .434 .420 .383 .357 .382 .348 .370
Rel-4 .710 .493 .350 .336 .348 .355 .354 .349 .433 .409 .368 .360 .373 .347 .363
Rel-5 .726 .527 .339 .335 .335 .342 .343 .342 .430 .415 .376 .339 .372 .335 .347

Table 6: NLI accuracy on the 13 unseen languages using the models pretrained on related languages (EN, DE, SV,
NL, DA), incrementally added one language at a time up to five languages.


