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ABSTRACT

We explore predictability and control in interactive systems where
controls are easy to validate. Human-in-the-loop techniques allow
users to guide unsupervised algorithms by exposing and support-
ing interaction with underlying model representations, increasing
transparency and promising fine-grained control. However, these
models must balance user input and the underlying data, meaning
they sometimes update slowly, poorly, or unpredictably—either by
not incorporating user input as expected (adherence) or by making
other unexpected changes (instability). While prior work exposes
model internals and supports user feedback, less attention has been
paid to users’ reactions when transparent models limit control. Fo-
cusing on interactive topic models, we explore user perceptions
of control using a study where 100 participants organize docu-
ments with one of three distinct topic modeling approaches. These
approaches incorporate input differently, resulting in varied adher-
ence, stability, update speeds, and model quality. Participants dis-
liked slow updates most, followed by lack of adherence. Instability
was polarizing: some participants liked it when it surfaced interest-
ing information, while others did not. Across modeling approaches,
participants differed only in whether they noticed adherence.

CCS CONCEPTS

•Human-centered computing→ Interactive systems and tools;
Empirical studies in HCI ; • Computing methodologies → Topic
modeling.
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1 INTRODUCTION

Machine Learning (ml) is common in today’s data-rich society.
These techniques build models of data, either with explicit training
labels or by finding patterns when labels are not provided. How-
ever, they are not perfect: data are noisy, models are deficient, and
humans’ needs and understanding sometimes conflict with ml out-
put [4]. In these cases, a human–machine collaboration is required
to iteratively improve and adapt models. Users can control models
by providing input such as additional training labels, re-weighting
features, or modifying the underlying data representation.

Effective human-machine collaboration requires model trans-
parency: users who understand models better can also better correct
models’ mistakes [29, 45]. However, increased transparency has
another effect in interactive ml (iml): when users provide input
to the model, they can tell whether the model uses their feedback
predictably (or not). For example, suppose users re-weight a regres-
sion model’s features for predicting property prices, specifying that
house color should not influence future predictions; they will be
rightly surprised if the model later explains a predicted price us-
ing the color. Therefore, with transparent models—where controls
are easy to validate—we cannot provide users with mechanisms to
control the model and expect for a positive outcome—we must also
consider how models update and what cascading side effects might
occur. This need introduces a problematic tension: models must
balance the user requested changes with faithfully modeling data.

This paper explores how users perceive and are affected by two
specific aspects of control as it relates to predictability: whether
input is applied as expected (adherence) and whether other unex-
pected changes occur (instability). iml models also vary in other
attributes that affect user experience, particularly their latency, or
how long they take to update, and their performance, or how well
they model the data or accuracy on held out test sets. These are
not just attributes of iml systems; human–computer interaction
guidelines prescribe that interactive systems should be predictable,
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controllable, and provide immediate updates [22, 47]. While prior
work has highlighted control and predictability for intelligent sys-
tems [25], the interaction between these constructs has not been
fully explored, particularly in transparent models, where they are
more easily perceived.

We study adherence, instability, latency, and quality in Human-
in-the-Loop Topic Modeling [5, hl-tm]. In hl-tm, users are exposed
to and interact directly with model representations, meaning users
can more easily validate when their changes are not applied as
expected—or if other unexpected changes also occur compared
to less transparent systems with abstract representations. Prior
studies have exposed adherence and instability of hl-tm through
user interviews [35, 50]. However, these attributes and their effects
on end users have not been studied at a large scale or compared
between models.

To explore how participants responded to varied system ad-
herence, instability, latency, and quality, 100 crowdworkers used
three hl-tm systems for document understanding and organiza-
tion. Rather than artificially manipulating adherence, instability,
latency, and quality, we chose to compare three distinct modeling
approaches that vary in these characteristics as a result of using
different objective functions and optimatization strategies. We ex-
plore whether user perceptions and experience differ between these
systems, and examine user behavior more generally, to better under-
stand how end users approach and interact with interactive models
with easy-to-validate controls.

The systems had significantly different computed adherence, in-
stability, and latency, yet only perceived adherence differences were
significant. This finding suggests that participants noticed when
the systems did not apply their input as expected, a phenomenon
that was particularly evident for easy-to-track refinements, such as
adding or removing topic words. Participants were polarized by in-
stability: some liked that it surfaced interesting information, others
disliked it, and even others reported not noticing it. Participants
thought all three systems were slow but performed well. Interest-
ingly, the majority of participants thought that they improved the
model quality, but on average they reduced computed topic coher-
ence, suggesting a possible disconnect between traditional topic
coherence measures and user perceptions of hl-tm quality. Overall,
users trusted all three systems and thought the task was easy, yet
some were frustrated, particularly by slow updates.

This paper provides three major contributions to our understand-
ing of user interaction with transparent systems: (1) an analysis of
how users perceive adherence and instability, and whether these
attributes affect users’ experience; (2) an understanding of the trade
offs between system attributes of adherence, instability, latency,
and performance; and (3) design recommendations for transparent,
interactive systems.

2 BACKGROUND

We review control and transparency in ml and provide background
on hl-tm, the case we use to explore these attributes.

2.1 Control with Transparent ml

End users want to understand how ml models work [37]. Models
can provide transparency through explanations or justifications for

particular decisions or actions [8, 9]. Transparent models might
also expose their inner workings, or how they model the underly-
ing data for a deeper understanding of how they operate [14]. For
example, Simonyan et al. [49] increase the transparency of deep
Convolutional Networks by producing artificial images representa-
tive of learned image classes. As transparency increases, end users
form better mental models, which in turn increases end user trust,
satisfaction, and leads to continued usage [20, 30, 36, 44].

End users separately want and need mechanisms for control,
both for user interfaces broadly [48] and for ml-based systems [3].
Specifically, allowing users to control models can manage user ex-
pectations [28] and increase satisfaction [46, 53]. Transparency is
particularly important when users are given control [29, 45], as
making users aware of how models work in turn makes them better
at providing feedback. However, increased transparency also means
that users can better discern what models do with their feedback,
or whether models incorporate it predictably. For opaque systems,
providing “difficult-to-validate” controls, whether or not they work,
can increase satisfaction [53]. But how will users react to unpre-
dictable behavior when controls are easier to validate? This paper
explores two specific aspects of control as it relates to predictabil-
ity: adherence—how well models apply user specifications during
updates—and instability—whether models make any other changes.

2.2 Topic Modeling with a Human-in-the-Loop

We explore adherence and instability in Human-in-the-Loop Topic
Modeling (hl-tm). Statistical topic models automatically identify
the themes or topics that occur in collections of documents [11],
and are typically represented as collections of topics, where topics
are represented as their top words and associated documents [14].
Topic models allow users to understand and explore document
collections by the themes they discuss.

Latent Dirichlet Allocation [10, lda] is a common unsupervised
topic modeling algorithm, which models each document in the
corpus as a distribution of topics and each topic as distribution of
words in the vocabulary. However, topic models are not always per-
fect [12]. Several extensions to lda incorporate human knowledge
to improve topic models [26, 27, 42, 43, 54, 55, 57, hl-tm]. With
such techniques, users specify model refinements, such as words or
documents to be removed from topics.

Our hl-tm approach is transparent in that users are exposed
to and interact directly with the underlying model—topic words
(θ ) and associated documents (ϕ)—as opposed to abstract repre-
sentations such as labeled folders. Therefore, it is a good case for
exploring adherence and instability: users can more easily track if
their changes are applied as expected (or other unexpected changes
occur in the model). These issues may be less obvious in less trans-
parent systems, such as recommenders [21], where users interact
with abstract representations (recommended items) instead of the
underlying model (decomposed user-item interaction matrix). hl-
tm is also a representative document understanding system, partic-
ularly one where users focus on both words and documents–more
complex than interactive clustering [16], for example.

Like other iml models, hl-tm techniques differ how they adhere
to input and whether they make any other unexpected changes.
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Prior studies have exposed these attributes through user inter-
views [35, 50], yet the effects of these attributes on users have not
been fully explored, either with many users or comparatively. Ku-
mar et al. [31] implemented a set of user-preferred refinements [35]
using three different modeling approaches and measured adherence
provided by the different approaches using simulations. However,
their simulated user experiments are prima facie implausible: they
ignore human variability, the depth of human insight, and the re-
action of humans to imperfect model updates. To correct these
oversights, we use these three approaches to explore how users
perceive adherence and instability and whether they affect user
experience and behavior.

Instability is not a new concept in ml; deterministic algorithms
are stable—they always produce the same output given the same
input. Prior work in statistical topic modeling explores instability
between learned topic models on different runs [7, 18]. This paper
specifically explores whether users perceive such instability on
model updates.

3 COMPARATIVE EVALUATION OF HL-TM

MODELING APPROACHES

For this study, crowd workers interacted with a topic model to or-
ganize documents using one of three contrasting hl-tm approaches
based on lda [10]. The approaches support the same set of nine
refinement operations (e.g., merging topics and removing words
or documents from topics), and differed only in implementation
details, as these criteria affect model attributes, such as adherence,
instability, quality, and latency.

This study used a between-subjects experimental design with a
single factor (Modeling Approach): informed priors using Gibbs sam-
pling (info-gibbs), informed priors using variational inference (info-
vb), and constraints using Gibbs sampling (const-gibbs).

The goal of this study was to explore how users perceive and
interact with transparent systems with varied attributes: adherence,
instability, latency, and quality. This study explored specifically:
(RQ1) How do users perceive instability and adherence across the
three hl-tm approaches? (RQ2) How does user experience vary
given these differing attributes? (RQ3) How do users behave with
the three hl-tm approaches?

3.1 Modeling Approaches

We implemented three hl-tm systems, based on lda, following
modeling approaches proposed in prior work [31]. These modeling
approaches differ in how user input (e.g., added words) is conveyed
to the model—informed priors [50] or constraints [56]—and infer-
ence strategies—variational inference [10] or Gibbs sampling [19].

While other topic modeling approaches exist [24, 33], we chose
these lda-based variants because they support the same user-
preferred refinement set. For example, “anchor words”-variants [38]
also generate topics, but cannot support word-level operations like
adding words. Also, these approaches may differ by the attributes of
interest. For example, prior work asserts that informed priors better
adhere to refinement operations [31], and Gibbs sampling-based
methods can yield more coherent topics [41]. Also, Gibbs sam-
pling and variational inference have different convergence rates [6].

While Gibbs sampling is often preferred for small datasets and in-
teractive settings because of its low latency, variational inference
can scale to millions of documents [23, 58]. Our setting allows a
focused, task-center comparison (Section 3.9.1).

For info-gibbs and const-gibbs, we trained initial lda models with
300 Gibbs sampling iterations and default Mallet toolkit1 hyperpa-
rameters (α = 0.1; β = 0.01) and, for info-vb, 30 em iterations. For
each subsequent update during the task, we applied the refinement
and ran inference.

3.2 Refinement Implementations

For each of the three hl-tm modeling approaches, we implemented
the same nine refinement operations preferred by users in prior
work [35, 40, 50]. These include four topic-level refinements: add
word, change word order, remove word, remove document

and five model-level refinements:merge topics, split topic, cre-

ate topic, delete topic, add to stop words.
For remove word, add word, remove document, merge top-

ics, split topic, change word order and create topic, we applied
the refinements following the implementation proposed by Kumar
et al. [31]. For add to stop words, to add a word w to the stop
words list, we excludedw from the model vocabulary. For delete
topic, to delete a specified topic t , in all three models, we first for-
got all latent topic assignment which were assigned to t , and then
reduced the number of topics by one.

After refinements were applied, we ran inference forN iterations
to limit latency (rather than running inference until convergence).
Moreover, all refinements have different levels of complexity, mean-
ing the models converge faster for certain refinements than others.
For example, add to stop words is a simpler refinement than cre-

ate topic, and hence requires fewer iterations to converge. For each
refinement, we empirically fine-tuned N on 9000 tweets randomly
selected from a different dataset.2 In particular, to fine-tune N for a
refinement, we randomly applied a refinement multiple times and
observed how fast the model converged. For info-gibbs and const-

gibbs, N ranged from one for add to stop words to 20 for create
topic. For info-vb, N varied from one for add to stop words to
four for create topic.

3.3 Dataset

For the study we used the Twitter Airline Sentiment Dataset, which
includes tweets directed at various common airlines (e.g., United,
Southwest Airlines, Jet Blue) and manually tagged by sentiment
(positive, negative, neutral).3 We produced initial topic models of
10 topics from only the 9, 178 negative sentiment tweets, as these
reflect a distinct set of complaints regarding air travel.

3.4 Task Interface

The hl-tm task user interface was the same for all three modeling
approaches (Figure 1). The topics are listed on the left, each initially
represented by a generic topic label (e.g., “Topic 1”) and the three
most probable words for the topic. The selected topic is on the
right, which displays the top 20 topic words and the top 20 topic

1http://mallet.cs.umass.edu/
2https://www.kaggle.com/kazanova/sentiment140/
3https://www.kaggle.com/crowdflower/twitter-airline-sentiment
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Figure 1: hl-tm interface. Initial model (top) represented as a list of topics, each displayed with topic id and three most

probable words. Selecting a topic reveals the top 20 words and top 20 documents. Participants refined the model, including

merging topics by clicking “merge” next to the topic and selecting additional topics with which to merge (bottom left), and

splitting topics by clicking “split” next to the topic and dragging to separate words into sub-topics (bottom right).

documents. Documents are ordered by their probability for the
topic t given the document d , or p(t | d). Each word,w , is ordered
and sized by its probability for the topic t , or p(w | t); this simple
word list representation provides a quick understanding of the
topic [1, 51]. Hovering or clicking on topic words highlights the
word in the displayed document snippets. Participants can click the
pencil icon to rename the topic labels to be more descriptive.

Participants can explore and update the model using the set of
nine refinement operations: click “x” next to words or documents
to remove them, select and drag words to re-order them, type new
words into the input box and press “enter” to add them, select a
word and click “remove selected word from all topics” to add it to
the stop words list, click “delete topic” to remove the selected topic,
or click “create a new topic”, “split”, or “merge” (in the topic list)
to enter into create, split, or merge modes, respectively (Figure 1).
Each refinement is immediately saved and the model is updated.
After updates, participants can undo to revert models to prior states.

3.5 Participants

We recruited 100 participants (32 male and 68 female) on the Up-
work platform.4 Participants were required to have a 90% or higher
job success score and be native or bilingual English speakers. We
designed the task to take approximately 60 minutes and paid par-
ticipants 20 usd. We used Upwork instead of other common crowd-
worker platforms (e.g., Mechanical Turk), to recruit more motivated
participants; participants were paid a higher rate and could always
contact one of the researchers in case of questions.

Participants varied in age (< 19: four, 20 − 29: 46, 30 − 39: 23,
40 − 49: 13, 50 − 59: seven, > 60: eight), education (college degree:
49, graduate degree: 29, some college: 17, high school or ged: 5),
and background (12 in English or writing, seven in education, and
five in business).

To understand participants’ prior exposure to topic models and
machine learning, as this could affect our results, study partici-
pants rated prior experience with statistical topic modeling and

4https://www.upwork.com/
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machine learning, respectively. Participants varied for prior experi-
ence (rated on a scale from one to five) with topic models (“none”
(one): 44, two: 25, three: 18, four: seven, “significant” (five): six) and
machine learning (“none” (one): 44, two: 19, three: 19, four: nine,
“significant” (five): seven).

3.6 Procedure

Each participant was randomly assigned to one of the three model-
ing approaches and all used the same hl-tm user interface (Figure 1).
Each user got a unique starting model from a pool of 50 pre-trained
initial lda models with 10 topics for each of the three hl-tm model-
ing approaches. Given the assigned approach, we randomly selected
an initial topic model from the pool of pre-trained models and then
removed the selected model from the pool. The study began with
a tutorial, which introduced participants to topic modeling, rele-
vant terminology, and the task interface. The tutorial also required
participants to experiment with each of the nine refinement opera-
tions. After the tutorial, participants were given the following task
instructions:

“Imagine you have been asked to write a travel blog post
about the common complaints that travelers have when
flying. The system has gathered 9000 tweets of people com-
plaining about their air travel experience directed at various
popular airlines and has generated an initial set of 10 topics
to organize these air travel complaint tweets. Use the tool to
improve these topics, so that you can write a blog post about
common air travel complaints with a few example tweets
from each. You do not need to write the actual blog post as
part of this task.”

Participants were then asked to spend 30 minutes interacting
with the model and to click the “finish task” button when they
were happy with the organization they had achieved. The interface
required participants to spend at least 20 and no more than 45
minutes on the task. The task goal and time elapsed were denoted
in the interface (Figure 1).

After the task, participants completed a survey containing closed-
and open-ended questions on their perceptions and experience with
the system (Table 1) and which refinements they felt were the most
and least useful, with follow up “why” questions. Participants also
responded to whether they noticed any unexpected behavior while
using the tool and what they liked and did not like about using the
tool for the task.

3.7 Measures

We report on nine overall subjective measures, collected using
seven-point rating scales (Table 1): four user experience measures
(frustration, trust, task ease, confidence) and five user perception
measures (perceived adherence, perceived instability, perceived la-
tency, final model satisfaction, and perceived improvement). We
also report on subjective per-refinement adherence, collected using
seven-point rating scales (strongly disagree to strongly agree) for
nine statements of the form, “the system incorporated the [refine-
ment] operation as I asked it to.” These statements also included a
“did not use operation” option.

Table 1: Seven-point rating scale statements for nine subjec-

tive measures. All are on a scale from “strongly disagree” to

“strongly agree” aside from satisfaction, which is on a scale

from “not at all” to “very” and improvement, which is on a

scale from “much worse” to “much better.”

Measure Statement

frustration “Using this tool to perform the task was frustrating”
trust “I trusted that the tool would update the organization of

tweets well”
task ease “It was easy to use this tool to perform the task”
confidence “I was confident in my specified changes to the tool”
final model satisfaction “How satisfied are you with the final organization of the

tweets into categories of air travel complaints?”
model improvement “How do you think the final organization compares to the

initial organization of tweets?”
low latency “After my changes, the tool updated quickly”
adherence (overall) “The tool made the changes I asked it to make”
instability “The tool made unexpected changes beyond what I asked

it to make”

We also report on quantitative measures of the system attributes:
adherence, instability, latency, and quality (initial, final, and im-
proved). To compute adherence for each of the nine refinements we
use the metrics provided by Kumar et al. [31]:

• add word, remove word, and change word order: treat
the topic as a ranked word list, and then take the ratio of the
actual rank change (where the added, removed, or reordered
word is in the updated model) and the expected rank change.

• remove document: compute similarly to remove word,
except treat the topic as a ranked document list.

• create topic: compute the ratio of the number of seed words
in the created topic out of the total number provided.

• split topic: compute the average adherence of the parent
and child topic, using the adherence measure for create
topic.

• merge topics: compute the ratio of the number of the words
in themerged topic that came from either of the parent topics
over the total number of words shown to the user.

• add to stop words and delete topic: these refinements are
deterministic, and therefore always have a perfect adherence
score.

Adherence is measured on a range from 0.0, meaning the system
ignores the user’s input, to 1.0, meaning the system does exactly as
the user asks. The exception is adherence to change word order,
which ranged from −∞ to ∞, and where a negative adherence
value means the system did the opposite of what the user asked.
For example, if a user moves a word up two positions, but it is
instead moved down one, the adherence would be −.5. Overall
adherence is computed as the average adherence score over all
refinements applied by the user.

To estimate the instability caused by a refinement, we use a mod-
ified topic-term stability metric [7]. We first compute the difference
between each topic as 1.0 minus the overlap coefficient [39] be-
tween the top 20 words of the topic, before and after the refinement.
Instability is then measured as the average difference between each
topic excluding the refined topic(s). Put simply, we compute what
percentage of topic words are removed after an update for the un-
touched topics. Instability is scored from 0.0 (all topics the same) to
1.0 (all topics completely different). Latency is the time the model
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Table 2: Measures for system attributes: instability, adher-

ence, latency (seconds), and quality—final model quality (co-

herence) and percent improvement. Coherence scoresmulti-

plied by 1000 for readability. Responses reported as “mean,

σ”. Kruskal-Wallis results reported as “χ2(2), p”. The mod-

eling approaches differed significantly (bold) for all com-

puted attributes except improvement; cell shading for sig-

nificantly differences highlights better approaches (darker

is better).

info-gibbs const-gibbs info-vb Kruskal-Wallis
adherence .84, .10 .70, .14 .82, .09 20.8, p<.001

stability .12, .03 .12, .03 .03, .03 1754.8, p<.001

latency (s) 15.2, 6.2 19.3, 9.2 20.4, 5.9 18.1, p<.001

final quality 7.4, 3.5 .7.0, 1.9 .5.7, 1.5 8.5, .014

improvement 6%, 42% 4%, 34% -7%, 30% 1.4, .489

takes to incorporate each refinement. We also computed each par-
ticipants’ initial and final topic model quality as the models’ average
npmi-based topic coherence [34]; quality is thus the difference (i.e.,
improvement or degradation) from initial to final model quality.5
We additionally logged all interactions with the system including
how many and which refinements participants applied.

3.8 Data and Analysis

We disqualified five of the 100 participants because they made an
outlying number of survey response “mistakes” on per-refinement
adherence statements. We considered a response to be a “mistake”
if the participant said they had used a refinement for the task when
they had not, or vice versa, and used an interquartile range (IQR)
approach to determine outliers based on the count of mistakes [52]:
the median number of mistakes was two, and the upper quartile
bound for outliers (Q3 + 1.5IQR) was five (out of nine possible
mistakes). Removing outliers above this bound resulted in 95 par-
ticipants in our final dataset: 31 in the info-gibbs condition, 33 in
the const-gibbs condition, and 31 in the info-vb condition.

For quantitative analysis, we used separate Kruskal Wallis tests
to determine significance across the conditions for each of the
subjective rating responses and the quantitative measures. For qual-
itative analysis, we followed a thematic approach [13], and coded
the open-ended responses related to what participants found unex-
pected, liked and did not like, and which refinements they found
were most and least useful. Two annotators independently coded a
random subset of 20 of the 95 responses for each of the statements
regarding what was unexpected, what participants liked, and what
they disliked; agreement was scored using Cohen’s κ: κ = .93 for
unexpected responses, κ = .88 for liked responses, and κ = .89 for
disliked responses.

5Automatic coherence metrics require an external reference corpus for npmi com-
putation; as in prior work, we use Wikipedia. As the Twitter-based topics included
many words not found in the Wikipedia reference corpus, their overall topic coherence
scores were relatively low, but are still useful for relative comparison.

Table 3: Computed per-refinement adherence measure-

ments reported as “mean, σ”. Kruskal-Wallis results re-

ported as “χ2(2), p”. There were significant differences (bold)

between modeling approaches for add word, change word

order, create topic, and split topic; cell shading reflects ad-

herence to that refinement (darker is better).

info-gibbs const-gibbs info-vb Kruskal-Wallis
add word .99, .01 .62, .28 0.96, .04 49.4, p<.001

remove word .91, .17 .97, .08 .99, .03 3.4, .180
remove doc .78, .32 .88, .22 .69, .28 3.6, .160

change order .67, .26 .06, .50 .53, .36 29.7, p<.001

create topic 1.0, 0 .53, .24 1.0, 0 21.9, p<.001

delete topic 1.0, 0 1.0, 0 1.0, 0 NA
merge topics .82, .08 .79, .07 .83, .09 4.0, .130
stop word 1.0, 0 1.0, 0 1.0, 0 NA
split topic .80, .27 .88, .08 .94, .12 10.0, .007

3.9 Results

Each of the 95 participants started with a distinct initial random
topic model and applied refinements with the goal of improving
the model for their imagined travel blog.

In the following sections, we provide detailed results regarding
computedmodel attributes followed by user perceptions, experience
and behavior given these different attributes, and with interactive
topic models in general. We refer to participants throughout this
section as P1-P95.

3.9.1 Computed Differences. The three modeling approaches dif-
fered significantly for four out of the five computed attributes: ad-
herence, instability, latency, and final model quality, but not model
improvement (Table 2). The Gibbs sampling approaches (const-gibbs
and info-gibbs) had higher final model quality than variational in-
ference (info-vb), while variational inference was more stable than
Gibbs. Informed priors with Gibbs sampling (info-gibbs) provided
the fastest updates over const-gibbs and info-vb. Finally, informed
priors (info-gibbs and info-vb) provided higher control than con-
straints (const-gibbs).

Analyzing adherence in more detail, Table 3 shows the average
computed per-refinement adherence for each modeling approach.
Computed adherence differed significantly across modeling ap-
proaches for four of the nine refinements: const-gibbs provided less
control for add word, change word order, and create topic than
the other approaches. For split topic, info-vb provided the most
control followed by const-gibbs, and info-gibbs provided the least.

3.9.2 User Perceptions. We analyzed participants’ perceptions re-
garding adherence, instability, latency, and model quality through
subjective responses (Figure 2 and Figure 3). While computed ad-
herence, instability, latency, and final model quality differ across
modeling approaches, for subjective measures, only adherence is
significantly impacted by condition: participants in const-gibbs per-
ceived lower adherence than the other modeling approaches. It is
important to note that we did not control for these characteristics
nor for the magnitude of their differences, which may explain why
users did not perceive differences in all dimensions.
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Figure 2: Seven-point rating scale responses bymodeling ap-

proach for perceived adherence, instability, and low latency

(quick updates), from “strongly disagree” to “strongly agree.”

Participants thought the systems adhered to their input, but

updated slowly. There was high variability for whether par-

ticipants perceived instability.

Overall, participants thought the systems adhered to their input
(M = 5.3 of 7, σ = 1.8), but were mixed on whether the systems
were unstable (M = 3.3, σ = 2.2). Participants thought the final
models improvemed (M = 5.8, σ = 1.1) and they were satisfied
with the quality (M = 5.1, σ = 1.3), but they thought the model
updates were slow (M = 2.7, σ = 1.6).

Participants noticed when word-level refinements did not adhere.

Adherence was lower for const-gibbs than other approaches (Ta-
ble 2), particularly for three refinements: add word, change word

order, and create topic (Table 3).
Participants thought that the system adhered to their input (Fig-

ure 2) more in the info-vb (M = 5.7, σ = 1.6) and info-gibbs ap-
proaches (M = 5.5, σ = 1.5) than const-gibbs (M = 4.6, σ = 1.9).
These differences were significant (χ2(2) = 6.3,p = .042).

Perceived adherence was also significantly lower for const-gibbs
for two easy-to-validate word-level refinements (Table 4): add
word (χ2(2) = 10.1,p = .006) and change word order (χ2(2) =
11.5,p = .003). However, there was no significant difference be-
tween the modeling approaches for perceived adherence of the
create topic (χ2(2) = .9,p = .62) or split topic refinements
(χ2(2) = 3.6,p = .17), even though these differed for computed
adherence (Table 3). This is perhaps because it is harder for users
to discern perfect refinements (all requested words appear in the
new topic) from those that are “good enough”.
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47%45%72% 44%39%22%9%16%6%
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Figure 3: Seven-point rating scale responses for subjective

model quality: final model satisfaction from “not at all sat-

isfied” to “very satisfied” and model improvement from

“much worse” to “much better”, reported by modeling ap-

proach. Overall participants were satisfied with the final

model quality and thought the models improved.

Participants were mixed on whether they observed instability. The
computed instability metric shows that the info-vb condition was
significantly more stable than the other modeling approaches (Ta-
ble 2). However, participants’ responses for whether they observed
instability had high variability, a pattern that was similar for all
modeling approaches (Figure 2). While info-vb was perceived as
the most stable (M = 2.6, σ = 2.0) compared to info-gibbs (M = 3.5,
σ = 2.3) and const-gibbs (M = 3.8, σ = 2.3), these differences were
not significant (χ2(2) = 5.6,p = .105).

Participants thought they improved the models, but coherence

scores disagree. We measured quality and improvement using quali-
tative (Figure 3)—judged by the user—and quantitative—automatic
topic coherence, Table 2—methods. Confirming that our initial ran-
dom model creation was effective, there were no significant differ-
ences between modeling approaches for the initial model quality
(χ2(2) = 4.1,p = .130). Automatic coherence declined on average
for models, most notably for info-vb, confirming previous reports
that variational inference can produce less coherent topics than
Gibbs sampling [41]. In contrast, participants believed they im-
proved the models: while only 42% of the 95 participants improved
the model (as measured by npmi), 98% thought the final model was
better than the initial model (subjective response > 4 out of 7).

Topic coherence is intended to reflect human rating of individual
topics [15], but our users reduced the overall model quality while
feeling that they improved it. One possible reason for this discrep-
ancy is the limited view of traditional topic coherence metrics: they
examine each topic by only top words, and model-wide measures
average over all topics, whereas participants typically care about
the model as a whole or sometimes prefer a particular subset of
topics. Future work should explore robust metrics that better cap-
ture how topics model all of the data or put weight on particular
topics of interest. Also, topics should be evaluated as both their
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Figure 4: Seven-point rating scale responses for four subjec-

tive user experience measures from “strongly disagree” to

“strongly agree”, reported by condition. On average, partici-

pants were confident in their input, trusted the system, and

thought the task was easy; frustration varied.

words and associated documents. Additionally, ideal metrics would
be less dependent on the data being modeled.

Participants thought all the systems were too slow. Objectively,
the info-gibbs condition had significantly faster updates (Table 2).
However, users thought all the systems were slow (Figure 2), and
the perceived latency differences between modeling approaches
were not significant (χ2(2) = 1.0,p = .610). This was likely a
combination of participants wanting the systems to be faster and of
unrealistic expectations for speed given participants’ experiences
in the tutorial. For example, P71 (info-gibbs) asked, “is there any
way to make it a bit faster?. . . It would be better if the tutorial wasn’t

so fast. . . so you don’t have the expectation of speed with this tool.”

3.9.3 User Experience. To understand how variations in adherence,
instability, latency, and model quality may affect user experience,
participants responded to statements regarding frustration, trust,
task ease, and confidence (Figure 4). Participants were confident,
found the task easy, and trusted the tool: mean response for these
measures across all modeling approaches was 5.4, 5.0, and 5.3 out
of 7, respectively. Participants were neutral regarding frustration,
at 3.5 out of 7 for all models, with info-gibbs the least frustrating
(M = 2.9, σ = 1.7) and const-gibbs (M = 3.8, σ = 1.8) and info-vb

(M = 3.7, σ = 2.2) the most. There were no significant effects of
modeling approach on these experience measures, but the open-
ended responses provide additional insight into how adherence,
instability, and so on affect user experience.

Table 4: Likert scale responses for agreement with state-

ments of the form “the system incorporated the [refine-

ment] operation as I asked it to” for each of the nine re-

finements. Measurements reported as “mean, σ”. Kruskal-
Wallis results reported as “χ2(2), p”. Overall, change word

order had low perceived adherence, and there were signif-

icant (bold) perceived adherence differences between mod-

eling approaches for add word and change word order; cell

shading reflects participant perception that the modeling

approach adheres to that refinement (darker is better).

info-gibbs const-gibbs info-vb Kruskal-Wallis
add word 6.1, 1.5 4.6, 2.5 6.5, 1.4 9.2, .010

remove word 6.5, 1.1 5.9, 2.1 6.7, .6 .8, .660
remove doc 6.3, 1.5 6.8, .5 5.6, 2.1 5.0, .080

change order 4.9, 2.2 2.9, 2.5 5.2, 2.4 11.5, .003

create topic 6.0, 1.9 6.1, 1.4 6.3, 2.1 .9, .620
delete topic 6.8, .7 6.4, 1.3 6.9, .3 1.5, .470
merge topics 6.7, .8 6.8, .5 6.7, .7 .2, .900
stop word 6.0, 2.0 6.3, 1.4 6.6, .7 .3, .860
split topic 5.6, 2.2 5.9, 2.0 6.9, .3 3.6, .170

Open-ended responses regarding likes, dislikes, and unexpected

behavior. Our coding of open-ended responses (Section 3.8) resulted
in seven disliked, seven liked, and five unexpected codes.

Participants disliked “latency” the most (42 of 95) followed by
“lack of control” (21 participants). Ten participants thought the sys-
tems were “missing functionality”, requesting support for dragging
documents between topics or comparing two topics at once. Eight
participants thought the tool was “overwhelming”, while five said
there was “nothing” they did not like. Five disliked “model quali-
ties”, such as too many similar topics (P46, const-gibbs). Finally, two
participants mentioned disliking “instability”.

Participants liked that the systems were “useful” for organizing
and filtering the documents (40 of 95) and that they were “intuitive”
(28). Ten participants liked the “refinements”, particularly when
they worked as expected, such as P22 (const-gibbs), “the removing of

terms was neat and operated as expected”, while three participants
said they liked when the systems “worked as expected”. Five partic-
ipants liked the systems’ “design”, two participants said they liked
“instability”, and one liked that the tool was “fast”.

Of the measured attributes, participants thought “lack of control”,
or adherence, (35 of 95) was most unexpected, such as P14 (info-
gibbs) who said, “once the change word order did not happen, even
though I tried it three times”, followed by “slowness” (22) and “in-
stability” (12). Twenty participants said “nothing” was unexpected
and six mentioned “other” things, like issues with the tutorial.

Instability was the most polarizing attribute. Not all noticed it,
but those that did disagreed, confirming prior work [50]. While 12
of 95 participants said “instability” (as opposed to other attributes)
was unexpected, some participants, such as P79 (info-vb) said, “I
didn’t expect the word list to automatically update after adding a

new word but I thought that was cool.” While other participants said
instability was negative, such as, “I [removed a word] and saw it in

a later topic. . . bad ml!” (P20, info-gibbs).
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Figure 5: Proportion of refinement usage that is followed by

undo. Delete topic (10%) and split topic (8%) are undone the

most often. Create topic was never undone.

3.9.4 User Behavior. In addition to measuring participants’ sub-
jective responses regarding whether they perceived differences in
system attributes and how this affected their experience, we were
also interested in understanding how users interact with these sys-
tems. On average, each participant used six (σ = 1.4) of the nine
operations to make a total of 31.3 (σ = 16.1) changes to their model.
In the following, we detail whether user behavior differed given
the varied attributes and how users behaved with these systems.

Low adherence may have led participants to stop the task early.

Table 5 shows the average time spent on the task and number of
refinements for each condition. The const-gibbs modeling approach
had significantly slower updates, so we might have expected those
participants to spend the longest time on the task, but they did not:
participants in the const-gibbs condition on average made fewer
refinements (M = 27, σ = 13) and spent significantly less time on
the task (M = 1859 seconds, σ = 352) than with the other modeling
approaches. This might be explained by adherence: the const-gibbs
modeling approach had significantly lower computed and perceived
adherence (Table 2 and Figure 2), suggesting participants may have
abandoned the task if they thought the system was ignoring their
input.

Participants used “undo” infrequently, but reverted delete and split

topic the most. Participants used “undo” 58 times to revert after
applying a refinement. 36 of the 95 participants used “undo” an
average of 1.6 times (min = 1, max = 5). Figure 5 shows the
distribution of refinements that preceded undo normalized by the
usage of the refinement. The most frequently undone refinements
were delete topic, which was undone 10% of the time, and split

topic, which was undone 8% of the time.
The high frequency of undoing delete topic is unexpected.

While we had anticipated that participants might undo if operations
were not applied as expected, all systems perfectly adhered to the
delete topic refinement; that is, in these cases, participants were
likely exhibiting experimentation behavior [2]–perhaps looking for
instability to update other areas of the model and then undoing the
change if they were not happy with it.

Participants attended to prominent and low quality topics. Figure 6
shows which topics were refined by participants based on their
location in the topic list (left) and their relative coherence (right). All
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Figure 6: Distribution of refined topics by location in the

topic list (left) and ranked npmi quality (right). Participants

refined low quality topics and topics at the top of the list.

participants saw a random topic model with random topic ordering,
yet participants focused their refinements on the topics at the top
of the list (corr = −0.98) and on the topics that had the lowest
coherence (corr = −0.94).

Which refinement operations were used and preferred? Partici-
pants refined models at the topic-level more often than at the
model-level: remove document was used most (8.0 times per par-
ticipant), followed by remove word (7.3), change word order

(6.5), and add word (4.1). Of the topic-level refinements, the two
least used (add word and change word order) were also those
that had lower perceived adherence. The most common model-level
refinement was merge topics, used 2.4 times per participant on
average, followed by add to stop words (1.4), delete topic (0.7),
split topic (0.6), and create topic (0.5).

Participants specified which refinements were most and least
useful: merge topics was overwhelmingly favored (46 of 95 par-
ticipants said it was most useful), while change word order was
unpopular (25 of 95 participants thought it least useful). To better
understand why, we look to the open-ended questions.

Participants may have disliked that change word order

did not work as expected. Thirteen of the 25 participants who
thought change word orderwas the least useful were in the const-
gibbs condition, likely because this refinement had significantly
lower computed and perceived adherence than in other modeling
approaches. Further, many of the participants who did not like
change word order explained that it “did not work” or had no no-
ticeable effect on the updated model. For example P98 (const-gibbs)
said, “for some reason, [change word order] would not work with me.”

Merge topic was a useful refinement for the data and task.
Of 95 participants, 49 said thatmerge topic was the most useful
refinement, while none thought it least useful. Many of these par-
ticipants thoughtmerge topic was “especially useful for the task
and model”; for example, P82 (const-gibbs) said, “there were multiple

topics generated that meant the same thing as another. Putting them

together made it more organized.”

4 DISCUSSION AND FUTUREWORK

This paper explores users’ perceptions, experience, and behavior
with systems with easy-to-validate controls—in particular, those
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Table 5: Task time (seconds) and number of refinements per

condition. Responses reported as “mean, σ”. Kruskal Wallis

results reported as “χ2(2), p”, with significant results in bold.

info-gibbs const-gibbs info-vb Kruskal Wallis
Task Time (s) 1970, 356 1859, 352 2071, 352 6.1, .048

# Refinements 33, 18 27, 13 37, 18 3.8, .150

that provide varied levels of control for both adherence and insta-
bility. This section discusses implications and design recommen-
dations for such systems as well as limitations of this study and
suggestions for future work.

Users want to be heard. End users want to be in control [28, 53],
but what about when systems cannot respect user inputs? While
users may expect that their input will be adhered to, as demon-
strated by qualitative comments in our study, modeling approaches
differ in how user input is incorporated, particularly when it con-
flicts with the underlying data. For example, suppose a user in-
teracting with a property pricing tool tries to remove all weight
from crucial features (e.g., house price or acreage); if the model
follows this guidance, prediction quality will decrease. Or, suppose
a user tries to add a word to a topic that does not appear in any
of the documents; the model cannot add this word as it is out of
vocabulary. In our study, refinements that did not work as expected
were less popular (e.g., change word order and add word), whereas
users preferred refinements that reflected their intent well (e.g.,
merge topics). Adherence is thus an important quality for develop-
ers of human-in-the-loop systems to consider. To account for this,
when user input cannot be adhered to, transparent systems could
either explain why or provide superficial adherence (i.e., treating
word-level refinements as modifications of the model representation,
which do not impact the underlying model).

Users might be willing to share control if they have a helpful

partner. Importantly, our study also shows that users think about
instability differently than the related concept of adherence. Insta-
bility was a lower priority consideration, and not all participants
perceived it. For those who did, it was polarizing: some preferred
“help” from the system, while others disliked it, particularly when
model updates reverted prior changes (e.g., reintroducing previ-
ously removed words) or changed topics that users thought were
already high quality. Therefore, our recommendation is to (1) better
inform users to how models might update and clarifying why mod-
els might make other unexpected changes (i.e. faithfully modeling
all underlying data); and (2) provide mechanisms for users to lock

portions of the model which should not be updated and easily re-
vert low quality, unstable updates. These recommendations should
promote a healthier human-machine collaboration in which users
and models can share control.

Different users, different needs. Users do not have a homogeneous
process for interacting with models. As human-in-the-loop systems
become more ubiquitous, designers should ensure that models and
interfaces are robust to innate user variation. For example, while we
did not explore this in our study, different levels of expertise, both

with ML and the domain, could impact use: ML experts or those
using the system on their own data are more likely to perceive when
models update in unexpected ways, and while ML experts might be
understanding of this, domain experts (without ML background),
are likely to become frustrated. Similarly, personality traits, such as
confidence and locus of control, are likely to affect users’ desire to
be in control, and increase their frustration if systems limit control.

Need for speed: latency and granularity. Machine learning pipelines
typically focus on throughput as the metric of choice [17, 32]. This
is indeed important for sating data-hungry models, but humans
typically inspect high-level summaries rather than minutiæ. Com-
putational frameworks that can serve intermediate updates quickly
would best address users’ complaints about “slowness”. Further,
better management of latency expectations may have reduced frus-
tration in our study; tutorials and initial introductions to ML tools
should set expectations regarding latency, as well as other system
attributes (e.g., instability and adherence).

Limitations. This study used a simple, and fairly short document
organization task. Had participants been working with their own
data, or working with the systems for longer periods of time, they
might have been more invested in model quality, which in turn
might have affected their perceptions and experience. Similarly,
while our study was aimed at understanding how non-ML experts
are affected by unpredictable controls in transparent systems, ML
experts would likely have differing perceptions and experience.

5 CONCLUSION

This paper explores users’ perceptions, experience, and behavior
with easy-to-validate controls that vary in terms of control, par-
ticularly how well user input was adhered to and whether other
changes occurred during model updates (instability), as well as how
long updates took and model quality. We found that: (1) participants
noticed—and often disliked—when their input was not adhered to,
particularly for the easiest-to-validate refinements; (2) participants
were polarized by instability, both in whether they noticed it and
how they reacted to it: some participants liked it while others did
not; (3) participants thought all the systems were slow but good:
participants were satisfied with the final models they generated and
thought they showed improvement over their starting points; (4)
user experience did not differ between the systems: participants on
average were confident in their input, trusted the models to update
effectively, and thought the task was easy, but some participants
were frustrated, particularly by slow updates.
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