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Abstract

Cross-lingual word embeddings transfer
knowledge between languages: models
trained on high-resource languages can pre-
dict in low-resource languages. We introduce
CLIME, an interactive system to quickly refine
cross-lingual word embeddings for a given
classification problem. First, CLIME ranks
words by their salience to the downstream
task. Then, users mark similarity between
keywords and their nearest neighbors in the
embedding space. Finally, CLIME updates
the embeddings using the annotations. We
evaluate CLIME on identifying health-related
text in four low-resource languages: Ilocano,
Sinhalese, Tigrinya, and Uyghur. Embeddings
refined by CLIME capture more nuanced
word semantics and have higher test accuracy
than the original embeddings. CLIME often
improves accuracy faster than an active
learning baseline and can be easily combined
with active learning to improve results.

1 Introduction

Modern text classification requires large labeled
datasets and pre-trained word embeddings (Kim,
2014; Iyyer et al., 2015; Joulin et al., 2017). How-
ever, scarcity of both labeled and unlabeled data
holds back applications in low-resource languages.
Cross-lingual word embeddings (Mikolov et al.,
2013a, CLWE) can bridge the gap by mapping
words from different languages to a shared vec-
tor space. Using CLWE features, models trained in
a resource-rich language (e.g., English) can predict
labels for other languages.

The success of CLWE relies on the domain and
quality of training data (Søgaard et al., 2018).
While these methods have impressive word trans-
lation accuracy, they are not tailored for down-
stream tasks such as text classification (Glavas
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Figure 1: A hypothetical topographic map of an
English–French embedding space tailored for senti-
ment analysis. Dots are English words, and squares are
French words. Positive sentiment words are grouped
in a clime (red), while negative sentiment words are
grouped in another clime (blue). These climes help sen-
timent analysis.

et al., 2019; Zhang et al., 2020a). We de-
velop CLassifying Interactively with Multilingual
Embeddings (CLIME), that efficiently specializes
CLWE with human interaction.1 Given a pre-trained
CLWE, a bilingual speaker in the loop reviews the
nearest-neighbor words. CLIME capitalizes on the
intuition that neighboring words in an ideal embed-
ding space should have similar semantic attributes.

In an analogy to geographic climes—zones with
distinctive meteorological features—we call areas
in the embedding space where words share similar
semantic features climes. Our goal is to convert
neighborhoods in the embedding space into classifi-
cation climes with words that induce similar labels
for a given classification task. For example, in the
embedding for English–French sentiment analy-
sis, positive sentiment words such as “excellent”,
“exceptional”, and their French translations are to-
gether, while “disappointing”, “lackluster”, and
their translations cluster together elsewhere (Fig-

1https://github.com/forest-snow/
clime-ui



ure 1). Curating words in the embedding space and
refining climes should help downstream classifiers.

First, CLIME uses loss gradients in downstream
tasks to find keywords with high salience (Sec-
tion 2.1). Focusing on these keywords allows
the user to most efficiently refine CLWE by mark-
ing their similarity or dissimilarity (Section 2.2).
After collecting annotations, CLIME pulls similar
words closer and pushes dissimilar words apart
(Section 3), establishing desired climes (Figure 1).

Quickly deploying cross-lingual NLP systems
is particularly important in global public health
emergencies, so we evaluate CLIME on a cross-
lingual document classification task for four low-
resource languages: Ilocano, Sinhalese, Tigrinya,
and Uyghur (Section 4). CLIME is effective in this
low-resource setting because a bilingual speaker
can significantly increase test accuracy on identify-
ing health-related documents in less than an hour.

CLIME is related to active learning (Settles,
2009), which also improves a classifier through
user interaction. Therefore, we compare CLIME

with an active learning baseline that asks a user to
label target language documents. Under the same
annotation time constraint, CLIME often has higher
accuracy. Furthermore, the two methods are com-
plementary. Combining active learning with CLIME

increases accuracy even more, and the user-adapted
model is competitive with a large, resource-hungry
multilingual transformer (Conneau et al., 2020).

2 Interactive Neighborhood Reshaping

This section introduces the interface designed to
solicit human feedback on neighborhoods of CLWE

and our keyword selection criterion. Suppose that
we have two languages with vocabulary V1 and V2.
Let E be a pre-trained CLWE matrix, where Ew

is the vector representation of word type w in the
joint vocabulary V = V1 ∪ V2. Our goal is to
help a bilingual novice (i.e., not a machine learning
expert) improve the CLWE E for a downstream task
through inspection of neighboring words.

2.1 Keyword Selection

With limited annotation time, users cannot vet the
entire vocabulary. Instead, we need to find a small
salient subset of keywords K ⊆ V whose embed-
dings, if vetted, would most improve a downstream
task. For example, if the downstream task is sen-
timent analysis, our keywords set should include
sentiment words such as “good” and “bad”. Prior

work in active learning solicits keywords using in-
formation gain (Raghavan et al., 2006; Druck et al.,
2009; Settles, 2011), but this cannot be applied
to continuous embeddings. Li et al. (2016) sug-
gest that the contribution of one dimension of a
word embedding to the loss function can be approx-
imated by the absolute value of its partial deriva-
tive, and therefore they use partial derivatives to
visualize the behavior of neural models. However,
rather than understanding the importance of individ-
ual dimensions, we want to compute the salience
of an entire word vector. Therefore, we extend
their idea by defining the salience of a word em-
bedding as the magnitude of the loss function’s
gradient. This score summarizes salience of all
dimensions from a word embedding. Formally, let
x = 〈x1, x2, · · · , xn〉 be a document of n words
with label y; let L be the training loss function of
the downstream model. We measure the example-
level salience of word xi in document x as

Sx(xi) =
∥∥∥∇Exi

L(x, y)
∥∥∥
2
. (1)

Equation 1 measures the local contribution of
a token in one document, but we are interested in
the global importance of a word type across many
documents. To compute the global salience score
of a word type w, we add example-level salience
scores of all token occurrences of a word type w
in a large labeled dataset X and multiply by the
inverse document frequency (IDF) of w:

S(w) = IDF(w,X) ·
∑

x∈X:w∈x
Sx(w). (2)

The IDF term is necessary because it discounts stop
words with high document frequency (e.g., “the”
and “of”). These words are often irrelevant to the
downstream task and thus have low example-level
salience, but they have high total salience because
they appear in many examples.

Based on Equation 2, we choose the top-s most
salient words as the keyword set K. The hyper-
parameter s is the number of keywords displayed
to the user, which controls the length of a CLIME

session. We limit s to fifty in experiments.

2.2 User Interaction
For each keyword k, we want to collect a positive
set Pk with semantically similar words, and a neg-
ative set Nk with unrelated words. To specialize
embeddings for a classification task, we ask the
user to consider semantic similarity as inducing a



Figure 2: The CLIME interface displays a keyword on top while its nearest neighbors in the two languages appear
in the two columns below. A user can accept or reject each neighbor, and add new neighbors by typing them in the
“add word” textboxes. They may also click on any word to read its context in the training set.

similar label. For example, if the task is English–
French sentiment analysis, then “good” should be
considered similar to “excellent” and “génial” but
dissimilar to “bad” and “décevant”. On the inter-
face, the keyword k is displayed on the top, and
its nearest neighbors in the two languages are ar-
ranged in two columns (Figure 2). The neighbors
are the words w with embeddings Ew closest to Ek

in cosine similarity. The number of displayed near-
est neighbors can be adjusted as a hyperparameter,
which also controls the session length. For each
nearest neighbor, the user can either: (1) press on
the green checkmark to add a positive neighbor to
Pk, (2) press on the red “X” mark to add a negative
neighbor to Nk, or (3) leave an uncertain neighbor
alone. The “add word” textbox lets the user add
words that are not in the current neighbor list. The
added word can then be marked as positive or nega-
tive. Section 3 explains how CLIME refines the em-
beddings with the feedback sets P and N . The in-
terface also provides a word concordance—a brief
overview of the contexts where a word appears—to
disambiguate and clarify words. Users can click on
any word to find example sentences.

3 Fitting Word Embeddings to Feedback

After receiving user annotations, CLIME updates
the embeddings to reflect their feedback. The al-
gorithm reshapes the neighborhood so that words
near a keyword share similar semantic attributes.
Together, these embeddings form desired task-
specific connections between words across lan-
guages. Our update equations are inspired by
ATTRACT-REPEL (Mrkšić et al., 2017), which
fine-tunes word embeddings with synonym and
antonym constraints. The objective in ATTRACT-
REPEL pulls synonyms closer to and pushes
antonyms further away from their nearest neigh-
bors. This objective is useful for large lexical re-
sources like BabelNet (Navigli and Ponzetto, 2010)
with hundreds of thousands linguistic constraints,
but our pilot experiment suggests that the method
is not suitable for smaller constraint sets. Since
CLIME is designed for low-resource languages, we
optimize an objective that reshapes the neighbor-
hood more drastically than ATTRACT-REPEL.

3.1 Feedback Cost

For each keyword k ∈ K, we collect a positive set
Pk and a negative set Nk (Section 2.2). To refine



embeddings E with human feedback, we increase
the similarity between k and each positive word
p ∈ Pk, and decrease the similarity between k and
each negative word n ∈ Nk. Formally, we update
the embeddings E to minimize the following:

Cf (E) =
∑

k∈K


∑

n∈Nk

E>k En −
∑

p∈Pk

E>k Ep


 ,

(3)
where E>k En measures the similarity between the
keyword k and a negative word n, and E>k Ep mea-
sures the similarity between the keyword k and
a positive word p. Minimizing Cf is equivalent
to maximizing similarities of positive pairs while
minimizing similarities of negative pairs.

3.2 Topology-Preserving Regularization
Prior embedding post-processing methods em-
phasize regularization to maintain the topology—
or properties that should be preserved under
transformations—of the embedding space (Mrkšić
et al., 2016; Mrkšić et al., 2017; Glavaš and Vulić,
2018). If the original CLWE brings certain trans-
lations together, those translated words should re-
main close after updating the embeddings. The
topology also encodes important semantic informa-
tion that should not be discarded. Therefore, we
also include the following regularization term:

R(E) =
∑

w∈V

∥∥∥Êw −Ew

∥∥∥
2

2
. (4)

Minimizing R(E) prevents E from drifting too far
away from the original embeddings Ê.

The final cost function combines the feedback
cost (Equation 3) and the regularizer (Equation 4):

C(E) = Cf (E) + λR(E), (5)

where the hyperparameter λ controls the strength of
the regularizer. The updated embeddings enforce
constraints from user feedback while preserving
other structures from the original embeddings. Af-
ter tuning in a pilot user study, we set λ to one. We
use the Adam optimizer (Kingma and Ba, 2015)
with default hyperparameters.

4 Cross-Lingual Classification
Experiments

We evaluate CLIME on cross-lingual document-
classification (Klementiev et al., 2012), where we
build a text classifier for a low-resource target

Ilocano ... Nagtalinaed dagiti pito a
balod ti Bureau of Jail Manage-
ment and Penology (BJMP) di-
toy ciudad ti Laoag iti isolation
room gapo iti tuko ...

English ... Seven inmates from the Bu-
reau of Jail Management and
Penology (BJMP), Laoag City,
have been transferred to the iso-
lation room due to chicken pox
...

Table 1: Excerpt of a positive Ilocano test example
(top) and its English translation (bottom) that describes
a medical emergency.

language using labeled data in a high-resource
source language through CLWE. Our task identi-
fies whether a document describes a medical emer-
gency, useful for planning disaster relief (Strassel
and Tracey, 2016). The source language is English
and the four low-resource target languages are Ilo-
cano, Sinhalese, Tigrinya, and Uyghur.

Our experiments confirm that a bilingual user
can quickly improve the test accuracy of cross-
lingual models through CLIME. Alternatively, we
can ask an annotator to improve the model by label-
ing more training documents in the target language.
Therefore, we compare CLIME to an active learning
baseline that queries the user for document labels;
CLIME often improves accuracy faster. Then, we
combine CLIME and active learning to show an
even faster improvement of test accuracy.

Comparing active learning to CLIME may seem
unfair at first glance. In theory, document label-
ing only requires target language knowledge, while
CLIME learns from a bilingual user. In practice,
researchers who speak a high-resource language
provide instructions to the annotator and answer
their questions, so bilingual knowledge is usually
required in document labeling for low-resource lan-
guages. Moreover, CLIME is complementary to
active learning, as combining them gives the high-
est accuracy across languages.

We also experiment with refining the same set
of keywords with multiple rounds of user interac-
tion. The repeated sessions slightly improve test
accuracy on average. Finally, we compare with
XLM-R (Conneau et al., 2020), a state-of-the-art
multilingual transformer. Despite using fewer re-
sources, CLIME has competitive results.
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Figure 3: Test accuracy of four methods on four target languages and two CLWE methods. Base uses the original
CLWE and the original training set. Active uses the original CLWE and a training set augmented by active learning.
We select and label fifty target language documents by uncertainty sampling and combine them with the source
language training set. CLIME uses the CLWE refined by CLIME and the original training set. A+C uses the CLWE
refined by CLIME and a training set augmented by active learning. We control the number of user interactions so
that Active, CLIME, and A+C require the similar interaction time (Section 4.2). The Sinhalese and Ilocano results
are averaged over multiple users, while we only have one user for other languages. Each subcaption indicates the
target language, embedding alignment, number of users, and average time per user. CLIME has higher accuracy
than Active on four of the five embeddings, and the combined A+C model has the highest.

4.1 Experiment Setup

Labeled Data. We train models on 572 English
documents and test on 48 Ilocano documents, 58
Sinhalese documents, 158 Tigrinya documents, and
94 Uyghur documents. The documents are ex-
tracted from LORELEI language packs (Strassel
and Tracey, 2016), a multilingual collection of doc-
uments of emergencies with a public health com-
ponent.2 To simplify the task, we consider a binary
classification problem of detecting whether the doc-
uments are associated with medical needs. Table 1
shows an example document. To balance the la-
bel distribution, we sample an equal number of
negative examples.

Word Embeddings. To transfer knowledge be-
tween languages, we build CLWE between English
and each target language. We experiment with two
methods to pre-train CLWE: (1) train monolingual
embeddings with word2vec (Mikolov et al., 2013b)
and align with CCA (Faruqui et al., 2015; Ammar
et al., 2016), (2) train monolingual embeddings
with fastText (Bojanowski et al., 2017) and align
with RCSLS (Joulin et al., 2018). The English em-

2Download from https://www.ldc.upenn.edu

beddings are trained on Wikipedia and the target
language embeddings are trained on unlabeled doc-
uments from the LORELEI language packs. For
alignment, we use the small English dictionary in
each pack. Low-resource language speakers are
hard to find, so we do not try all combinations of
languages and CLWE: we use CCA embeddings for
Tigrinya and Uyghur, RCSLS embeddings for Ilo-
cano. Since Sinhalese speakers are easier to find,
we experiment with both CLWE for Sinhalese.

Text Classifier. Our classifier is a convolutional
neural network (Kim, 2014). Each document is rep-
resented as the concatenation of word embeddings
and passed through a convolutional layer, followed
by max-pooling and a final softmax layer. To pre-
serve cross-lingual alignments, we freeze embed-
dings during training. This simple model is effec-
tive in low-resource cross-lingual settings (Chen
et al., 2018; Schwenk and Li, 2018). We mini-
mize cross-entropy on the training set by running
Adam (Kingma and Ba, 2015) with default hy-
perparameters for thirty epochs. All experiments
use GeForce GTX 1080 GPU and 2.6 GHz AMD

Opteron 4180 processor.
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Figure 4: For Uyghur (pink) and Tigrinya (purple), we
compare test accuracy between sets of CLWE that dif-
fer in the number of keywords used to refine them.
The leftmost point corresponds to the Base model in
Figure 3, while the rightmost point corresponds to the
CLIME model. Test accuracy generally improves with
more feedback at the beginning but slightly drops after
reaching an optimal number of keywords.

User Study. We use Upwork to hire participants
who are fluent in both English and the target lan-
guage.3 Low-resource language speakers are hard
to find, so we have a different number of users
for each language. We hire ten Ilocano users and
twenty-five Sinhalese users. For additional case
studies, we hire one Tigrinya user and one Uyghur
user. Each user annotates the fifty most salient key-
words, which takes less than an hour (Figure 3).
For each keyword, we show five nearest neighbors
for each language. Each user provides about nine
constraints for each keyword.

4.2 Comparisons

After receiving feedback, we update the embed-
dings (Section 3). We evaluate the new embeddings
by retraining a classifier. For each set of embed-
dings, we train ten models with different random
seeds and report average test accuracy.

We compare a classifier trained on the updated
embeddings (CLIME in Figure 3) against two base-
lines. The first baseline is a classifier trained on
original embeddings (Base in Figure 3). If we have
access to a bilingual speaker, an alternative to using
CLIME is to annotate more training documents in
the target language. Therefore, we also compare
CLIME to uncertainty sampling (Lewis and Gale,
1994), an active learning method that asks a user to

3https://upwork.com/

label documents (Active in Figure 3). We choose
a set of fifty documents where model outputs have
the highest entropy from a set of unlabeled target
language documents and ask an annotator to label
them as additional training documents. We then
retrain a model on both the English training set
and the fifty target language documents, using the
original embeddings. For each model, a human an-
notator labels fifty documents within forty to fifty
minutes. This can either be slower or take approxi-
mately the same time as an average CLIME session
(Figure 3). Thus, any improvements in accuracy
using CLIME are even more impressive given that
Active is no faster than CLIME.

Finally, we explore combining active learning
and CLIME (A+C in Figure 3). Document-level
and word-level interactions are complementary, so
using both may lead to higher accuracy. To keep
the results comparable, we allocate half of the user
interaction time to active learning, and the other
half to CLIME. Specifically, we use active learning
to expand the training set with twenty-five target
language documents and refine the embeddings
by running CLIME on only twenty-five keywords.
Then, we retrain a model using both the augmented
training set and the refined embeddings.

4.3 Results and Analysis

Effectiveness of CLIME. Figure 3 compares the
four methods described in the previous section.
CLIME is effective in this low-resource setting. On
all four target languages, the classifier trained on
embeddings refined by CLIME has higher accuracy
than the classifier that trains on the original em-
beddings: CLIME reshapes embeddings in a way
that helps classification. CLIME also has higher
accuracy than active learning for most users. The
combined method has the highest accuracy: active
learning and CLIME are complementary. Single-
sample t-tests confirm that CLIME is significantly
better than Base and A+C is significantly better
than Active (Appendix A.1).

Keyword Detection. We inspect the list of the
fifty most salient keywords (Section 2.1). Most
keywords have obvious connections to our clas-
sification task of detecting medical emergencies,
such as “ambulance”, “hospitals”, and “disease”.
However, the list also contains some words that
are unrelated to a medical emergency, including
“over” and “given”. These words may be biases or
artifacts from training data (Feng et al., 2018).
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Figure 5: T-SNE visualization of embeddings before (left) and after (right) CLIME updates. From one Sinhalese
user study, we inspect two keywords, “ill” and “plague”, and their five closest neighbors in English (blue) and
Sinhalese (green). The Sinhalese words are labeled with English translations. Shape denotes the type of feedback:
“+” for positive neighbors and “x” for negative neighbors.

Number of Keywords. To evaluate how feed-
back quantity changes accuracy, we vary the num-
ber of keywords and compare test accuracy on
Tigrinya and Uyghur datasets (Figure 4). For each
keyword s from one to fifty, we update the orig-
inal embeddings using only the feedback on the
top-s keywords and evaluate each set of embed-
dings with test accuracy. For both languages, test
accuracy generally increases with more annotation
at the beginning of the session. Interestingly, test
accuracy plateaus and slightly drops after reaching
an optimal number of keywords, which is around
twenty for Tigrinya and about forty for Uyghur.
One explanation is that the later keywords are less
salient, which causes the feedback to become less
relevant. These redundant constraints hamper opti-
mization and slightly hurt test accuracy.

Qualitative Analysis. To understand how
CLIME updates the embeddings, we visualize
changes in the neighborhoods of keywords with
t-SNE (Maaten and Hinton, 2008). All embeddings
from before and after the user updates are projected
into the same space for fair distance comparison.
We inspect the user updates to the Sinhalese
CCA embeddings (Figure 5). We confirm that
positive neighbors are pulled closer and negative
neighbors are pushed further away. The user
marks “epidemic” and “outbreak” as similar to the
keyword “plague”, and these words are closer after
updates (Figure 5a). For the keyword “ill”, the user
marks “helpless” as a negative neighbor, because
“helpless” can signal other types of situations
and is more ambiguous for detecting a medical
emergency. After the update, “helpless” is pushed
away and disappears from the nearest neighbors
of “ill” (Figure 5b). However, a few positive
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Figure 6: Progress of five Sinhalese users over three
CLIME sessions. Largest increase in test accuracy oc-
curs after first session. The leftmost point is the Base
model from Figure 3. Average accuracy for first ses-
sion is not the same as Figure 3 because only a subset
of users are asked to complete three sessions.

neighbors have inadvertently moved away, such
as the Sinhalese translation for “ill”. The update
algorithm tries to satisfy constraints for multiple
keywords, so soft constraints may be overlooked.
This motivates repeated CLIME sessions where the
user can continue fixing errors.

4.4 Repeating User Sessions

We investigate the effects of having a user complete
multiple CLIME sessions. After the user finishes a
session, we fit the embeddings to their feedback,
produce a new vocabulary ranking, and update the
interface for the next session. We experiment on
the Sinhalese dataset with CCA embeddings and
ask five users to complete three sessions of fifty
keywords. Average test accuracy increases with
more sessions, but the improvement is marginal
after the first session (Figure 6). By the end of the
three sessions, one user reaches 65.2% accuracy, a
significant improvement from the 55.2% baseline.

4.5 Comparing with Contextual Embeddings

Contextualized embeddings based on multilingual
transformers reach state-of-the-art in many tasks,
so we compare CLIME with these models. Most
existing models (Wu and Dredze, 2019; Lample
and Conneau, 2019) do not cover our low-resource
languages. The only exception is XLM-R (Conneau
et al., 2020), which covers Uyghur and Sinhalese.
To compare with CLIME, we fine-tune XLM-R for
three epochs with AdamW (Loshchilov and Hutter,
2019), batch size of sixteen, and learning rate of
2e-5. We compute average accuracy over ten runs
with different random seeds.

For Uyghur, XLM-R has lower accuracy than
our A+C approach (71.7% vs. 73.2%). This is
impressive given that XLM-R uses much more re-
sources: 270 million parameters, 2.5TB of multi-
lingual Common Crawl data, and 500 GPUs. In
contrast, the A+C model has 120K parameters and
is built in less than two hours with a single GPU
(including human interaction and model training).

For Sinhalese, XLM-R has higher accuracy than
our A+C approach (69.3% vs. 63.7%). Com-
mon Crawl has much more Sinhalese words than
Uyghur words. This aligns with our intuition:
CLIME is more useful in low-resource settings,
whereas multilingual transformers are more appro-
priate for languages with more data. Future work
can extend the interactive component of CLIME to
multilingual transformers.

5 Related Work

Cross-Lingual Word Embeddings. Ruder et al.
(2019) summarize previous CLWE methods. These
methods learn from existing resources such as dic-
tionaries, parallel text, and monolingual corpora.
Therefore, the availability and quality of training
data primarily determines the success of these meth-
ods (Søgaard et al., 2018). To improve the suitabil-
ity of CLWE methods in low-resource settings, re-
cent work focuses on learning without cross-lingual
supervision (Artetxe et al., 2018; Hoshen and Wolf,
2018) and normalizing monolingual embeddings
before alignment (Zhang et al., 2019). In contrast,
we design a human-in-the-loop system to efficiently
improve CLWE. Moreover, previous CLWE methods
are heavily tuned for the intrinsic evaluation task of
dictionary induction, sometimes to the detriment of
downstream tasks (Glavas et al., 2019; Zhang et al.,
2020b). Our method is tailored for downstream
tasks such as text classification.

Cross-Lingual Document Classification. Prior
approaches transfer knowledge with cross-lingual
resources, such as bilingual dictionaries (Wu et al.,
2008; Shi et al., 2010), parallel text (Xu and Yang,
2017), labeled data from related languages (Zhang
et al., 2020a), structural correspondences (Pe-
ter Prettenhofer, 2010), multilingual topic mod-
els (Ni et al., 2011; Andrade et al., 2015), machine
translation (Wan, 2009; Zhou et al., 2016), and
CLWE (Klementiev et al., 2012). Our method in-
stead brings a bilingual speaker in the loop to ac-
tively provide cross-lingual knowledge, which is
more reliable in low-resource settings. Concurrent



to our work, Karamanolakis et al. (2020) also show
that keyword translation is very useful for cross-
lingual document classification.

Human-in-the-Loop Multilingual Systems.
CLIME is inspired by human-in-the-loop systems
that bridge language gaps. Brown and Grinter
(2016) build an interactive translation platform
to help refugee resettlement. Yuan et al. (2018)
interactively align topic models across languages.

Active Learning. A common solution to data
scarcity is active learning, the framework in which
the learner iteratively queries an oracle (often a
human) to receive annotations on unlabeled data.
Settles (2009) summarizes popular active learn-
ing methods. Most active learning methods so-
licit labels for training examples/documents, while
CLIME asks for word-level annotation. Previous
active learning methods that use feature-level anno-
tation (Raghavan et al., 2006; Zaidan et al., 2007;
Druck et al., 2009; Settles, 2011) are not applica-
ble to neural networks and CLWE. Closely related
to our work, Yuan et al. (2020) propose an active
learning strategy that selects examples based on
language modeling pre-training.

Neural Network Interpretation. Our keyword
detection algorithm expands upon prior work in
interpreting neural networks. Li et al. (2016) uses
the gradient of the objective function to linearly ap-
proximate salience of one dimension, which helps
interpret and visualize word compositionality in
neural networks. Their ideas are inspired by visual
salience in computer vision (Simonyan et al., 2013;
Zeiler and Fergus, 2014). We further extend the
idea to compute the global salience of an entire
word vector across a labeled dataset.

Specializing Word Embeddings. Our update
equations modify prior work on specializing word
embeddings that are designed to improve word
embeddings with a large lexical knowledge base.
Faruqui et al. (2015) retrofit word embeddings
to synonym constraints. Mrkšić et al. (2016) ex-
pand the method by also fitting antonym relations.
Mrkšić et al. (2017) includes both monolingual and
cross-lingual constraints to improve CLWE. Glavaš
and Vulić (2018) use a neural network to learn
an specialization function that generalize to words
with no lexical constraints. Closest to our work,
Zhang et al. (2020b) retrofit CLWE to dictionaries
and observe improvement in downstream tasks.

6 Conclusion and Future Work

CLIME is an interactive system that enhances
CLWE for a task by asking a bilingual speaker
for word-level similarity annotations. We test
CLIME on cross-lingual information triage in inter-
national health emergencies for four low-resource
languages. Bilingual users can quickly improve
a model with the help of CLIME at a faster rate
than an active learning baseline. Combining active
learning with CLIME further improves the system.

CLIME has a modular design with three compo-
nents: keyword ranking, user interface, and em-
bedding refinement. The keyword ranking and the
embedding refinement modules build upon existing
methods for interpreting neural networks (Li et al.,
2016) and fine-tuning word embeddings (Mrkšić
et al., 2017). Therefore, future advances in these
areas may also improve CLIME. Another line of
future work is to investigate alternative user inter-
faces. For example, we could ask bilingual users to
rank nearest neighbors (Sakaguchi and Van Durme,
2018) or provide scalar grades (Hill et al., 2015)
instead of accepting/rejecting individual neighbors.

We also explore a simple combination of active
learning and CLIME. Simultaneously applying both
methods is better than using either alone. In the
future, we plan to train a policy that dynamically
combines the two interactions with reinforcement
learning (Fang et al., 2017).
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A Appendices

A.1 Statistical Significance

Comparison Model p t df

CLIME vs.
Base

SI(CCA) <0.01 7.64 24
SI(RCSLS) <0.01 3.62 24
IL(RCSLS) <0.01 5.16 9

CLIME vs.
Active

SI(CCA) 0.07 2.00 24
SI(RCSLS) <0.01 -7.09 24
IL(RCSLS) <0.01 3.96 9

A+C vs.
Active

SI(CCA) <0.01 4.297 24
SI(RCSLS) <0.01 3.40 24
IL(RCSLS) <0.01 13.97 9

Table 2: Results of single-sample t-tests between
CLIME and Base, CLIME and Active, and A+C and
Active, showing the p-value, the t statistic, and the
degree of freedoms df . CLIME is significantly better
than Base, and A+C is significantly better than Active
across different languages and embedding models. The
only combination with results that are not significantly
different is CLIME and Active for Sinhalese (CCA).

We run single-sample t-tests with .05 signifi-
cance level to see whether adding word-level anno-
tations with CLIME can significally improve clas-
sification accuracy. We compare CLIME against
Base, CLIME against Active, and A+C against Ac-
tive. We use the user study results from the Sin-
halese models (both CCA and RCSLS) and the Ilo-
cano model. Table 2 shows that CLIME is not sig-
nificantly different from Active for the Sinhalese
CCA embeddings but does significantly improve
accuracy for the Ilocano model. Overall, CLIME

is significantly different from Base and A+C is
significiantly different from Active across the ex-
periments for all models.


