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Abstract

Adversarial evaluation stress tests a model’s
understanding of natural language. While
past approaches expose superficial patterns,
the resulting adversarial examples are lim-
ited in complexity and diversity. We pro-
pose human-in-the-loop adversarial gener-
ation, where human authors are guided to
break models. We aid the authors with inter-
pretations of model predictions through an
interactive user interface. We apply this gen-
eration framework to a question answering
task called Quizbowl, where trivia enthusi-
asts craft adversarial questions. The result-
ing questions are validated via live human–
computer matches: although the questions
appear ordinary to humans, they systemati-
cally stump neural and information retrieval
models. The adversarial questions cover di-
verse phenomena from multi-hop reasoning
to entity type distractors, exposing open chal-
lenges in robust question answering.

1 Introduction

Proponents of machine learning claim human par-
ity on tasks like reading comprehension (Yu et al.,
2018) and commonsense inference (Devlin et al.,
2018). Despite these successes, many evaluations
neglect that computers solve NLP tasks in a funda-
mentally different way than humans.

Models can succeed without developing “true”
language understanding, instead learning superfi-
cial patterns from crawled (Chen et al., 2016) or
manually annotated datasets (Kaushik and Lipton,
2018; Gururangan et al., 2018). Thus, recent work

stress tests models via adversarial evaluation: elu-
cidating a system’s capabilities by exploiting its
weaknesses (Jia and Liang, 2017; Belinkov and
Glass, 2019). Unfortunately, while adversarial eval-
uation reveals simplistic model failures (Ribeiro
et al., 2018; Mudrakarta et al., 2018), exploring
more complex failure patterns requires human in-
volvement (Figure 1): automatically modifying nat-
ural language examples without invalidating them
is difficult. Hence, the diversity of adversarial ex-
amples is often severely restricted.

Instead, our human–computer hybrid approach
uses human creativity to generate adversarial ex-
amples. A user interface presents model inter-
pretations and helps users craft model-breaking
examples (Section 3). We apply this to a ques-
tion answering (QA) task called Quizbowl, where
trivia enthusiasts—who write questions for aca-
demic competitions—create diverse examples that
stump existing QA models.

The adversarially-authored test set is nonetheless
as easy as regular questions for humans (Section 4),
but the relative accuracy of strong QA models drops
as much as 40% (Section 5). We also host live hu-
man vs. computer matches, where models typically
defeat top human teams, but observe spectacular
model failures on adversarial questions.

Analyzing the adversarial edits uncovers phe-
nomena that humans can solve but computers can-
not (Section 6), validating that our framework un-
covers creative, targeted adversarial edits (Sec-
tion 7). Our resulting adversarial dataset presents a
fun, challenging, and diverse resource for future QA

research: a system that masters it will demonstrate
more robust language understanding.
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Figure 1: Adversarial evaluation in NLP typically focuses on a specific phenomenon (e.g., word replace-
ments) and then generates the corresponding examples (top). Consequently, adversarial examples are
limited to the diversity of what the underlying generative model or perturbation rule can produce, and also
require downstream human evaluation to ensure validity. Our setup (bottom) instead has human-authored
examples, using human–computer collaboration to craft adversarial examples with greater diversity.

2 Adversarial Evaluation for NLP

Adversarial examples (Szegedy et al., 2013) often
reveal model failures better than traditional test
sets. However, automatic adversarial generation is
tricky for NLP (e.g., by replacing words) without
changing an example’s meaning or invalidating it.

Recent work side-steps this by focusing on sim-
ple transformations that preserve meaning. For
instance, Ribeiro et al. (2018) generate adversarial
perturbations such as replacing What has→What’s.
Other minor perturbations such as typos (Belinkov
and Bisk, 2018), adding distractor sentences (Jia
and Liang, 2017; Mudrakarta et al., 2018), or char-
acter replacements (Ebrahimi et al., 2018) preserve
meaning while degrading model performance.

Generative models can discover more adversarial
perturbations but require post-hoc human verifica-
tion of the examples. For example, neural para-
phrase or language models can generate syntax
modifications (Iyyer et al., 2018), plausible cap-
tions (Zellers et al., 2018), or NLI premises (Zhao
et al., 2018). These methods improve example-
level diversity but mainly target a specific phe-
nomenon, e.g., rewriting question syntax.

Furthermore, existing adversarial perturbations
are restricted to sentences—not the paragraph in-
puts of Quizbowl and other tasks—due to chal-
lenges in long-text generation. For instance, syntax
paraphrase networks (Iyyer et al., 2018) applied to
Quizbowl only yield valid paraphrases 3% of the
time (Appendix A).

2.1 Putting a Human in the Loop

Instead, we task human authors with adversarial
writing of questions: generating examples which
break a specific QA system but are still answerable
by humans. We expose model predictions and in-
terpretations to question authors, who find question
edits that confuse the model.

The user interface makes the adversarial writ-
ing process interactive and model-driven, in con-
trast to adversarial examples written independent
of a model (Ettinger et al., 2017). The result is
an adversarially-authored dataset that explicitly ex-
poses a model’s limitations by design.

Human-in-the-loop generation can replace or
aid model-based adversarial generation approaches.
Creating interfaces and interpretations is often eas-
ier than designing and training generative models
for specific domains. In domains where adversarial
generation is feasible, human creativity can reveal
which tactics automatic approaches can later emu-
late. Model-based and human-in-the-loop genera-
tion approaches can also be combined by training
models to mimic human adversarial edit history,
using the relative merits of both approaches.

3 Our QA Testbed: Quizbowl

The “gold standard” of academic competitions be-
tween universities and high schools is Quizbowl.
Unlike QA formats such as Jeopardy! (Ferrucci
et al., 2010), Quizbowl questions are designed to
be interrupted: questions are read to two competing
teams and whoever knows the answer first inter-
rupts the question and “buzzes in”.

This style of play requires questions to be struc-
tured “pyramidally” (Jose, 2017): questions start
with difficult clues and get progressively easier.
These questions are carefully crafted to allow the
most knowledgeable player to answer first. A ques-
tion on Paris that begins “this capital of France”
would test reaction speed, not knowledge; thus,
skilled authors arrange the clues so players will rec-
ognize them with increasing probability (Figure 2).

The answers to Quizbowl questions are typ-
ically well-known entities. In the QA commu-
nity (Hirschman and Gaizauskas, 2001), this is
called “factoid” QA: the entities come from a rela-
tively closed set of possible answers.



The protagonist of this opera describes the future day
when her lover will arrive on a boat in the aria “Un
Bel Di” or “One Beautiful Day”. The only baritone
role in this opera is the consul Sharpless who reads
letters for the protagonist, who has a maid named
Suzuki. That protagonist blindfolds her child Sorrow
before stabbing herself when her lover B. F. Pinkerton
returns with a wife. For 10 points, name this Gia4o
Puccini opera about an American lieutenant’s affair
with the Japanese woman Cio-Cio San.
Answer: Madama Butterfly

Figure 2: An example Quizbowl question. The
question becomes progressively easier (for humans)
to answer later on; thus, more knowledgeable play-
ers can answer after hearing fewer clues. Our ad-
versarial writing process ensures that the clues also
challenge computers.

3.1 Known Exploits of Quizbowl Questions

Like most QA datasets, Quizbowl questions are
written for humans. Unfortunately, the heuristics
that question authors use to select clues do not al-
ways apply to computers. For example, humans
are unlikely to memorize every song in every opera
by a particular composer. This, however, is trivial
for a computer. In particular, a simple QA system
easily solves the example in Figure 2 from seeing
the reference to “Un Bel Di”. Other questions con-
tain uniquely identifying “trigger words” (Harris,
2006). For example, “martensite” only appears in
questions on steel. For these examples, a QA sys-
tem needs to understand no additional information
other than an if–then rule.

One might wonder if this means that factoid
QA is thus an uninteresting, nearly solved research
problem. However, some Quizbowl questions are
fiendishly difficult for computers. Many questions
have intricate coreference patterns (Guha et al.,
2015), require reasoning across multiple types of
knowledge, or involve complex wordplay. If we
can isolate and generate questions with these dif-
ficult phenemona, “simplistic” factoid QA quickly
becomes non-trivial.

3.2 Models and Datasets

We conduct two rounds of adversarial writing. In
the first, authors attack a traditional Information
Retrieval (IR) system. The IR model is the baseline
from a NIPS 2017 shared task on Quizbowl (Boyd-
Graber et al., 2018) based on ElasticSearch (Gorm-
ley and Tong, 2015).

In the second round, authors attack either the IR

model or a neural QA model. The neural model
is a bidirectional RNN using the gated recurrent
unit architecture (Cho et al., 2014). The model
treats Quizbowl as classification and predicts the
answer entity from a sequence of words represented
as 300-dimensional GloVe embeddings (Penning-
ton et al., 2014). Both models in this round are
trained using an expanded dataset of approximately
110,000 Quizbowl questions. We expanded the
round two dataset to incorporate more diverse an-
swers (25,000 entities versus 11,000 in round one).

3.3 Interpreting Quizbowl Models

To help write adversarial questions, we expose
what the model is thinking to the authors. We inter-
pret models using saliency heat maps: each word of
the question is highlighted based on its importance
to the model’s prediction (Ribeiro et al., 2016).

For the neural model, word importance is the
decrease in prediction probability when a word
is removed (Li et al., 2016; Wallace et al., 2018).
We focus on gradient-based approximations (Si-
monyan et al., 2014; Montavon et al., 2017) for
their computational efficiency.

To interpret a model prediction on an input se-
quence of n words w = 〈w1,w2, . . .wn〉, we ap-
proximate the classifier f with a linear function of
wi derived from the first-order Taylor expansion.
The importance of wi, with embedding vi, is the
derivative of f with respect to the one-hot vector:

∂f

∂wi
=

∂f

∂vi

∂vi
∂wi

=
∂f

∂vi
· vi. (1)

This simulates how model predictions change when
a particular word’s embedding is set to the zero vec-
tor, i.e., it approximates word removal (Ebrahimi
et al., 2018; Wallace et al., 2018).

For the IR model, we use the ElasticSearch
Highlight API (Gormley and Tong, 2015), which
provides word importance scores based on query
matches from the inverted index.

3.4 Adversarial Writing Interface

The authors interact with either the IR or RNN

model through a user interface1 (Figure 3). An
author writes their question in the upper right while
the model’s top five predictions (Machine Guesses)
appear in the upper left. If the top prediction is

1https://github.com/Eric-Wallace/
trickme-interface/



Figure 3: The author writes a question (top right), the QA system provides guesses (left), and explains
why it makes those guesses (bottom right). The author can then adapt their question to “trick” the model.

the right answer, the interface indicates where in
the question the model is first correct. The goal
is to cause the model to be incorrect or to delay
the correct answer position as much as possible.2

The words of the current question are highlighted
using the applicable interpretation method in the
lower right (Evidence). We do not enforce time
restrictions or require questions to be adversarial:
if the author fails to break the system, they are free
to “give up” and submit any question.

The interface continually updates as the author
writes. We track the question edit history to identify
recurring model failures (Section 6) and understand
how interpretations guide the authors (Section 7).

3.5 Question Authors

We focus on members of the Quizbowl community:
they have deep trivia knowledge and craft ques-
tions for Quizbowl tournaments (Jennings, 2006).
We award prizes for questions read at live human–
computer matches (Section 5.3).

The question authors are familiar with the stan-
dard format of Quizbowl questions (Lujan and
Teitler, 2003). The questions follow a common
paragraph structure, are well edited for grammar,

2The authors want normal Quizbowl questions which hu-
mans can easily answer by the very end. For popular answers,
(e.g., Australia or Suez Canal), writing novel final give-away
clues is difficult. We thus expect models to often answer
correctly by the very end of the question.

and finish with a simple “give-away” clue. These
constraints benefit the adversarial writing process
as it is very clear what constitutes a difficult but
valid question. Thus, our examples go beyond sur-
face level “breaks” such as character noise (Be-
linkov and Bisk, 2018) or syntax changes (Iyyer
et al., 2018). Rather, questions are difficult because
of their semantic content (examples in Section 6).

3.6 How an Author Writes a Question
To see how an author might write a question with
the interface, we walk through an example of writ-
ing a question’s first sentence. The author first se-
lects the answer to their question from the training
set—Johannes Brahms—and begins:

Karl Ferdinand Pohl showed this com-
poser some pieces on which this com-
poser’s Variations on a Theme by Haydn
were based.

The QA system buzzes (i.e., it has enough informa-
tion to interrupt and answer correctly) after “com-
poser”. The author sees that the name “Karl Fer-
dinand Pohl” appears in Brahms’ Wikipedia page
and avoids that specific phrase, describing Pohl’s
position instead of naming him directly:

This composer was given a theme called
“Chorale St. Antoni” by the archivist
of the Vienna Musikverein, which could
have been written by Ignaz Pleyel.



Science 17%
History 22%
Literature 18%
Fine Arts 15%
Religion, Mythology, 13%Philosophy, and Social Science
Current Events, Geography, 15%and General Knowledge

Total Questions 1213

Table 1: The topical diversity of the questions in the
adversarially-authored dataset based on a random
sample of 100 questions.

This rewrite adds in some additional information
(there is a scholarly disagreement over who wrote
the theme and its name), and the QA system now
incorrectly thinks the answer is Frédéric Chopin.
The user can continue to build on the theme, writing

While summering in Tutzing, this com-
poser turned that theme into “Variations
on a Theme by Haydn”.

Again, the author then sees that the system buzzes
“Variations on a Theme” with the correct answer.
However, the author can rewrite it in its original
German, “Variationen über ein Thema von Haydn”
to fool the system. The author continues to create
entire questions the model cannot solve.

4 A New Adversarially-Authored Dataset

Our adversarial dataset consists of 1213 questions
with 6,541 sentences across diverse topics (Ta-
ble 1).3 There are 807 questions written against
the IR system and 406 against the neural model by
115 unique authors. We plan to hold twice-yearly
competitions to continue data collection.

4.1 Validating Questions with Quizbowlers
We validate that the adversarially-authored ques-
tions are not of poor quality or too difficult for
humans. We first automatically filter out questions
based on length, the presence of vulgar statements,
or repeated submissions (including re-submissions
from the Quizbowl training or evaluation data).

We next host a human-only Quizbowl event us-
ing intermediate and expert players (former and
current collegiate Quizbowl players). We select
sixty adversarially-authored questions and sixty

3Data available at http://trickme.qanta.org.

standard high school national championship ques-
tions, both with the same number of questions per
category (list of categories in Table 1).

To answer a Quizbowl question, a player inter-
rupts the question: the earlier the better. To capture
this dynamic, we record both the average answer
position (as a percentage of the question, lower is
better) and answer accuracy. We shuffle the regular
and adversarially-authored questions, read them to
players, and record these two metrics.

The adversarially-authored questions are on av-
erage easier for humans than the regular test ques-
tions. For the adversarially-authored set, humans
buzz with 41.6% of the question remaining and
an accuracy of 89.7%. On the standard questions,
humans buzz with 28.3% of the question remain-
ing and an accuracy of 84.2%. The difference in
accuracy between the two types of questions is
not significantly different (p = 0.16 using Fisher’s
exact test), but the buzzing position is earlier for
adversarially-authored questions (p = 0.0047 for a
two-sided t-test). We expect the questions that were
not played to be of comparable difficulty because
they went through the same submission process and
post-processing. We further explore the human-
perceived difficulty of the adversarially-authored
questions in Section 5.3.

5 Computer Experiments

This section evaluates QA systems on the
adversarially-authored questions. We test three
models: the IR and RNN models shown in the inter-
face, as well as a Deep Averaging Network (Iyyer
et al., 2015, DAN) to evaluate the transferabil-
ity of the adversarial questions. We break our
study into two rounds. The first round consists
of adversarially-authored questions written against
the IR system (Section 5.1); the second round ques-
tions target both the IR and RNN (Section 5.2).

Finally, we also hold live competitions that pit
the state-of-the-art Studio Ousia model (Yamada
et al., 2018) against human teams (Section 5.3).

5.1 First Round Attacks: IR Adversarial
Questions Transfer To All Models

The first round of adversarially-authored questions
target the IR model and are significantly harder for
the IR, RNN, and DAN models (Figure 4). For exam-
ple, the DAN’s accuracy drops from 54.1% to 32.4%
on the full question (60% of original performance).

For both adversarially-authored and original test
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Figure 5: The second round of adversarial writing attacks the IR and RNN models. The questions targeted
against the IR system degrade the performance of all models. However, the reverse does not hold: the IR

model is robust to the questions written to fool the RNN.

questions, the early clues are difficult to answer
(accuracy about 10% through 25% of the question).
However, during the middle third of the questions,
where buzzes in Quizbowl most frequently occur,
the accuracy on original test questions rises sig-
nificantly quicker than the adversarially-authored
ones. For both type of questions, the accuracy rises
towards the end as the clues become “give-aways”.

5.2 Second Round Attacks: RNN
Adversarial Questions are Brittle

In the second round, the authors also attack an RNN

model. All models tested in the second round are
trained on a larger dataset (Section 3.2).

A similar trend holds for IR adversarial ques-
tions in the second round (Figure 5): a question
that tricks the IR system also fools the two neural
models (i.e., adversarial examples transfer). For
example, the DAN model was never targeted but
had substantial accuracy decreases in both rounds.

However, this does not hold for questions written
adversarially against the RNN model. On these
questions, the neural models struggle but the IR

model is largely unaffected (Figure 5, right).

5.3 Humans vs. Computer, Live!

In the offline setting (i.e., no pressure to “buzz”
before an opponent) models demonstrably struggle
on the adversarial questions. But, what happens in
standard Quizbowl: live, head-to-head games?

We run two live humans vs. computer matches.
The first match uses IR adversarial questions in a
forty question, tossup-only Quizbowl format. We
pit a human team of national-level Quizbowl play-
ers against the Studio Ousia model (Yamada et al.,
2018), the current state-of-the-art Quizbowl system.
The model combines neural, IR, and knowledge
graph components (details in Appendix B), and
won the 2017 NIPS shared task, defeating a team of
expert humans 475–200 on regular Quizbowl test
questions. Although the team at our live event was
comparable to the NIPS 2017 team, the tables were
turned: the human team won handedly 300–30.

Our second live event is significantly larger:
seven human teams play against models on over
400 questions written adversarially against the RNN

model. The human teams range in ability from high
school Quizbowl players to national-level teams
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dio Ousia model degrades on the adversarially-
authored questions despite never being directly tar-
geted. This verifies that our findings generalize
beyond the RNN and IR models.

(Jeopardy! champions, Academic Competition
Federation national champions, top scorers in the
World Quizzing Championships). The models are
based on either IR or neural methods. Despite a few
close games between the weaker human teams and
the models, humanity prevailed in every match.4

Figures 6–7 summarize the live match results
for the humans and Ousia model, respectively.
Humans and models have considerably different
trends in answer accuracy. Human accuracy on
both regular and adversarial questions rises quickly
in the last half of the question (curves in Figure 6).
In essence, the “give-away” clues at the end of
questions are easy for humans to answer.

On the other hand, models on regular test ques-
tions do well in the first half, i.e., the “difficult”
clues for humans are easier for models (Regular
Test in Figure 7). However, models, like humans,
struggle on adversarial questions in the first half.

4Videos available at http://trickme.qanta.org.

6 What Makes Adversarially-authored
Questions Hard?

This section analyzes the adversarially-authored
questions to identify the source of their difficulty.

6.1 Quantitative Differences in Questions

One possible source of difficulty is data scarcity:
the answers to adversarial questions rarely appear
in the training set. However, this is not the case;
the mean number of training examples per answer
(e.g., George Washington) is 14.9 for the adversar-
ial questions versus 16.9 for the regular test data.

Another explanation for question difficulty is
limited “overlap” with the training data, i.e., mod-
els cannot match n-grams from the training clues.
We measure the proportion of test n-grams that
also appear in training questions with the same an-
swer (Table 2). The overlap is roughly equal for
unigrams but surprisingly higher for adversarial
questions’ bigrams. The adversarial questions are
also shorter and have fewer NEs. However, the
proportion of named entities is roughly equivalent.

One difference between the questions written
against the IR system and the ones written against
the RNN model is the drop in NEs. The decrease in
NEs is higher for IR adversarial questions, which
may explain their generalization: the RNN is more
sensitive to changes in phrasing, while the IR sys-
tem is more sensitive to specific words.

6.2 Categorizing Adversarial Phenomena

We next qualitatively analyze adversarially-
authored questions. We manually inspect the au-
thor edit logs, classifying questions into six differ-
ent phenomena in two broad categories (Table 3)
from a random sample of 100 questions, double
counting questions into multiple phenomena when
applicable.



Adversarial Regular

Unigram overlap 0.40 0.37
Bigram overlap 0.08 0.05
Longest n-gram overlap 6.73 6.87
Average NE overlap 0.38 0.46

IR Adversarial 0.35
RNN Adversarial 0.44

Total Words 107.1 133.5
Total NE 9.1 12.5

Table 2: The adversarially-authored questions have
similar n-gram overlap to the regular test questions.
However, the overlap of the named entities (NE)
decreases for IR Adversarial questions.

Composing Seen Clues 15%
Logic & Calculations 5%
Multi-Step Reasoning 25%

Paraphrases 38%
Entity Type Distractors 7%
Novel Clues 26%

Total Questions 1213

Table 3: A breakdown of the phenomena in the
adversarially-authored dataset.

6.2.1 Adversarial Category 1: Reasoning

The first question category requires reasoning about
known clues (Table 4).

Composing Seen Clues: These questions pro-
vide entities with a first-order relationship to the
correct answer. The system must triangulate the
correct answer by “filling in the blank”. For ex-
ample, the first question of Table 4 names the
place of death of Tecumseh. The training data con-
tains a question about his death reading “though
stiff fighting came from their Native American
allies under Tecumseh, who died at this battle”
(The Battle of the Thames). The system must con-
nect these two clues to answer.

Logic & Calculations: These questions require
mathematical or logical operators. For exam-
ple, the training data contains a clue about the
Battle of Thermopylae: “King Leonidas and 300
Spartans died at the hands of the Persians”. The
second question in Table 4 requires adding 150 to
the number of Spartans.

Multi-Step Reasoning: This question type re-
quires multiple reasoning steps between entities.
For example, the last question of Table 4 requires a
reasoning step from the “I Have A Dream” speech
to the Lincoln Memorial and then another reason-
ing step to reach Abraham Lincoln.

6.2.2 Adversarial Category 2: Distracting
Clues

The second category consists of circumlocutory
clues (Table 5).

Paraphrases: A common adversarial modifica-
tion is to paraphrase clues to remove exact n-gram
matches from the training data. This renders our
IR system useless but also hurts the neural mod-
els. Many of the adversarial paraphrases go beyond
syntax-only changes (e.g., the first row of Table 5).

Entity Type Distractors: Whether explicit or
implicit in a model, one key component for QA

is determining the answer type of the question. Au-
thors take advantage of this by providing clues that
cause the model to select the wrong answer type.
For example, in the second question of Table 5, the
“lead-in” clue implies the answer may be an actor.
The RNN model answers Don Cheadle in response
despite previously seeing the Bill Clinton “playing
a saxophone” clue in the training data.

Novel Clues: Some adversarially-authored ques-
tions are hard not because of phrasing or logic
but because our models have not seen these clues.
These questions are easy to create: users can add
Novel Clues that—because they are not uniquely
associated with an answer—confuse the models.
While not as linguistically interesting, novel clues
are not captured by Wikipedia or Quizbowl data,
thus improving the dataset’s diversity. For example,
adding clues about literary criticism (Hardwick,
1967; Watson, 1996) to a question about Lillian
Hellman’s The Little Foxes: “Ritchie Watson com-
mended this play’s historical accuracy for getting
the price for a dozen eggs right—ten cents—to de-
fend against Elizabeth Hardwick’s contention that
it was a sentimental history.” Novel clues create
an incentive for models to use information beyond
past questions and Wikipedia.

Novel clues have different effects on IR and neu-
ral models: while IR models largely ignore them,
novel clues can lead neural models astray. For ex-
ample, on a question about Tiananmen Square, the
RNN model buzzes on the clue “World Economic



Question Prediction Answer Phenomenon
This man, who died at the Battle of the
Thames, experienced a setback when his
brother Tenskwatawa’s influence over their
tribe began to fade.

Battle of Tippecanoe Tecumseh Composing
Seen Clues

This number is one hundred fifty more than
the number of Spartans at Thermopylae.

Battle of Thermopylae 450 Logic & Cal-
culations

A building dedicated to this man was the
site of the “I Have A Dream” speech.

Martin Luther King Jr. Abraham Lincoln Multi-Step
Reasoning

Table 4: The first category of adversarially-authored questions consists of examples that require reasoning.
Answer displays the correct answer (all models were incorrect). For these examples, connecting the
training and adversarially-authored clues is simple for humans but difficult for models.

Set Question Prediction Phenomenon
Training Name this sociological phenomenon, the taking of one’s

own life.
Suicide

Paraphrase

Adversarial Name this self-inflicted method of death. Arthur Miller
Training Clinton played the saxophone on The Arsenio Hall Show. Bill Clinton
Adversarial He was edited to appear in the film “Contact”. . . For ten

points, name this American president who played the
saxophone on an appearance on the Arsenio Hall Show.

Don Cheadle Entity Type
Distractor

Table 5: The second category of adversarial questions consists of clues that are present in the training data
but are written in a distracting manner. Training shows relevant snippets from the training data. Prediction
displays the RNN model’s answer prediction (always correct on Training, always incorrect on Adversarial).

Herald”. However, adding a novel clue about “the
history of shaving” renders the brittle RNN unable
to buzz on the “World Economic Herald” clue that
it was able to recognize before.5 This helps to ex-
plain why adversarially-authored questions written
against the RNN do not stump IR models.

7 How Do Interpretations Help?

This section explores how model interpretations
help to guide adversarial authors. We analyze the
question edit log, which reflects how authors mod-
ify questions given a model interpretation.

A direct edit of the highlighted words often cre-
ates an adversarial example (e.g., Figure 8). Fig-
ure 9 shows a more intricate example. The left plot
shows the Question Length, as well as the position
where the model is first correct (Buzzing Position,
lower is better). We show two adversarial edits. In
the first (1), the author removes the first sentence of
the question, which makes the question easier for

5The “history of shaving” is a tongue-in-cheek name for a
poster displaying the hirsute leaders of Communist thought. It
goes from the bearded Marx and Engels, to the mustachioed
Lenin and Stalin, and finally the clean-shaven Mao.

One of these concepts . . . a Hyperbola is a type
of, for ten points, what shapes made by passing
a plane through a namesake solid,
that also includes the ellipse, parabola?
whose area is given by one-third Pi r squared
times height?
Prediction: Conic Section (3)→ Sphere (7)

Figure 8: The interpretation successfully aids an at-
tack against the IR system. The author removes
the phrase containing the words “ellipse” and
“parabola”, which are highlighted in the interface
(shown in bold). In its place, they add a phrase
which the model associates with the answer sphere.

the model (buzz position decreases). The author
counteracts this in the second edit (2), where they
use the interpretation to craft a targeted modifica-
tion which breaks the IR model.

However, models are not always this brittle. In
Figure 10 (Appendix C), the interpretation fails to
aid an adversarial attack against the RNN model. At
each step, the author uses the highlighted words as
a guide to edit targeted portions of the question yet
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In his speeches this . . . As a Senator,
� this man supported Paraguay in the
Chaco War, believing Bolivia was backed
by Standard Oil.
+ this man’s campaign was endorsed by
Milo Reno and Charles Coughlin.
Prediction: Huey Long (3) ! Huey Long (3)

In his speeches this . . . As a Senator, this man’s
campaign was endorsed by Milo Reno and
� Charles Coughlin.
+ a Catholic priest and radio show host.
Prediction: Huey Long (3) ! Huey Long (3)

Figure 6: An failed attempt to trick the neural
model. The user modified the question multiple
times, replacing words suggested by the interpreta-
tion, but was unable to break the system.

The BioLIp database stores data on the
interaction of these species with proteins.
Examples of these molecules with C2 symme-
try can increase enantioselectivity, as in their
Josiphos variety. . .
Prediction: Ion (7) ! Ligand (3)

Examples of these molecules species with C2
symmetry can increase enantioselectivity, as in
their Josiphos variety. . .
Prediction: Ligand (3) ! Ion (7)

Figure 7: An failed attempt to trick the neural
model. The user modified the question multiple
times, replacing words suggested by the interpreta-
tion, but was unable to break the system.

and predictions to aid in the generation of chal-
lenging examples. This new annotation method is
salient given the difficulty of collecting large-scale
datasets that do not contain superficial clues mod-
els can use to “game” a task (Gururangan et al.,
2018; Chen et al., 2016). Our adversarial writing
framework alleviates these annotation artifacts by
exposing model pathologies (and their learned arti-
facts) during the data annotation process.

While our adversarial writing setup requires
clear interpretations of a model, annotators can
still generate challenging examples for neural sys-
tems even using IR output. The effort required from
annotators increases during the adversarial writing
process, as they may need to rewrite an example

numerous times. However, better model interpre-
tation techniques and visualizations can ease this
burden.

Another benefit of leveraging human adversaries
is that they can generate examples that are more di-
verse than automatic methods (Jia and Liang, 2017;
Iyyer et al., 2018). This diversity provides insight
into numerous model limitations, rather than a sin-
gle one. Combining these two approaches, perhaps
by training models to mimic user edit history, could
be fruitful to explore in future work.

9 Related Work

Creating evaluation datasets to get a fine-grained
analysis of particular linguistics features or model
attributes has been explored in past work. The
LAMBADA dataset tests a model’s ability to under-
stand the broad contexts present in book passages
(Paperno et al., 2016). Other work focuses on natu-
ral language inference, where challenge examples
highlight existing model failures (Wang et al., 2018;
Glockner et al., 2018; Naik et al., 2018). Our work
is unique in that we use human as adversaries to ex-
pose model weaknesses, which provides a diverse
set of phenomena (from paraphrases to multi-hop
reasoning) that models can’t solve.

Other work has explored specific limitations
of NLP systems. Rimell et al. (2009) show that
parsers struggle on test examples with unbounded
dependencies. A closely related work to ours is
Ettinger et al. (2017) who also use humans as ad-
versaries. Unlike their Build-it Break-it setting, we
have a ready-made audience of “breakers” who are
motivated and capable of generating adversarial ex-
amples. Our work also differs in that we use model
interpretation methods to facilitate the breaking in
an collaborative manner.

Finally, we discussed recent work on adversarial
NLP attacks in Section ??. These types of input
modifications target one specific type of phenom-
ena (e.g., syntatic modifications). These methods
are a complementary strategy to adversarial evalua-
tion of NLP models.

10 Conclusion

It is difficult to automatically expose the limitations
of a machine learning system, especially when that
system solves a fixed held-out evaluation set. In
our setup, humans try to break a trained system. By
supporting this breaking process with interpretation
methods, users can understand what a model is

1 2

1

2

Figure 9: The Question Length and the position where the model is first correct (Buzzing Position, lower
is better) are shown as a question is written. In (1), the author makes a mistake by removing a sentence
that makes the question easier for the IR model. In (2), the author uses the interpretation, replacing the
highlighted word (shown in bold) “molecules” with “species” to trick the RNN model.

fails to trick the model. The author gives up and
submits their relatively non-adversarial question.

7.1 Interviews With Adversarial Authors

We also interview the adversarial authors who at-
tended our live events. Multiple authors agree that
identifying oft-repeated “stock” clues was the inter-
face’s most useful feature. As one author explained,
“There were clues which I did not think were stock
clues but were later revealed to be”. In particular,
the author’s question about the Congress of Vienna
used a clue about “Kraków becoming a free city”,
which the model immediately recognized.

Another interviewee was Jordan Brownstein,6 a
national Quizbowl champion and one of the best ac-
tive players, who felt that computer opponents were
better at questions that contained direct references
to battles or poetry. He also explained how the dif-
ferent writing styles used by each Quizbowl author
increases the difficulty of questions for computers.
The interface’s evidence panel allows authors to
read existing clues which encourages these unique
stylistic choices.

8 Related Work

New datasets often allow for a finer-grained anal-
ysis of a linguistic phenomenon, task, or genre.
The LAMBADA dataset (Paperno et al., 2016) tests
a model’s understanding of the broad contexts

6https://www.qbwiki.com/wiki/Jordan_
Brownstein

present in book passages, while the Natural Ques-
tions corpus (Kwiatkowski et al., 2019) combs
Wikipedia for answers to questions that users trust
search engines to answer (Oeldorf-Hirsch et al.,
2014). Other work focuses on natural language in-
ference, where challenge examples highlight model
failures (Wang et al., 2019; Glockner et al., 2018;
Naik et al., 2018). Our work is unique in that
we use human adversaries to expose model weak-
nesses, which provides a diverse set of phenom-
ena (from paraphrases to multi-hop reasoning) that
models cannot solve.

Other work puts an adversary in the data annota-
tion or postprocessing loop. For instance, Dua et al.
(2019) and Zhang et al. (2018) filter out easy ques-
tions using a baseline QA model, while Zellers et al.
(2018) use stylistic classifiers to filter language in-
ference examples. Rather than filtering out easy
questions, we instead use human adversaries to gen-
erate hard ones. Similar to our work, Ettinger et al.
(2017) use human adversaries. We extend their
setting by providing humans with model interpre-
tations to facilitate adversarial writing. Moreover,
we have a ready-made audience of question writers
to generate adversarial questions.

The collaborative adversarial writing process re-
flects the complementary abilities of humans and
computers. For instance, “centaur” chess teams of
both a human and a computer are often stronger
than a human or computer alone (Case, 2018). In
Starcraft, humans devise high-level “macro” strate-
gies, while computers are superior at executing fast



and precise “micro” actions (Vinyals et al., 2017).
In NLP, computers aid simultaneous human inter-
preters (He et al., 2016) at remembering forgotten
information or translating unfamiliar words.

Finally, recent approaches to adversarial eval-
uation of NLP models (Section 2) typically target
one phenomenon (e.g., syntactic modifications) and
complement our human-in-the-loop approach.

9 Conclusion

One of the challenges of machine learning is know-
ing why systems fail. This work brings together
two threads that attempt to answer this question:
visualizations and adversarial examples. Visualiza-
tions underscore the capabilities of existing models,
while adversarial examples—crafted with the inge-
nuity of human experts—show that these models
are still far from matching human prowess.

Our experiments with both neural and IR method-
ologies show that QA models still struggle with syn-
thesizing clues, handling distracting information,
and adapting to unfamiliar data. Our adversarially-
authored dataset is only the first of many itera-
tions (Ruef et al., 2016): as models improve, future
adversarially-authored datasets can elucidate the
limitations of next-generation QA systems.

While we focus on QA, our procedure is appli-
cable to other NLP settings where there is (1) a
pool of talented authors who (2) write text with
specific goals. Future research can look to craft
adversarially-authored datasets for other NLP tasks
that meet these criteria.

Acknowledgments

We thank all of the Quiz Bowl players, writers, and
judges who helped make this work possible, espe-
cially Ophir Lifshitz and Daniel Jensen. We also
thank the anonymous reviewers and members of the
UMD “Feet Thinking” group for helpful comments.
Finally, we would also like to thank Sameer Singh,
Matt Gardner, Pranav Goel, Sudha Rao, Pouya
Pezeshkpour, Zhengli Zhao, and Saif Mohammad
for their useful feedback. This work was supported
by NSF Grant IIS-1822494. Shi Feng is partially
supported by subcontract to Raytheon BBN Tech-
nologies by DARPA award HR0011-15-C-0113, and
Pedro Rodriguez is partially supported by NSF

Grant IIS-1409287 (UMD). Any opinions, find-
ings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily
reflect the view of the sponsor.

References

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and natural noise both break neural ma-
chine translation. In Proceedings of the Interna-
tional Conference on Learning Representations.

Yonatan Belinkov and James Glass. 2019. Anal-
ysis methods in neural language processing: A
survey. In Transactions of the Association for
Computational Linguistics.

Jordan Boyd-Graber, Shi Feng, and Pedro Ro-
driguez. 2018. Human-Computer Question An-
swering: The Case for Quizbowl. Springer.

Nicky Case. 2018. How To Become A Centaur.
Journal of Design and Science.

Danqi Chen, Jason Bolton, and Christopher D.
Manning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task.
Proceedings of the Association for Computa-
tional Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN
encoder-decoder for statistical machine trans-
lation. In Proceedings of Empirical Methods in
Natural Language Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi,
Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. 2019. DROP: A reading comprehen-
sion benchmark requiring discrete reasoning
over paragraphs. In Conference of the North
American Chapter of the Association for Com-
putational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2018. HotFlip: White-box adversarial
examples for text classification. In Proceedings
of the Association for Computational Linguis-
tics.



Allyson Ettinger, Sudha Rao, Hal Daumé III, and
Emily M. Bender. 2017. Towards linguistically
generalizable NLP systems: A workshop and
shared task. In In Proceedings of the First Work-
shop on Building Linguistically Generalizable
NLP Systems.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A. Kalyanpur,
Adam Lally, J. William Murdock, Eric Nyberg,
John Prager, Nico Schlaefer, and Chris Welty.
2010. Building Watson: An Overview of the
DeepQA Project. AI Magazine, 31(3).

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences
that require simple lexical inferences. In Pro-
ceedings of the Association for Computational
Linguistics.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The Definitive Guide. O’Reilly Media,
Inc.

Anupam Guha, Mohit Iyyer, Danny Bouman, and
Jordan Boyd-Graber. 2015. Removing the train-
ing wheels: A coreference dataset that entertains
humans and challenges computers. In North
American Association for Computational Lin-
guistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in
natural language inference data. In Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics.

Elizabeth Hardwick. 1967. The Little Foxes re-
vived. The New York Review of Books, 9(11).

Bob Harris. 2006. Prisoner of Trebekistan: A
Decade in Jeopardy!

He He, Jordan Boyd-Graber, and Hal Daumé
III. 2016. Interpretese vs. translationese: The
uniqueness of human strategies in simultaneous
interpretation. In Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics.

Lynette Hirschman and Rob Gaizauskas. 2001.
Natural language question answering: The view
from here. Natural Language Engineering,
7(4):275–300.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-
Graber, and Hal Daumé III. 2015. Deep un-
ordered composition rivals syntactic methods for
text classification. In Proceedings of the Associ-
ation for Computational Linguistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and
Luke Zettlemoyer. 2018. Adversarial example
generation with syntactically controlled para-
phrase networks. In Conference of the North
American Chapter of the Association for Com-
putational Linguistics.

Ken Jennings. 2006. Brainiac: adventures in the
curious, competitive, compulsive world of trivia
buffs. Villard.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension
systems. In Proceedings of Empirical Methods
in Natural Language Processing.

Ike Jose. 2017. The craft of writing pyramidal quiz
questions: Why writing quiz bowl questions is
an intellectual task.

Divyansh Kaushik and Zachary C. Lipton. 2018.
How much reading does reading comprehen-
sion require? A critical investigation of popular
benchmarks. In Proceedings of Empirical Meth-
ods in Natural Language Processing.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Rhinehart, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin,
Matthew Kelcey, Jacob Devlin, et al. 2019. Natu-
ral Questions: a benchmark for question answer-
ing research. In Transactions of the Association
for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016.
Understanding neural networks through
representation erasure. arXiv preprint
arXiv:1612.08220.

Paul Lujan and Seth Teitler. 2003. Writing good
quizbowl questions: A quick primer.

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. 2017. Methods for interpreting
and understanding deep neural networks. arXiv
preprint, abs/1706.07979.

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund
Sundararajan, and Kedar Dhamdhere. 2018. Did



the model understand the question? In Pro-
ceedings of the Association for Computational
Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language infer-
ence. In Proceedings of International Confer-
ence on Computational Linguistics.

Anne Oeldorf-Hirsch, Brent Hecht, Mered-
ith Ringel Morris, Jaime Teevan, and Darren
Gergle. 2014. To search or to ask: the routing
of information needs between traditional search
engines and social networks. In Conference on
Computer Supported Cooperative Work and So-
cial Computing.

Denis Paperno, Germán Kruszewski, Ange-
liki Lazaridou, Quan Ngoc Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni,
Gemma Boleda, and Raquel Fernández. 2016.
The LAMBADA dataset: Word prediction re-
quiring a broad discourse context. In Proceed-
ings of the Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of Em-
pirical Methods in Natural Language Process-
ing.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should I trust you?: Ex-
plaining the predictions of any classifier. In
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adver-
sarial rules for debugging nlp models. In Pro-
ceedings of the Association for Computational
Linguistics.

Andrew Ruef, Michael Hicks, James Parker, Dave
Levin, Michelle L. Mazurek, and Piotr Mardziel.
2016. Build it, break it, fix it: Contesting secure
development. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Commu-
nications Security.

Karen Simonyan, Andrea Vedaldi, and Andrew
Zisserman. 2014. Deep inside convolutional net-
works: Visualising image classification models
and saliency maps. In Proceedings of the In-
ternational Conference on Learning Representa-
tions.

Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. 2013. Intriguing
properties of neural networks. In Proceedings of
the International Conference on Learning Rep-
resentations.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov,
Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küt-
tler, John Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Si-
monyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy P. Lillicrap, Kevin Calderone,
Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Ts-
ing. 2017. Starcraft II: A new challenge
for reinforcement learning. arXiv preprint
arXiv:1708.04782.

Eric Wallace, Shi Feng, and Jordan Boyd-Graber.
2018. Interpreting neural networks with near-
est neighbors. In EMNLP 2018 Workshop on
Analyzing and Interpreting Neural Networks for
NLP.

Alex Wang, Amapreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding.
In Proceedings of the International Conference
on Learning Representations.

Ritchie D. Watson. 1996. Lillian Hellman’s "The
Little Foxes" and the new south creed: An ironic
view of southern history. The Southern Literary
Journal, 28(2):59–68.

Ikuya Yamada, Ryuji Tamaki, Hiroyuki Shindo,
and Yoshiyasu Takefuji. 2018. Studio ousia’s
quiz bowl question answering system. arXiv
preprint arXiv:1803.08652.

Adams Wei Yu, David Dohan, Minh-Thang Lu-
ong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. 2018. QANet: Combining
local convolution with global self-attention for



reading comprehension. In Proceedings of the
International Conference on Learning Represen-
tations.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adver-
sarial dataset for grounded commonsense infer-
ence. In Proceedings of Empirical Methods in
Natural Language Processing.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jian-
feng Gao, Kevin Duh, and Benjamin Van Durme.
2018. Record: Bridging the gap between human
and machine commonsense reading comprehen-
sion. arXiv preprint arXiv:1810.12885.

Zhengli Zhao, Dheeru Dua, and Sameer Singh.
2018. Generating natural adversarial examples.
In Proceedings of the International Conference
on Learning Representations.



Sentence Success/Failure Phenomena
its types include “frictional”, “cyclical”, and “structural”

Missing Information 7
its types include “frictional”, and structural
german author of the sorrows of young werther and a two-part faust

Lost Named Entity 7
german author of the sorrows of mr. werther
name this elegy on the death of john keats composed by percy shelley

Incorrect Clue 7
name was this elegy on the death of percy shelley
identify this play about willy loman written by arthur miller

Unsuited Syntax Template 7
so you can identify this work of mr. miller
he employed marco polo and his father as ambassadors

Verb Synonym X
he hired marco polo and his father as ambassadors

Table 6: Failure and success cases for SCPN. The model fails to create a valid paraphrase of the sentence
for 97% of questions.

A Failure of Syntactically Controlled
Paraphrase Networks

We apply the Syntactically Controlled Paraphrase
Network (Iyyer et al., 2018, SCPN) to Quizbowl
questions. The model operates on the sentence
level and cannot paraphrase paragraphs. We thus
feed in each sentence independently, ignoring pos-
sible breaks in coreference. The model does not
correctly paraphrase most of the complex sentences
present in Quizbowl questions. The paraphrases
were rife with issues: ungrammatical, repetitive, or
missing information.

To simplify the setting, we focus on paraphrasing
the shortest sentence from each question (often the
final clue). The model still fails in this case. We
analyze a random sample of 200 paraphrases: only
six maintained all of the original information.

Table 6 shows common failure cases. One re-
curring issue is an inability to maintain the correct
named entities after paraphrasing. In Quizbowl,
maintaining entity information is vital for ensuring
question validity. We were surprised by this failure
because SCPN incorporates a copy mechanism.

B Studio Ousia Quizbowl Model

The Studio Ousia system works by aggregating
scores from both a neural text classification model
and an IR system. Additionally, it scores answers
based on their match with the correct entity type
(e.g., religious leader, government agency, etc.) pre-
dicted by a neural entity type classifier. The Studio
Ousia system also uses data beyond Quizbowl ques-
tions and the text of Wikipedia pages, integrating
entities from a knowledge graph and customized
word vectors (Yamada et al., 2018).

C Failed Adversarial Attempt

Figure 10 shows a user’s failed attempt to break the
neural Quizbowl model.

In his speeches this . . . As a Senator,
this man supported Paraguay in the
Chaco War, believing Bolivia was backed
by Standard Oil.
this man’s campaign was endorsed by
Milo Reno and Charles Coughlin.
Prediction: Huey Long (3)→ Huey Long (3)

In his speeches this . . . As a Senator, this man’s
campaign was endorsed by Milo Reno and
Charles Coughlin.
a Catholic priest and radio show host.
Prediction: Huey Long (3)→ Huey Long (3)

Figure 10: A failed attempt to trick the neural
model. The author modifies the question multiple
times, replacing words suggested by the interpreta-
tion, but is unable to break the system.


